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Nonlinear Minimum Variance Estimation  

For Fault Detection Systems 

 

Abstract 

A novel model-based algorithm for fault detection (FD) in stochastic non-linear systems is 

proposed. The Nonlinear Minimum Variance (NMV) estimation technique is used to generate 

a residual signal which is then used to detect actuator and sensor faults in the system. The 

main advantage of the approach is the simplicity of the nonlinear estimator theory and the 

straightforward structure of the resulting solution. Simulation examples are presented to 

illustrate the design procedure and the type of results obtained. The results demonstrate that 

both actuator and sensor faults can be detected successfully. 

1. Introduction 

The need for high performance, efficiency, safety and reliability in modern engineering 

systems has focussed interest in the Fault Detection and Isolation (FDI) problem. A fault is 

defined as an unexpected change in a system with component malfunction or variation in 

operating condition.  Some faults, if not promptly and properly detected, could turn into 

unrecoverable failures, causing serious damage and even loss of human lives [1].  

In the literature faults can be assume to take place in different parts of a system, and are 

classified as actuator faults or sensor faults [2]. Actuator faults can represent partial or 

complete loss of control action. A total actuator fault can occur as a result of a breakage, cut 

or burned wiring, short-circuit or the presence of foreign body in the actuator [2]. Sensor 

faults in incorrect outputs from the sensors. They can also be subdivided into partial and total 

faults.  

Fault Detection (FD) methods can be classified into two major categories; model-based 

and data-driven approaches [3]. The model-based Fault Detection Isolation (FDI) approaches 

include parity space, parameter estimation and observer based approaches. The observer-

based FDI method is one of the most effective and has received significant interest from 

industry [4]. Model based approaches typically rely on two steps: residual generation; the 

procedure of extracting fault symptoms from the process, and residual evaluation; the 

procedure of decision making [5]. The residuals are often generated using either an observer; 

for deterministic models, or an optimal filter for stochastic models.  

Observer based FD methods use measurements of the actual signals and estimates of the 

signals to generate the residual. The residual should be defined to become large when a fault 

occurs, to avoid false alarms [6], but remain as small as possible due to other uncertainties 

such as unknown disturbances and modelling errors.  
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Residual generation approaches have been developed successfully for linear systems. 

However, much less work has been done for nonlinear systems. This is primarily due to the 

complexity of nonlinear systems. The area of FDI for nonlinear systems is not covered 

completely yet, so it is worthy of study [7]. 

There is some existing literature on the use of a nonlinear estimator for fault detection 

and isolation. The most popular estimator for nonlinear processes is known to be extended 

Kalman filter (EKF) [8]. Although widely used, EKFs have some deficiencies, including the 
requirement of differentiability of the state dynamics as well as susceptibility to bias and 

divergence in the state estimates. The unscented Kalman filter (UKF), on the contrary, uses 

the nonlinear model directly instead of linearizing it [9] and hence does not need to calculate 

the Jacobian and can achieve higher order accuracy. Particle filters (PF) or Sequential Monte 

Carlo Methods are considered a general numerical tool to approximate the a posteriori density 

in nonlinear and non-Gaussian filtering problems. The main drawback with the particle filter 

is that it is very demanding computationally[10]. 

In this study, the Nonlinear Minimum Variance (NMV) estimator is used for the first time 

to generate a residual signal for fault detection applications. The strong point of this technique 

is that a general nonlinear operator is used to represent the nonlinearity of the channel or of 

the measurement sensor. This might involve a set of nonlinear equations or even include a 

look-up table or be a model obtained from a neural or fuzzy-neural network. The main 

advantages of proposed estimator is that no on-line linearization is required, as in the 

extended Kalman filter, and implementation is easy. The cost-function to be minimized is  the 

variance of the estimation error and a relatively simple optimization procedure and solution 

results [11]. 

The roadmap for this study is as follows. The derivation of NMV estimation method is 

given in section 2. NMV based residual generation for fault detection is described in section 3. 

The  performance  of  the  proposed fault detection method is illustrated by a case study in 

section 4. Finally the conclusions are summarised in section 5. 

 

2. Nonlinear Minimum Variance Estimation 

The theory of Nonlinear Minimum Variance Estimation (NMVE) was intrıduced by 
Grimble [11] using polynomial system models [12, 13] and later state-equation based models 

[14, 15]. The NMVE technique involves the estimation of a signal that passes through a 

communications channel having nonlinearities and communication/transport delays [13]. The 

measurements are assumed to be corrupted by a noise signal, which is correlated with the 

signal to be estimated. Signal and noise models are assumed to be linear and time-invariant. 

The Nonlinear Minimum Variance (NMV) estimator derivation is based on the minimization 

of the error variance criterion. Consider the system shown in Fig.1, which includes the 

nonlinear signal channel model and linear measurement noise and signal models. 
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Figure 1:   Signal and Noise Model and Communication Channel Dynamics 
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The signal channel model includes the nonlinearities that may involve both linear and 

nonlinear dynamics. The signal channel dynamics with a delay can be expressed as: 

( )( ) ( )( )0

01c cchannel
f t z W f t

−Λ=฀       (1) 

where 0z
−Λ

 denotes a diagonal matrix of the k step delay elements in the signal paths and 

0 k I=Λ . The parallel path dynamics shown in Fig. 1, by a dotted line, can be expressed as: 

0

0

1 1

c c( ) ( )z z z
−Λ− −=       (2) 

This is a fictitious channel, added to provide design tuning options, that can be used to 

represent uncertainties in channel knowledge, which provides additional design freedom. The 

combined signal source and noise signal r
f ( t ) R∈  is given as: 

f ( t ) y( t ) n( t )= +       (3) 

Consider the nonlinear system for the optimal estimation problem illustrated in Fig.1.  The 

input and noise generating processes have an innovations signal model with white noise signal 

input: ( ) r
t Rε ∈  and it may be assumed to be zero-mean with covariance matrix:

cov[ ( ), ( )] tt I τε ε τ δ=  where 
tτδ  denotes the Kronecker delta-function. The signals shown in 

the closed-loop system model of Fig.1 may be listed as: 

Noise:     ( ) ( )n
n t W tε=       (4) 

    Input signal:           ( ) ( )s
y t W tε=            (5) 

Channel input:   ( ) ( ) ( )f t y t n t= +      (6) 

Linear channel subsystem: ( )( )00 c( )s t W f t=      (7) 

Weighted channel interference:  ( ) ( )( )c cn t tε=       (8) 

Nonlinear channel subsystem: ( )( )1c( )c ds t s t=       (9) 

  Nonlinear channel input:   ( ) ( )0

0 0( )ds t z s t s t k
−Λ= = −     (10) 

  Observations signal:  ( ) ( ) ( )c c
z t n t s t= +      (11) 

 Message signal to be estimated:  ( )c c( ) ( )
s

s t W y t W W tε= =     (12) 

Weighted message signal:  c( ) ( )q qs t W W y t=      (13) 

   Estimation error signal:               ˆ( ) ( ) ( )s t t s t s t t− = − −                               (14) 
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where ˆ( )s t t −   denotes the estimate of the signal s(t) at time t, given observations z(t) up to 

time t-  . Value of   may be positive or negative according to the following conditions:  =0, 

for estimation;   > 0, for prediction and   < 0, for fixed-lag smoothing. The criterion for the 

nonlinear minimum variance estimator is given below: 

{ { ( | )( ( | )) }}T

q qJ trace E W s t t W s t t= − −      (15) 

where {.}E  denotes the expectation operator and  
qW [16] denotes a linear strictly minimum-

phase dynamic cost-function weighting function matrix which is assumed to be strictly 

minimum phase, square and invertible.  

The estimate ˆ( )s t t −   is assumed to be generated from a nonlinear estimator of the form: 

1ˆ( ) ( , ) ( )f
s t t H t z z t

−− = −       (16) 

where 

1 1 1

0 0 c1 0( , ) ( )
f q fc ct z W H W Y

− − −=+       (17) 

where 
1( , )f t z
−  denotes a minimal realisation of the optimal nonlinear estimator. Since an 

infinite-time ( )t = −∞  problem is of interest therefore no initial condition term is required. 

The block diagram representation of 
1( , )

f
t z

−  will be as shown in Fig. 2. 

 

 

Figure 2:   Implementation of the Nonlinear Estimator 

 

The terms 0 f
H ,A and Y  used in equation (18) can be calculated using the concept of power 

spectrum for the combined linear models using: * *

ff s n s n(W W )(W W )φ =+ + , and where the 

notation for the adjoint of 
sW  implies: 1* T

s sW ( z ) W ( z )
− = , and in this case the z denotes z-

Transmission  

Nonlinear estimator  

  
- 

+ 

 

Observations 

 

Estimate

 

m(t) p(t) 



6 

 

domain complex number. The generalized spectral-factor: 
f

Y  may be computed using: 

*

f f ff
Y Y φ= ,where 1 1

0 0f f f
Y A D D A

− −= = . The system models are assumed such that 0f
D  is 

strictly Schur polinomial matrix [17, 18] satisfying: 

 

0 0

* * *

f f s n s nD D ( C C )( C C )= + +     (18) 

 

The right-comprime polynomial matrix model can be defined as:  

 

1

f f q c s fC D A W W W Y
−   =        (19) 

 

The polynomial operators 
0H  now may be optained from the minimal degree solution 

0 0( H ,F ) , with repect to 
0F , of the following Diophantine equation: 

 

0 0

k

f
F A G z C

− −+ =     (20) 

 

The estimation error can be penalised in a particular frequency range by using a dynamic 

asymptotically stable weighting function 1
W A B

−
Ω Ω Ω= , where A  and BΩ Ω are polynomial 

matrices. The weighted error involves a linear path at the optimum. In the linear case the 

modified cost function will have the form (Parceval’s theorem does not apply in the nonlinear 

case): 

  { }
1

1 2T *

ee

z

J trace E(W e( t t ))(W e( t t )) trace / ( j ) (W W )dz / zπΩ Ω Ω Ω
=

 
= − − = Φ 

 
∫     (21) 

 

3. NMVE Based Fault Detection  

In nonlinear minimum-variance estimation, the nonlinearities are assumed to be in the 

signal channel or possibly in a noise channel representing the uncertainty. The simple solution 

that follows arises because of the assumptions of linearity for the signal generating model and 

the results obtained here involve only a least-squares type of analysis [19].  

The Fault detection techniques are often based on the generation of appropriate residual 

signals which have to be sensitive to faults themselves but independent of disturbances. 
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Model-based FD methods are based on comparing the behavior of the actual signal and an 

estimated signal of the system. Typically, it is shown that in the absence of a fault, the 

observer residual approaches zero. When a fault exists, this residual will be non-zero, and it 

may therefore serve as a fault indicator.  

The block diagram of the proposed nonlinear minimum variance estimator, taking 0= , 

based on residual generation for fault detection, is shown in Fig. 3. 

 

 

 

 

 

 

 

 

Fig. 3:  NMVE Based Residual Generation Scheme 
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ˆ ˆy t W s t

−=                            (23) 

                                                ( ) ( ) ( )1

c
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Then finally residual signal can be calculated substituting eqn(28) into eqn (23):  
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0c1
ˆ
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When there is a fault at the signal estimation point, the residual becomes 

1

0c1
ˆ( ) ( ) ( )c c c fr t s t W W s t φ−=− +      (27) 

                                  
1 1

0 0c1 c1
ˆ( ) ( )c c c c fW W s t W W s t φ− −= − +                          (28) 

If the plant is linear this simplifies as: 

                                          ( )1

1 0c ˆ( ) ( ) ( )c c fr t W W W s t s t φ−= − +     (29) 

                                               ( )1

1

0c c c f
W W W s( t t ) φ−=+                                       (30) 

Where
f

φ is a fault and where 0
f

φ ≠   is the output arising from the signal fault.  However, 

it can be only detected if term is large compared with estimation errors and the signal 

noise ( )tε . 

 

3.1.  Threshold computation 

To achieve a successful fault detection based on the available residual signal, further effort 

is needed. Residual evaluation and threshold setting are used to distinguish the faults from the 

disturbances and uncertainties. A decision on the possible occurrence of a fault will then be 

made by means of a simple comparison between the residual feature and the threshold, as 

shown in Fig. 4. 

 

 

 

 

 

 

Fig. 4:   Residual evaluation 
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where 
min

T , 
max

T  denote the minimum and maximum values of T in the fault-free case. They 

are the threshold values. 

 

4. Design and Simulation Results 

The computation of the estimator is relatively straightforward. The polynomial matrix 

equations can be solved using the Matlab polynomial toolbox PolyX. Given these matrices the 

estimator may be implemented very neatly, as shown in Fig. 2. 

The selection of the uncertainty tuning function 
0c  is a dual problem to the selection of 

optimal control cost function weightings [16]. The requirement for the nonlinear operator is 

that it should have a stable inverse. A simple starting point is therefore to assume the 

uncertainty model 
0c  is a constant and of a small magnitude. This corresponds to the 

situation where the uncertainty is simply white noise added at the output of the 

communications channel before it enters the estimator. Uncertainly is of course often 

associated with high frequency behavior and hence a simple linear lead term might be used to 

represent the frequency response of as in the example which follows. 

To validate the effectiveness of the NMV filter based fault detection systems, nonlinear 

SISO system is used as an example. The NMV filter is computed below for the example and a 

simulation is used to verify the results.We consider a system having the following signal and 

noise models; 

1

0 1

1 0 99
s
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. z
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−
,  
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0 6
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n
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. z
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and let weighting 1qW = ,  10 5 1 0 5cW . . z
−= − and Channel delay = 1

z
− ,so that 

0 1kΛ = = .  

The linear channel characteristics are defined as 1

0 1 1 0 5cW ( . z )
−= − . The static nonlinear 

characteristic of the system is given in Fig. 5.  

The dc-gain and changes in the cut-off frequency of the weighting filter 
0c  influences the 

accuracy of estimation. 
0

1
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−  The tuning function , which is optimized for this example, has 

the following representation: 
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Fig. 5.  Nonlinear Behavior of the Output Sub-System 

 

The overall system and simulink model of NMV filter for fault detection is as shown in 

Fig. 6. 

 

 

Fig.6:   Simulink Model of NMV Based Fault Detection Systems 

Under normal operation condition (fault-free) measured signal and estimated signal are 
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dedicated in Fig.9. As shown in Fig. 9, residual signal is under the threshold. It means system 

is under normal operation. 
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Fig.7. Measured and Estimated Signal (no fault) 

 

Fig.8. Tuning Filter Frequency Responses 
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Fig.9. Residual Signal with Thresholds (no fault) 
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 Fig.10.   Applied Fault Signal 

 

 

Fig.11.   Actual and Estimated Signal (faulty) 
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Fig.12. Residual Signal with Thresholds (faulty) 

4.2. Actuator Fault 

For the actuator fault; the signal shown in Fig. 13 is applied to the ‘actuator fault input’ of the 
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actuator input for a while. After the actuator fault is applied, actual signal and estimated signal 
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15.  
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Fig.14.   Actual and Estimated Signal (faulty) 

 

Fig.15.   Residual Signal with Thresholds (faulty) 
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5. CONCLUSIONS 

A NMV estimator based fault detection system for nonlinear systems has been developed. 

The NMV estimator is used to generate the residual signal which indicates possible fault 

conditions in the system. The NMV estimator has some benefits relative to some other 

nonlinear estimators in three respects i.e. it requires less computational cost, easy to 

implement and to tune.  The algorithm is illustrated using the simulation of a nonlinear 

process control example. The simulation results show that the method has a good performance 

in detecting faults at either inputs or outputs.  
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