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Abstract 

Protein S-acylation, the only fully reversible post-translational lipid modification of proteins, is 

emerging as a ubiquitous mechanism to control the properties and function of a diverse 

array of proteins and consequently physiological processes.  S-acylation results from the 

enzymatic addition of long chain lipids, most typically palmitate, onto intracellular cysteine 

residues of soluble and transmembrane proteins via a labile thioester linkage.  Addition of 

lipid results in increases in protein hydrophobicity that can impact on protein structure, 

assembly, maturation, trafficking and function. The recent explosion in global S-acylation 

(palmitoyl) proteomic profiling as a result of improved biochemical tools to assay S-acylation, 

in conjunction with the recent identification of enzymes that control protein S-acylation and 

de-acylation, has opened a new vista into the physiological function of S-acylation.  This 

review introduces key features of S-acylation and tools to interrogate this process, and 

highlights the eclectic array of proteins regulated including: membrane receptors, ion 

channels and transporters, enzymes and kinases, signaling adapters and chaperones, cell 

adhesion and structural proteins.  We highlight recent findings correlating disruption of S-

acylation to pathophysiology and disease and discuss some of the major challenges and 

opportunities in this rapidly expanding field. 

 

I. Introduction 

Cellular proteins are regulated by a diverse range of chemical modifications on their amino 

acid sidechains (Figure 1). These various modifying groups can affect charge, 

hydrophobicity, and other aspects of protein chemistry, resulting in marked changes in the 

behaviour of protein molecules and hence in the control of physiological mechanisms. 

Lipidation is a general term encompassing the attachment of different lipids and lipid-like 

groups onto proteins (144, 208). These lipid modifications increase protein hydrophobicity 

and can impact on protein structure and the affinity of proteins for cellular membranes or 

membrane domains. 
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Glycosylphosphatidylinositol (GPI) groups anchor many cellular proteins to the outer surface 

of the plasma membrane, and cholesterol is attached to certain secreted proteins (60, 91, 

208).. For proteins retained inside the cell, common lipidations are fatty acylation and 

isoprenylation (208). The latter modification involves the post-translational attachment of 

farnesyl and geranygeranyl chains onto C-terminal cysteine residues via an irreversible 

thioether linkage (208, 269).. The enzymes farnesyl transferase and geranylgeranyl 

transferase I recognise a strict “CAAX” (A is any aliphatic amino acid and X is any amino 

acid) consensus motif present at the extreme C-terminus of proteins. The amino acid 

occupying the X position in the CAAX motif determines if the protein is modified by farnesyl 

transferase or geranylgeranyl transferase I (134, 269). A different geranylgeranylation signal 

(non-CAAX) is recognised by the enzyme geranylgeranyl transferase II, which modifies Rab 

proteins (135). 

The main types of fatty acylation characterised to-date are N-myristoylation and S-acylation. 

N-myristoylation most frequently involves the co-translational reaction of myristic acid with a 

glycine residue in the consensus sequence MGXXXS/T (where M is the initiating methionine 

and X is any amino acid) (8, 25, 208). As myristoyl chains are added to the amine group of 

the glycine, this modification requires the previous removal of the initiating methionine 

residue (65). N-myristoylation does not occur exclusively as a co-translational modification, 

and can also take place post-translationally when N-terminal glycine residues are exposed 

following protein cleavage, for example, during apoptosis (264). 

S-acylation has proved more enigmatic than isoprenylation and N-myristoylation, however 

recent breakthroughs have shed light on the mechanisms and dynamics of this modification. 

S-acylation is exclusively post-translational, involving the attachment of fatty acids onto 

cysteine residues via a labile thioester linkage and thus, in contrast to other lipidations, S-

acylation may be dynamic and reversible (Figure 2) (51, 144, 208, 215, 221, 232). This 

modification is frequently referred to as palmitoylation, reflecting the fact that palmitate is the 

predominant fatty acid attached to S-acylated proteins. Historically, S-acylation was 

relatively difficult to study due to the low sensitivity of available detection methods, the 
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absence of a defined consensus sequence and a dearth of information about the relevant 

enzymes responsible for this lipid modification (167). However recent breakthroughs have 

identified the S-acylation enzymes and developed highly sensitive techniques to study this 

process, leading to a marked increase in our knowledge of the mechanisms and outcomes 

of protein S-acylation.  

 

In this review we first outline some general features of S-acylation including its ubiquity, 

reversibility and diversity of substrates before outlining some of the key regulatory effects S-

acylation may have on protein function and subcellular localisation. We then review the 

enzymatic control of S-acylation and the implication of S-acylation in disease and outline 

methodologies exploited to assess and interrogate S-acylation. Finally, we discuss selected 

examples to highlight the diverse array of cellular proteins and physiological processes 

controlled by S-acylation – from control of gene transcription and cellular architecture to ion 

flux across membranes - before highlighting some of the key outstanding questions in the 

field. 

  

II. General Features of S-Acylation 

 

II.i S-acylation is a universal modification in eukaryotes 

S-acylation is a highly conserved process occurring in all eukaryotic organisms that have 

been examined, and regulated by enzyme families (Figure 2) that are conserved from yeast 

to humans (74, 122, 167, 212). Proteomic profiling of S-acylated proteins in the yeast 

Saccharomyces cerevisiae identified 47 acylated proteins (212), whereas similar studies 

have detected several hundred S-acylated proteins in mammalian and other cell types (30, 

83, 108, 118, 122, 139, 155-157, 162, 265, 266, 268, 276, 278, 282). The number of S-

acylated proteins identified in these studies may well be a significant under-representation, 

as techniques employed to enrich the S-acylated proteome may be affected by the level and 
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dynamics of S-acylation on individual proteins. Whilst there is no evidence for S-acylation 

occurring in prokaryotes, many viral proteins undergo S-acylation catalysed by the host cell 

machinery, and indeed analysis of viral protein S-acylation has made a significant 

contribution to current knowledge about S-acylation in general e.g. (129). 

 

II.ii S-acylation is a reversible modification 

A key property of S-acylation that distinguishes it from other lipid modifications of cellular 

proteins is its reversibility. The labile nature of thioester bonds in the intracellular 

environment allows many (but not all) S-acylated proteins to undergo rapid cycles of S-

acylation and deacylation (215). Classically, S-acylation dynamics have been studied using 

radiolabelling with [3H] palmitic acid, which is converted into [3H] palmitoyl-coA in cells and 

incorporated into S-acylated proteins. Early studies that employed [3H] palmitate pulse-

chase experiments highlighted the reversibility of S-acylation, for example the half-life of 3H 

palmitate incorporated into N-Ras was shown to be around 20 minutes (154). These 

radiolabelling experiments have been instrumental in defining cellular S-acylation dynamics, 

however it is possible that this approach does not provide sufficient sensitivity to generate 

highly accurate turnover rates; for example, more recent work using an indirect reporter of S-

acylation status suggested that deacylation of N-Ras may occur 10-20 times faster than 

calculated by pulse-chase analyses (209, 210). These apparent differences will require 

future clarification through the use of multiple approaches to determine palmitate turnover 

dynamics. The dynamic nature of S-acylation may therefore be more akin to other post-

translational modifications that can have rapid turnover rates, such as phosphorylation, and 

cycles of S-acylation and deacylation are now known to play a fundamental role in regulating 

the intracellular localisation and function of many diverse proteins (215) (see section VI). 

The reversibility of S-acylation sets this process apart from other lipid modifications and 

implies an important role for S-acylation in the dynamic regulation of cellular proteins. 

Nevertheless, it needs be emphasised that rapid cycling of acyl chains on S-acylated 
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proteins is not universal, and S-acylation turns over at a very low rate or not at all on other 

cellular proteins (157). Indeed marked differences can exist in the turnover rates of different 

S-acylation sites in the same protein (294). Thus, a major outstanding question in S-

acylation research relates to how the dynamics of lipid turnover on S-acylated proteins is 

regulated and why different proteins display distinct turnover rates. 

 

II.iii Diversity of Lipid Groups Attached to S-Acylated Proteins 

The term ‘palmitoylation’ is often used synonymously with ‘S-acylation’. This nomenclature 

stems from the multitude of studies that have monitored S-acylation via incorporation of [3H] 

palmitate into specific cellular proteins. Nonetheless, it is likely that palmitate (C16:0) is 

indeed the major lipid incorporated into endogenous S-acylated proteins, although other fatty 

acids such as stearate (C18:0) and oleate (C18:1) can also be added (253). One study used 

gas chromatography-mass spectrometry to quantify the different fatty acids that were 

released from total platelet proteins following hydroxylamine treatment (which cleaves 

thioester bonds between acyl groups and cysteine). This quantification found that of the fatty 

acids added to proteins via S-acylation, on average 74% were palmitate, 22% were stearate 

and 4% were oleate (174). This study provides a snap-shot of the lipid diversity on S-

acylated proteins, but it is important to emphasise that there are likely to be other fatty acids 

incorporated at lower levels, and different cell types will likely exhibit distinct lipid profiles as 

will individual S-acylated proteins. Indeed the lipid profile of S-acylated proteins in platelets 

was markedly affected by the lipid composition of the extracellular environment, and there 

was also marked variability in the level of oleate in platelets from different subjects (at 

maximum, 100-fold) (174). Studies using cell lines have highlighted similar heterogeneity in 

fatty acids attached via S-acylation (140). 

The challenge of dissecting the chemical identity of the lipid groups added to S-acylated 

proteins is widely recognised. The study described above employed gas chromatography-

mass spectrometry to quantify the levels of individual lipids on platelet proteins, and this 

technique can also be applied to analyse the lipid profile of individual S-acylated proteins 
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(234); however this approach is not able to determine the exact cysteine residues that are 

modified by the detected fatty acids. However tandem mass spectrometry approaches have 

proved useful to profile the lipid species that are attached to specific cysteine residues in 

viral proteins. These analyses have revealed that the haemagluttinin protein of Influenza 

viruses can be modified by both palmitate and stearate, and intriguingly that stearate 

appears to be specifically added to cysteines located within the transmembrane domains of 

these proteins (128, 129). Whilst mass spectrometry approaches hold significant promise to 

dissect acyl chain heterogeneity in S-acylated proteins, technical hurdles have thus far 

prevented widespread use of this methodology, in particular for most low abundance 

mammalian membrane proteins. 

 

II.iv.  Diversity of S-Acylation Substrates 

Proteomic profiling of S-acylated proteins from a variety of different cell types has revealed 

the diverse nature of the modified proteins (see section VI) (30, 83, 108, 118, 122, 139, 155-

157, 162, 265, 266, 268, 276, 278, 282). S-acylated proteins can be broadly classified as 

transmembrane or peripheral membrane proteins, with the latter requiring acylation for 

stable membrane binding (Figure 3). Peripheral membrane S-acylated proteins often 

undergo ‘dual’ lipid modification, and thus can be further sub-classified accordingly as either: 

N-myristoylated/S-acylated, isoprenylated/S-acylated, or exclusively S-acylated (232). 

Exemplar proteins that are modified in these three ways include Src family kinases, Ras 

proteins, and the membrane fusion protein SNAP25, respectively (82, 98, 127). 

Transmembrane proteins that are modified by S-acylation are equally as diverse in nature as 

the S-acylated peripheral membrane proteins, and include ion channels, receptors and 

transporters (122). 

 

 

III. Regulatory Effects of S-Acylation 
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S-acylation has been implicated in the control of multiple stages of the lifecycle of 

transmembrane and peripheral-membrane proteins (Figure 4): from protein assembly to 

trafficking and final degradation. 

 

III.i Membrane binding of peripheral membrane proteins 

For peripheral membrane proteins, the first and foremost function of S-acylation is to 

mediate stable membrane attachment (215). This requirement for S-acylation to promote 

stable membrane binding holds even for dual lipidated proteins, as single myristoyl or prenyl 

groups are not sufficient in this regard. Seminal work exploring the interaction of lipidated 

peptides with model membranes uncovered a fundamental principle, termed ‘kinetic 

trapping’ (222).  These studies revealed that single myristoyl or prenyl groups only provide 

peptides with a weak membrane affinity, sufficient for transient membrane binding. In 

contrast, closely positioned dual lipid anchors, (either myristate/palmitate or 

farnesyl/palmitate) mediate strong, essentially irreversible, membrane-peptide interaction. 

This kinetic trapping observed when peptides convert from having a single lipid group to 

being dual lipidated is highly relevant when one considers the intracellular distribution of 

lipidating enzymes. N-myristoyl and prenyl transferases, which mediate the co- and post-

translational modification of soluble proteins, respectively, are localised in the cell cytosol (5, 

26, 125, 254). In contrast, the enzymes that mediate S-acylation are exclusively membrane-

associated (see section IV) and as a result this modification only occurs at cellular 

membranes. Thus, N-myristoylation or prenylation of proteins during or shortly after their 

synthesis in the cytosol bestows a weak membrane affinity that mediates transient 

interaction with intracellular membranes. These transient membrane interactions allow singly 

lipidated proteins to connect with membrane-bound S-acyl transferases, and subsequent S-

acylation leads to stable membrane binding and kinetic trapping. The requirement of dual 

lipidation for stable membrane binding has been clearly shown for a variety of cellular 

proteins; for example, mutation of the S-acylation site(s) in Ras proteins leads to a weak 
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association with membranes, whereas mutation of the farnesylation signal leads to a loss of 

both S-acylation and membrane binding (81). 

As mentioned previously, some proteins are exclusively S-acylated with no obvious primary 

membrane targeting signals. It has been suggested that such proteins rely upon a weak 

intrinsic membrane affinity to access intracellular membranes and undergo S-acylation and 

thus a similar kinetic trapping idea holds for these proteins. This mechanism of initial 

membrane interaction has been proposed to operate for SNAP25 and CSP (77, 78). 

Although transmembrane proteins are irreversibly membrane-integrated, S-acylation of 

cysteine residues in the cytoplasmic domains of these proteins can dictate the membrane 

proximity of these domains (Figure 3). This can have a major effect on the overall 

structure/topology of the protein relative to the membrane. 

 

III.ii Targeting to membrane micro-domains and sub-domains 

The lipids within cellular membranes are diverse and have been proposed to undergo short-

range ordering, as a result of packing preferences. This concept is readily observed in model 

membrane systems composed of ternary lipid mixtures, where cholesterol and saturated 

phospholipids phase separate from unsaturated phospholipids (20). This phase separation 

that occurs in vitro has been proposed to also occur in intact cellular membranes, leading to 

the formation of cholesterol- and saturated phospholipid-rich microdomains (229). It has 

been incredibly challenging to study these so-called lipid rafts in live cells due to the small 

size of these structures (<50 nm) (199) and several investigators have questioned whether 

such domains ever form or have meaningful functions in cellular membranes (173). The 

functions and composition of lipid rafts have largely been ascribed based upon results using 

cholesterol depletion experiments and detergent-insolubility as a descriptor for raft-

associated proteins. Although there is intense debate about the extent to which detergent 

solubility characteristics of membrane proteins reflect association with cholesterol-rich lipid 

raft domains (141), it is clear that S-acylated proteins largely co-purify with cholesterol-

enriched detergent insoluble membranes (161). As a result, S-acylation has been proposed 
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as an important signal for sequestration into lipid raft micro-domains, and thus as a regulator 

of the lateral distribution of proteins within membranes (136). S-acylation-dependent 

association of proteins with detergent-insoluble rafts has been proposed to regulate 

important cellular pathways such as exocytosis via the membrane fusion protein SNAP25 

(214)  and actin cytoskeleton remodelling and membrane organisation via Rac1 (176). 

Progress in this area of research is likely to be substantially enabled by the development of 

super-resolution imaging techniques that provide optical resolution on the order of raft size 

(49). 

The majority of work on membrane microdomains has focussed on proteins associated with 

the plasma membrane, however intracellular compartments also exhibit heterogeneities in 

structure and composition. The endoplasmic reticulum (ER) is a case in point, and 

diversification of this compartment into several distinct sub-domains facilitates its role as a 

multi-functional organelle (152).  Protein S-acylation appears to be an important factor in 

targeting proteins to specific ER sub-domains. Calnexin, which functions in the folding of 

glycoproteins in the ER, is S-acylated at the cytoplasmic side of its single transmembrane 

domain (132). Perturbing acylation of calnexin decreased the association of this protein with 

the ribosome-studded rough ER surrounding the nuclear envelope (132). Molecular 

modelling of the calnexin transmembrane domain and a short cytoplasmic region suggested 

that S-acylation may modify the orientation of the cytoplasmic tail with respect to the axis of 

the transmembrane helix (132), and these structural changes may facilitate targeting of 

calnexin, albeit by a presently unknown mechanism. A role for S-acylation has also emerged 

in targeting of proteins to the mitochondrial-associated membrane (MAM) another distinct 

ER sub-domain. The transmembrane thioredoxin family protein TMX and heme oxygenase-1 

were found to require S-acylation for efficient targeting to the MAM (150). This study also 

suggested that S-acylation of calnexin was required for targeting to the MAM (150), and thus 

more work is clearly required in this area to understand the precise requirements and 

mechanisms whereby S-acylated proteins are segregated to defined domains in the ER. 
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III.iii Protein trafficking and intracellular localisation 

S-acylation regulates the trafficking and localisation of a wide range of cellular proteins (72). 

Many effects on protein trafficking and localisation are likely to be attributable to the impact 

of S-acylation on membrane binding and micro-localisation discussed above. S-acylation will 

affect the localisation of peripheral membrane proteins simply by promoting accumulation of 

modified proteins on membranes containing the respective acylation enzymes. This S-

acylation-dependent movement of proteins from the cytosol to membranes may allow other 

domains of the protein to interact with sorting adaptors, mediating trafficking to distinct 

membrane compartment(s). In this scenario, S-acylation is required for protein trafficking (by 

virtue of the requirement of this modification for membrane association) but it does not 

actively direct proteins to a specific intracellular compartment. 

In addition to these ‘passive’ effects of S-acylation on protein localisation, S-acylation can 

also function as an active protein sorting signal. Short peptides from the lipidated C-terminus 

of H/N-Ras display a similar localisation to the full-length proteins, implying that lipid signals 

may be sufficient to specify movement of Ras proteins from endomembranes to the plasma 

membrane (80). At present it is not clear how S-acylation might regulate trafficking of these 

peptides but this may involve effects of S-acylation on protein micro-localisation. For 

example, cholesterol-rich domains at the Golgi have been proposed to act as platforms for 

the budding of transport vesicles delivering cargo to the plasma membrane (188). Thus, S-

acylation might promote Golgi exit by driving protein association with such cholesterol-rich 

microdomains. 

It can be challenging to tease apart the active effects of S-acylation on trafficking of 

peripheral membrane proteins from the requirement of this modification for stable membrane 

binding. However for multiply-acylated proteins such as the SNARE protein SNAP25, it is 

possible to examine effects of individual S-acylated cysteines on protein trafficking, without 

interfering with membrane binding. Indeed, recent work has suggested that the extent of S-

acylation of SNAP25 (4 potential acylation sites) regulates the cycling of this protein between 

the plasma membrane and endosomes (73), which may impact endosomal fusion dynamics 
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(7). In this case, mutant SNAP25 proteins with 3 rather than 4 S-acylation acceptor sites 

exhibited a marked accumulation on endosomal membranes (73), likely highlighting a role 

for the extent of S-acylation in regulating endosome-to-plasma membrane trafficking of 

SNAP25. The mechanistic basis underlying the effects of multiple S-acylation on SNAP25 

endosomal cycling are not known, however the number of acylation acceptor sites in 

SNAP25 has a marked effect on association of the protein with cholesterol-rich membranes 

(213), suggesting that lipid rafts might feature in the regulation of this cycling pathway. 

As transmembrane proteins do not require S-acylation for stable membrane binding, the 

importance of this modification for trafficking is potentially easier to dissect. As a result, we 

currently have a clearer picture about the active effects of S-acylation on the trafficking of 

integral membrane proteins. 

During protein translation, signal peptides and start/stop transfer sequences are employed to 

insert transmembrane proteins into the membrane of the endoplasmic reticulum (ER) and 

generate the required topological arrangement of the protein with respect to the membrane 

bilayer (223). Various chaperones and enzymes in the ER lumen facilitate protein folding, 

catalyse modifications such as glycosylation, and support oligomeric assembly of proteins 

into the necessary quaternary structure (237). S-acylation has been reported to regulate 

trafficking of a variety of transmembrane proteins from the ER (72, 215), including LRP6, a 

co-receptor for Wnt. LRP6 is a monotopic transmembrane protein that is S-acylated close to 

the cytoplasmic side of the membrane-spanning domain (1). LRP6 proteins with the S-

acylation sites mutated were retained at the ER and failed to traffic to the plasma membrane. 

Intriguingly, this block in forward trafficking of S-acylation-deficient mutants was alleviated by 

reducing the length of the TMD of LRP6. This observation suggests that S-acylation may 

have the effect of ‘reducing’ the apparent length of the LRP6 TMD. Thus, the authors 

proposed that non-acylated LRP6 is trapped at the ER because hydrophobic mismatching 

occurs between the long TMD (23 amino acids) and the thin ER bilayer, and that S-acylation 

improves hydrophobic matching by inducing the TMD to tilt with respect to the membrane 

axis.  Recent molecular dynamics simulations have supported the idea of interactions 
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between S-acyl chains and transmembrane helices, with the two S-acyl chains attached to 

the C-terminus of the G protein-coupled receptor rhodopsin reported to make frequent 

contacts with a transmembrane helix of the protein (183).  

A similar role for S-acylation in regulating ER exit was described for the yeast chitin 

synthase, Chs3, a polytopic membrane protein. In this case, blocking S-acylation was found 

to promote aggregation and ER retention and a similar role for acylation in hydrophobic 

matching was proposed (133). Although the ER membrane has relatively low levels of 

cholesterol (or the yeast equivalent, ergosterol), S-acylation might also facilitate hydrophobic 

matching by targeting the modified protein into thicker cholesterol-rich domains on the ER 

membrane. A recent report also suggested that S-acylation may regulate the expression and 

localisation/maturation of both wild type and F508 CFTR (159), highlighting a potential 

therapeutic role for drugs that modify S-acylation for the treatment of cystic fibrosis. 

In addition to these effects of S-acylation on trafficking of newly-synthesised proteins, there 

are also numerous reports that this modification regulates movement of proteins between 

the plasma membrane and endosomal system. Again, it is difficult to find a consensus model 

to predict, for a specific protein, how S-acylation might modulate trafficking between the 

plasma membrane and endosomes. S-acylation in the C-terminus of AMPA receptor 

subunits regulates internalisation from the plasma membrane, and the mechanism involves 

the modulation of receptor interaction with the cytoskeletal protein 4.1N (86, 142).  S-

acylation of NMDA receptor subunits also regulates internalisation of this neurotransmitter 

receptor (87). However in this case, this results from downstream effects of S-acylation on 

phosphorylation of a tyrosine residue involved in receptor internalisation; S-acylation 

enhances phosphorylation, blocking internalisation and hence leading to receptor 

accumulation at the plasma membrane. In addition to effects of S-acylation on protein 

internalisation from the plasma membrane, there is also evidence that this modification can 

regulate recycling of proteins from endosomes back to the plasma membrane. This was 

observed for MUC1, a mucin-like protein present on the apical membrane of epithelia. MUC1 

containing cysteine-to-alanine mutations at the transmembrane boundary that block S-
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acylation exhibited an enhanced accumulation at recycling endosomes. In addition, the 

mutant protein displayed reduced co-immunoprecipitation with the adaptor protein AP1, 

which regulates vesicle formation at recycling endosomes, offering some mechanistic insight 

into how perturbation of S-acylation might impact MUC1 recycling (126). There is also 

evidence that S-acylation impacts the cycling of sortillin between endosomes and the Golgi 

apparatus. Sortillin is involved in the trafficking of soluble proteins from the Golgi to 

lysosomes, and cycles between the Golgi and endosomsal compartment. In this case, 

blocking palmitoylation interfered with trafficking of Sortillin back to the Golgi complex and 

led to enhanced degradation of the protein in lysosomes (160). S-acylation mutants of 

Sortillin appear to be more susceptible to ubquitination, explaining their increased targeting 

to lysosomes and degradation(47).  

 

III.iv.  Protein stability 

Increased ubiquination and degradation is commonly observed when S-acylation of specific 

proteins is blocked. This interplay between S-acylation and ubiquitination was reported for 

the yeast SNARE protein Tlg1 (257). This protein is S-acylated in proximity to its single 

transmembrane domain and preventing this modification by deleting the relevant zDHHC 

enzyme (Swf1) leads to increased ubiquitination by the ubiquitin ligase Tul1 and vacuole 

targeting. In this case, S-acylation was suggested to fix the position of the transmembrane 

domain to prevent acidic residues coming into membrane contact, which can be a scenario 

leading to Tul1-mediated ubquitination. A similar interplay between S-acylation and 

ubiquitination has been identified for many other proteins including the anthrax toxin receptor 

TEM8 (2). S-acylation is thought to restrict TEM8 to non-raft domains of the plasma 

membrane, whereas S-acylation mutants associate with lipid rafts and undergo 

ubiquitination mediated by Cbl. The effect of S-acylation to restrict raft association of TEM8 

is in contrast to the raft-targeting activity of this modification on many other proteins. These 

two examples given for Tlg1 and TEM8 emphasise how S-acylation can protect against 

premature degradation via distinct mechanisms: by preventing membrane interaction of 
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negatively charged phospholipids for Tlg1 and by regulating the lateral distribution in 

membranes for TEM8. 

It is interesting to note that the limited number of proteomic analyses performed to-date in 

mouse lines with reduced expression of S-acyltransferase enzymes (zDHHC enzymes) have 

also noted that reduced S-acylation levels of specific proteins often correlates with an overall 

loss of expression. We anticipate that careful proteomic assessment of how S-acylation 

affects the expression levels of the cellular proteome will provide a detailed understanding of 

how widespread the link between S-acylation and protein stability is. 

 

III.v. Functional effects of S-acylation from studies in mouse models and disease 

Cell-based studies have highlighted the importance of S-acylation for the function of 

individual proteins in specific cellular pathways. For example, the extent of S-acylation 

dictates the lateral distribution of the membrane fusion protein SNAP25 in cholesterol-rich 

plasma membrane micro-domains, which affects the efficiency of regulated exocytosis in 

neuroendocrine cell (213, 214). Perturbing the S-acylation of calnexin results in a loss of the 

protein from the perinuclear rough ER, which is enriched in ribosome-translocon complexes, 

with a corresponding defect in folding of cellular glycoproteins (132). More global 

physiological effects of S-acylation are reflected in the phenotypes of genetically modified 

mice with perturbations in specific S-acyl transferases (74)  (see Table 1 and zDHHC 

enzymes, section IV.i.).  

zDHHC5 genetrap mice with low expression levels of this enzyme have perturbed contextual 

fear conditioning, which indicates a deficit in learning and memory (138). The molecular 

basis for this behavioural change is not known but might be linked to interactions of zDHHC5 

with post-synaptic proteins such as PSD95 (138)  and GRIP1b (244). zDHHC8 knockout 

mice also exhibit behavioural abnormalities including changes in pre-pulse inhibition and in 

exploratory behaviour (172); these deficits may be caused by underlying changes in the 

formation/stability of excitatory synapses and perturbations in dendritic growth (171). 

zDHHC17 and zDHHC13 genetrap mice also exhibit behavioural deficits and changes in 
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neuronal function (230, 240). These highly-related enzymes S-acylate the huntingtin (HTT) 

protein (105), and furthermore zDHHC17 activity is positively modulated by HTT (106). 

Expansion of the poly-glutamine tract of HTT (as seen in Huntington’s disease, HD) leads to 

a loss of S-acylation and also a reduced ability to regulate zDHHC17 S-acylation activity 

(106, 273), implying that changes in HTT S-acylation or its regulation of zDHHC enzymes 

might contribute to the deficits present in HD. The idea that loss of zDHHC17 activity might 

contribute to pathogenesis in HD is supported by recent work showing that zDHHC17 

genetrap mice (insert at intron 5) display similar deficits as HD mouse models. The 

zDHHC17 mutant mice exhibit decreased striatal volume and a loss of medium spiny 

neurons, a reduction in the number of excitatory synapses, and a deficit in hippocampal 

long-term potentiation (164, 230). At the behavioural levels, the mice display deficits in motor 

co-ordination, pre-pulse inhibition, and hippocampal-dependent spatial learning tests (164, 

230). Biochemically, zDHHC17 genetrap mice exhibit a partial loss of SNAP25 and PSD95 

S-acylation (230), although it is not yet clear if these substrates contribute to the cellular and 

behavioural changes present in the mice. Given the strong homology between zDHHC17 

and zDHHC13 it is likely that HTT can also regulate the activity of this latter enzyme. Indeed, 

zDHHC13 genetrap mice (insert in intron 1) exhibit a broadly similar neuropathology to 

zDHHC17 genetrap mice (240). Furthermore, the phenotypic changes seen in zDHHC13 

mutant mice, such as a decreased striatal volume, occur later and are more progressive 

than in zDHHC17 mutant mice and as such mirror HD mouse model phenotypes better 

(240). 

Other zDHHC mouse models that have been investigated include a different zDHHC13 loss-

of-function mouse line, which expresses a truncated form of the zDHHC13 protein exhibits 

skin and hair defects (216). Furthermore, the mice also display a reduced life-span, systemic 

amyloidosis, osteoporosis and muscle wasting (216), with recent work linking the 

osteoporosis phenotype with a reduced S-acylation of membrane type 1- matrix 

metalloproteinase (233). Interestingly, no HD-like phenotype was seen in this zDHHC13 

mouse model (233), unlike in the zDHHC13 genetrap model (240). A major difference 
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between these two zDHHC13 mouse lines is that one is hypomorphic whereas the other 

expresses a truncated (and therefore possible dominant-negative) form of the enzyme. 

Finally, a mouse line with a point mutation in the zdhhc21 gene exhibits hair loss and skin 

abnormalities (163). The mutation in the zdhhc21 gene leads to a single amino acid 

substitution in zDHHC21 and a resulting mis-localisation of the enzyme on ER rather than 

Golgi membranes (163). Future work on these and other zDHHC mutant mice will hopefully 

include an analysis of knock-in mutants in which the catalytic cysteine is mutated. This will 

be an important step to resolve effects arising due to a loss of S-acylation activity of the 

zDHHC enzymes from other non-canonical functions of the zDHHC proteins. 

The reported phenotypes of zDHHC mutant mice clearly show the importance of individual 

enzymes for normal physiology. This is further emphasised by the reported links between 

human diseases and mutations in ZDHHC genes or changes in zDHHC expression levels 

(Table 2). Mutations in the ZDHHC9 gene cause X-linked intellectual disability (ID) (202). 

Importantly, two point mutations linked with ID led to single amino acid changes in the 

DHHC-CR domain of zDHHC9, and these mutations have since been shown to affect 

enzyme autoacylation (a measure of activity) in in vitro assays (165). This provides strong 

evidence that intellectual disability can arise due to a deficit in the S-acylation of specific 

substrates of zDHHC9 rather than because of any other non-canonical functions of this 

enzyme. It will therefore be important in future work to identify proteins that have reduced S-

acylation following inactivation of the zDHHC9 enzyme and to explore whether loss of these 

proteins leads to features seen in intellectual disability. 

Despite earlier work reporting an association between an SNP in the ZDHHC8 gene and an 

increased risk of developing schizophrenia (145), the majority of follow-up studies have 

failed to support such an association (270). However more recent work has suggested a 

possible link between zDHHC8 SNPs and smooth pursuit eye movement (which is perturbed 

in schizophrenia patients) (224)  and cortical brain volume in schizophrenics (184). 

Thioesterase enzymes, which catalyse protein deacylation, also have a critical role in brain 

function. This is exemplified by mutations in the PPT1 gene, which cause infantile neuronal 
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ceroid lipofuscinosis (NCL), an early-onset neurodegenerative lysosomal-storage disease. 

PPT1 encodes a protein palmitoyl thioesterase that functions in the degradation of S-

acylated proteins in lysosomes (262). 

In addition to brain disorders such as intellectual disability, schizophrenia and NCL, there is 

also evidence linking changes in zDHHC expression, both up- and down-regulation, with 

various cancers. For example, the ZDHHC11 gene is present within a region of chromosome 

5 that has an increased copy number in lung and bladder cancers (120, 271)  and zDHHC9 

expression is increased in colorectal tumours (16). In contrast, zDHHC2 has been reported 

to be down-regulated in colorectal cancers (186)  and also in gastric adenocarcinoma (272), 

and zDHHC14 expression is down-regulated in testicular germ cell tumours and prostate 

cancer (280). These findings may suggest a potential tumour suppressor function of 

zDHHC2 and zDHHC14, however it is worth noting that increased zDHHC14 expression was 

seen in gastric cancer and leukaemia (11, 283), suggesting that this protein actually might 

be oncogenic in certain settings. 

A major area of investigation should now centre on delineating the substrate(s) of zDHHC 

enzymes that are linked with specific disease states. This would lead to a greater 

understanding of the specific proteins and physiological pathways that are likely to be 

affected by changes in zDHHC function. It should also be remembered that in come cases, 

diseases may be linked with up- or down-regulation of non-canonical activities of zDHHC 

enzymes. 

 

IV. Acylation Enzymes and the Control of Acylation 

 

IV.i. S-acyl transferases: zDHHCs 

The biggest breakthrough in the S-acylation field in recent years was the discovery of the 

enzymes that control this process. Independent studies in Saccharomyces cerevisiae 

identified proteins that were required for S-acylation of Ras2p and Yck1p (14, 147, 211, 
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287). Analysis of the sequences of these S-acyl transferases, Erf2p and Akr1p, revealed a 

common 51 amino acid zinc finger domain with a conserved ‘DHHC’ motif (note this motif is 

actually DYHC in Akr1p) (167). This pioneering work in S. cerevisiae paved the way for the 

subsequent discovery of a large family (24 in human genome) of mammalian genes 

encoding proteins containing this DHHC domain (61, 107, 124). It is now established that the 

large majority of these mammalian zDHHC proteins are bona fide S-acyl transferases (74, 

109). However it is important to note that other acylation-independent functions have 

additionally been ascribed to some members of the family, including in membrane transport, 

intracellular signalling, and cytoskeletal regulation (42, 69, 101, 274). Experiments using 

purified zDHHC proteins are consistent with the idea that S-acylation by these enzymes is a 

two-step mechanism involving autoacylation of the DHHC motif cysteine and subsequent 

acyl transfer to the substrate protein (112, 166). 

All zDHHC family members characterised to-date are predicted polytopic membrane proteins 

with the catalytic DHHC domain facing the cytosol (Figure 2C) (196). The majority of zDHHC 

proteins are localised to ER and Golgi membranes, with a small number present on post-

Golgi compartments (182). At present there is little information available on the 

intramolecular signals that specify intracellular localisation, although lysine-based sorting 

signals in the extreme C-terminal tails of zDHHC4 and zDHHC6 restrict these specific 

isoforms to the ER (68).  

Whilst zDHHC enzymes are likely to display a certain degree of redundancy and have 

partially over-lapping substrates, it is also true that specific substrates are dependent upon 

individual zDHHC enzymes for their efficient modification. Proteomic analyses following 

knockdown of individual zDHHC enzymes in S. cerevisiae clearly highlighted that efficient S-

acylation of specific substrates requires individual zDHHC enzymes (212). In concurrence, 

other focussed studies showed that deletion of Pfa4 led to an ablation of S-acylation of the 

chitin synthase Chs3 (133)  and Swf1p deletion blocked S-acylation of the SNARE protein 

Tlg1p (257). Furthermore, S-acylation of Tlg1 following depletion of Swf1 was not rescued by 

high level expression of three other yeast zDHHC proteins, although Pfa3 had a modest 
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effect on S-acylation of this SNARE protein (67). Similarly, S-acylation of Chs3p was not 

rescued by either Swf1, Pfa3 or Erf2 (67). Indeed, specific zDHHC enzymes are required for 

the S-acylation of different sites on the same protein, for example this is true for the STREX 

variant of BK potassium channels (248, 249). However superimposed upon this zDHHC-

substrate specificity is an element of zDHHC enzymes acting on over-lapping substrates 

(74). Thus, VAC8 S-acylation in an S. cerevisiae strain depleted of the zDHHC protein Pfa3 

could be rescued by over-expression of other yeast zDHHC enzymes (104), and analysis of 

semi-synthetic Ras constructs suggested that multiple zDHHC enzymes could regulate S-

acylation of these proteins (209). However a key point to note is that although several 

zDHHC enzymes might be able to S-acylate a specific substrate, the enzymes that are 

important in vivo will depend upon their relative expression profiles; thus distinct zDHHC 

enzymes might be important for the S-acylation of a specific substrate in different cell types. 

Despite the debate around the level of specificity in zDHHC-substrate interactions, several 

studies have identified domains and residues in both substrates and enzymes that are 

important for interaction specificity. The catalytic DHHC-CR domain does not appear to be 

sufficient for substrate S-acylation or to specificity substrate selectivity, This point is 

emphasised by a study showing that although zDHHC3 is highly active against SNAP23, 

transplanting the DHHC domain from this protein into an inactive enzyme (zDHHC15) did not 

allow zDHHC15 to acylate SNAP23 (75). Instead, zDHHC enzyme protein activity likely 

requires the coordinated activities of the DHHC domain and other regions of the enzyme. 

zDHHC17 and zDHHC13 (also known as HIP14 and HIP14L, respectively) are unique in 

containing N-terminal ankyrin repeat domains, which appear to specify substrate binding 

(281). Indeed ligating the ankyrin-repeat domain of zDHHC17 onto the N-terminus of 

zDHHC3 led to the S-acylation of zDHHC17 substrates by zDHHC3, highlighting the 

importance of this protein interaction domain for substrate recognition and subsequent S-

acylation (105). The S. cerevisiae orthologue of zDHHC17, Akr1p, also contains an ankyrin-

repeat extension, and although mutants lacking the ankyrin repeat domain were able to S-

acylate Yck2p, the extent of this acylation was greatly reduced compared with full-length 
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Akr1p (94). More recent work showed that a PDZ ligand in the C-terminus of 

zDHHC5/zDHHC8 regulates binding to and S-acylation of GRIP1b, an adaptor protein 

containing multiple PDZ domains (244). Combined depletion of these zDHHC5 and zDHHC8 

led to an almost complete loss of GRIP1b acylation in hippocampal neurons (244). Thus, at 

least some zDHHC enzymes recognise their substrates via defined domains, which then 

couple with the DHHC-CR domain to mediate substrate S-acylation. 

There has also been some progress in identifying elements in S-acylated substrate proteins 

that are required for their recognition by specific zDHHC enzymes. A proline residue 25 

amino acids downstream of the acylated cysteine-rich domain of SNAP25 is required for 

modification of this protein by zDHHC17 but not by zDHHC3 (77). In addition, a 

phenylalanine residue immediately upstream of the cysteine cluster is required for S-

acylation of the SNAP25b isoform by DHHC15 (75). Other work has shown that domains 

downstream from modified cysteines can also function to prevent promiscuous zDHHC-

substrate interactions. Full-length Vac8 was specifically S-acylated by Pfa3 in vitro but the 

isolated S-acylation domain was also modified by 4 other yeast zDHHC proteins (175). This 

observation emphasises the importance of considering changes in zDHHC-substrate 

specificity when analysing isolated protein domains or truncated proteins. 

Although a comprehensive analysis of zDHHC-dependent S-acylation has been undertaken 

in S. cerevisiae (212), we currently lack detailed information on the effects of knockdown of 

specific mammalian zDHHC enzymes on global S-acylation. One study examining cultured 

neural stem cells from the forebrains of zDHHC5 gene-trapped mice (which express 

zDHHC5 at around 5% of the levels present in cells from control mice) reported that S-

acylation of flotillin-2 was reduced by around 10-fold (139). In addition to flotillin-2, a group of 

approximately 20 other S-acylated proteins displayed decreased expression levels in 

zDHHC5 knockdown cells (139), possibly reflecting a requirement for S-acylation to stabilise 

these proteins. Interestingly, analysis of the brain S-acylated proteome from zDHHC17 

genetrap mice also showed that S-acylation of flotillin-1 and -2 was reduced by 36%, with a 

corresponding decrease in expression levels. A further 15 proteins were identified that had a 
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>10% loss in S-acylation (266). Further analysis of global S-acylation in zDHHC knock-out 

mice will provide invaluable data on the substrates of individual DHHC proteins. 

Although knowledge of how zDHHC-substrate specificity is encoded is rapidly evolving, 

there has been little work examining how specific zDHHC enzymes contribute to the lipid 

profile of S-acylated proteins (section II.iii). A recent study has shed some light on this issue 

by highlighting that different zDHHC enzymes incorporate and transfer different lipids with 

distinct efficiencies. The ability of different ‘competing’ lipids to block 3H palmitate 

incorporation into zDHHC2 and zDHHC3, and subsequent transfer to substrate proteins was 

compared (112). Intriguingly, whereas only C14 and C16 lipids were efficient inhibitors of 

zDHHC3 autoacylation and substrate S-acylation, C14-C20 lipids all inhibited zDHHC2 to a 

similar extent. Further analysis confirmed that zDHHC2 transferred C18:0, C18:1 and C20:4 

lipids to a model substrate protein with broadly similar efficiencies, whereas zDHHC3 

strongly favoured C14/C16 lipids over C18/C20 lipids (112). It will be of particular interest in 

further work to delineate the sequence/structural basis for these differences in fatty acid 

specificity, and also to test whether zDHHC2 is responsible for the incorporation of stearic 

acid into the TMD of haemmaglutinin (129). 

 

IV.ii. S-acyl thioesterases 

In contrast to central role played by zDHHC enzymes in cellular S-acylation, far less is 

known about the enzymes and mechanisms that mediate protein deacylation. In fact, 

candidate thioesterases were identified many years prior to the realisation that zDHHC 

enzymes function as S-acyl transferases: Protein palmitoyl thioesterase 1 (PPT1) and PPT2 

are targeted to lysosomes and catalyse deacylation during protein degradation (23, 24, 93, 

235, 261), whereas acyl protein thioesterase 1 (APTI) is a cytoplasmic enzyme, implicated in 

dynamic S-acylation cycling of proteins (48). APT1 is active against proteins including 

eNOS, H/N-Ras, G subunits, and BK potassium channels (48, 249, 279). A related protein, 

APT2 (~ 64% identical at amino acid level to APT1), has been reported to function as a 
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thioesterase against GAP43 and H-Ras but not BK potassium channels (249, 251). An 

additional protein, APT1-like thioesterase has activity against BK potassium channels (249). 

Research into the role of APT proteins in dynamic S-acylation has been supported by the 

recent development of thioesterase inhibitors. Palmostatin B, which is a broad spectrum 

inhibitor of APT proteins and other serine hydrolases, was employed to highlight the role of 

thioesterase enzymes (and specifically APT1) in dynamic S-acylation of Ras proteins (40). 

However, our knowledge of thioesterase regulation of dynamic S-acylation is still very much 

in its infancy. Indeed, recent studies using broad spectrum serine lipase inhibitors have 

revealed a significant subset of the large serine hydrolase family (that include the APTs and 

PPTs (12, 284)) are responsible for cellular depalmitoylation (157). This point is highlighted 

by a recent study that reported the blockade of deacylation of R7BP (a regulator of G protein 

signalling) by the general serine hydrolase inhibitors Palmostatin B and HDFP (115). This 

led to a redistribution of the protein from the plasma membrane onto endomembrane 

compartments (115). Intriguingly, these effects on R7BP deacylation and localisation were 

not replicated by either RNAi knockdown of APT1/APT2 or by specific inhibitors of these 

enzymes. Indeed, a combination of RNAi knockdown of APT1 and APT2 and treatment with 

specific inhibitors of both of these enzymes also failed to affect R7BP deacylation (115). 

These results thus suggest that there are likely to be many other serine hydrolase enzymes 

that function as deacylation enzymes, and which presumably add an additional layer of 

specificity into dynamic S-acylation of cellular proteins. 

 

IV.iii. MBOATs and Acylation of Secreted Proteins 

Although the major focus of this review is S-acylation, it is worthwhile noting that several 

secreted proteins are modified by different types of acylation that are critical for their 

signalling functions. Wnt, hedgehog and ghrelin are all acylated but, in contrast to substrates 

of the DHHC family, acylation occurs on the luminal side of intracellular membranes. The 

enzymes that mediate acylation of these secreted proteins belong to the MBOAT family of 

membrane-bound O-acyl transferases (21, 28). Wnt undergoes modification with palmitate 
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on a conserved cysteine residue, whereas the monounsaturated palmitoleate is added to a 

conserved serine residue. Porcupine mediates acylation of Wnt, at least with respect to 

palmitoleate attachment to serine (242). Palmitate is attached via an amide linkage to the N-

terminal cysteine of hedgehog (following signal peptide cleavage), and this modification is 

catalysed by hedgehog acyltransferase (193). Finally ghrelin O-acyltransferase transfers an 

O-octanoyl group onto a conserved serine residue of the peptide hormone ghrelin (275). The 

importance of these acyl modifications for the physiology of a diverse group of essential 

secreted proteins has led to an increasing interest in MBOATs as novel drug targets. In 

particular, there is a major interest in targeting the abnormal hedgehog signalling that is 

present in a high percentage of pancreatic and other cancer types via chemical inhibitors of 

Hhat (243). Palmitoylation and cholesterylation are essential for the biological activity of 

hedgehog, and recent work has reported the identification of novel small molecule inhibitors 

Hhat (195), which successfully block proliferation of pancreatic cancer cells (194). This 

example highlights the emerging clinical significance of MBOAT proteins and the potential to 

target these enzymes as novel drug targets in different disease states. 

 

IV.iv. Regulation of S-acylation 

Although S-acylation is a major regulator of cellular proteins and pathways, there is little 

information about how the dynamics of this process are regulated. S-acylation clearly is 

regulated as the acylation status of many proteins is modified in response to specific cues, 

such as PSD95, which exhibits changes in acylation that correlate with synaptic activity (38, 

52). Regulation of S-acylation might occur via effects on zDHHC enzymes, thioesterases, or 

direct effects on specific substrates. There is certainly constitutive regulation of specific 

zDHHC enzymes, for example, zDHHC9 function as an acyltransferase requires an 

obligatory co-factor, GCP16 (241). On the other hand, zDHHC17 has an intrinsic S-

acyltransferase activity that was recently suggested to be positively modulated by Huntingtin 

(106). A HTT-zDHHC17 complex immunoprecipitated from rat brain displayed 

acyltransferase activity towards recombinant SNAP25 (106). Depletion of HTT led to a 
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reduction of zDHHC17 S-acylation and a corresponding reduction in S-acylation of SNAP25 

and GluR1 (106). Interestingly, whereas a COS cell lysate containing wild-type HTT 

enhanced S-acylation of recombinant SNAP25 and PSD95 by zDHHC17, mutant HTT with a 

polyglutamine tract expansion did not stimulate S-acylation. 

There is also evidence that zDHHC enzymes are regulated by dynamic changes in their 

localisation. zDHHC2, which mediates activity-dependent S-acylation of PSD95, is regulated 

by dynamic changes in its localisation. This zDHHC enzymes enters a dynamic cycling 

pathway that traffics it between the plasma membrane and recycling endosomes (71). 

Blocking synaptic activity, which leads to enhanced S-acylation of PSD95 also modulates 

zDHHC2 trafficking (179), promoting its accumulation at the plasma membrane from where it 

can effectively modify PSD95 (62). 

Another potential mode of zDHHC2 regulation is via changes in its oligomeric state. Both 

zDHHC2 and zDHHC3 were shown to exhibit dimerization/oligomerisation, with the higher 

molecular weight forms potentially linked to a less active state of the enzymes (131). Future 

work should reveal if regulation of S-acyltransferase activity by self-association (and perhaps 

also hetero-multimerisation of zDHHC enzymes) might represent a mode of zDHHC 

regulation that is widespread through this enzyme family. 

An additional mode of regulation has been suggested to exist for zDHHC5. Growth factor 

withdrawal from neural stem cells led to a rapid proteasome-dependent degradation of 

zDHHC5 (139), which was inhibited by EGF and FGF. Thus, zDHHC5 activity is likely to be 

regulated via expression changes in response to specific extracellular cues (139),. 

A recent study also highlighted regulatory mechanisms occurring at the mRNA level. Micro-

RNAs have been shown to regulate the expression of both zDHHC enzymes and 

thioesterases. Whereas miR-138 regulates expression of APT1, leading to activation of G13 

and spine shrinkage (228), miR-134 was shown to target zDHHC9 leading to a loss of 

plasma membrane targeting of H-Ras in GABAergic cortical interneurons (27). Interestingly, 

miR-138 and miR-134 appear to respond differently to neuronal activity, with miR-138 being 

repressed and miR-134 being activated by neuronal activation (27, 228). 
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Regulation of substrate S-acylation can also occur independently of direct effects on zDHHC 

or APT enzymes. H-Ras typically displays an intracellular distribution across the Golgi and 

plasma membrane, with Golgi accumulation reflecting the continuous return of the protein to 

this compartment following depalmitoylation. Although the final 10 amino acids of H-Ras 

(containing both the farnesylated CAAX motif and palmitoylated cysteines) are sufficient for 

plasma membrane targeting (80), it was noted that this amino acid sequence displayed less 

Golgi localisation than the final 19 amino acids of H-Ras, when both sequences were fused 

to EGFP (6). This difference reflected a higher level of S-acylation of the 10 amino acid 

construct compared with the 19 amino acid domain, which was proposed to be due to a 

slower rate of deacylation (6). Pharmacological and mRNA knockdown experiments 

combined with site-directed mutagenesis of H-Ras suggested that binding of the cis-trans 

prolyl isomerase FKBP12 and cis-trans isomerisation of the glycine178-proline179 peptide 

bond (present in the 19 amino acid but not the 10 amino acid construct) was responsible for 

the enhanced deacylation rate of the longer H-Ras construct (6). A similar role for prolyl 

isomerases has been suggested in the regulation of Rac1 S-acylation, where 

pharmacological inhibition of prolyl isomerase activity (FK508) or mutation of proline 

residues adjacent to the acylation site increased incorporation of 3H palmitate into Rac1 

(176). One possibility to explain these effects is that prolyl isomerase action leads to an 

increased accessibility of the S-acylated cysteines to thioesterase enzymes; more work to 

explore how widespread the role of prolyl isomerisation is in the regulation of protein de-

acylation is clearly warranted. 

The S-acylation status of some proteins is also subject to regulation by different post-

translational modifications. In particular, there appears to be bidirectional interplay between 

S-acylation and phosphorylation for many proteins. In most cases the presence of one of 

these modifications is mutually exclusive or at least inhibitory to the other. PKA 

phosphorylation of the STREX variant of BK potassium channels interfered with S-acylation 

of adjacent cysteine residues, preventing membrane association of the C-terminal channel 

tail, and these effects were linked with PKA regulation of channel activity (111, 247). 
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Similarly, PKA phosphorylation of PDE10A2 inhibited S-acylation and membrane binding of 

this peripheral membrane protein (32). 

In addition to phosphorylation-acylation interplay, there is also ‘competition’ by different 

cysteine modifications. Several studies have shown changes in protein S-acylation following 

cell treatment with nitric oxide donors (10, 13, 97). However as intracellular diffusion of NO is 

limited, physiologically-relevant protein nitrosylation (which occurs on cysteine residues) 

might be limited to substrates that are in close proximity to nitric oxide synthase. In this 

regard, a recent study highlighted mutually competitive effects of S-acylation and S-

nitrosylation on Cys-3 and Cys-5 of PSD95, a protein that binds directly to neuronal nitric 

oxide synthase (nNOS) (102). S-acylation of PSD95 on Cys3/Cys5 is essential for synaptic 

targeting of this protein and neurotransmitter receptor clustering (52). PSD-95 acts as a 

scaffold to couple Ca2+ influx through NMDA channels to activation of nNOS activity (18, 

218). Physiological production of NO was shown to lead to S-nitrosylation of Cys3/Cys5 and 

a decrease in PSD95 S-acylation and subsequent synaptic clustering. These effects were 

blocked by inhibition of nNOS (102).  Conversely, depletion of zDHHC8, which was reported 

to S-acylate PSD95 (171), led to an increase in PSD95 nitrosylation (102). This study thus 

highlights an intriguing reciprocal regulation of S-acylation and S-nitrosylation that is relevant 

to synaptic strength and plasticity. 

A recent study also highlighted a role for metabolic stress in the regulation of protein S-

acylation (22). Cardiac tissue from high fat and high sucrose fed mice or cultured arterial 

endothelial cells treated with high palmitate and high glucose were found to contain 

significantly reduced levels of S-acylated H-Ras and eNOS, and a corresponding reduction 

in plasma membrane targeting of these proteins. These effects on S-acylation were 

suggested to be caused by reactive oxygen species generated in endothelial cells in 

response to metabolic stress. Mass spectrometry analysis revealed that H-Ras from treated 

endothelial cells was S-glutathiolated on either Cys181 or Cys184 following metabolic stress, 

presumably competing or displacing S-acylation at these residues. 

 



30 

 

V. Tools to analyse S-acylation 

With the discovery of the zDHHC family of acyltransferases and recent advances in 

proteomic techniques to assay S-acylation, progress in the field has begun to accelerate.  

However, relative to other post-translational modifications, such as phosphorylation, the 

range of pharmacological, proteomic and genetic tools to investigate the functional role of S-

acylation remains somewhat limited.  Thus there is a real need, and opportunity, to develop 

improved tools to interrogate and manipulate S-acylation to develop our understanding of the 

physiological function of this PTM in health and disease. 

 

V.i. Assays of S-acylation 

Although no ‘consensus’ sequence for S-acylation exists a number of freely available 

prediction algorithms, such as CSS-palm v4.0 (203), provide an in silico platform to inform 

experimental approaches for candidate targets.  

Until relatively recently, radiolabelled palmitate (typically 3H but also 14C and 125I-labelled) 

incorporation (metabolic labelling) has been the mainstay for experimental validation of 

protein S-acylation over the last four decades. However, while this tool has been 

instrumental in studying the S-acylation of individual proteins it is not suitable for studying 

protein acylation in intact tissues, suffers from an inherent lack of sensitivity (detection can 

take months) and is not readily amenable to higher throughput proteomic analysis. To 

overcome many of these issues a range of alternative metabolic (lipid centric) labelling 

approaches and indirect assays of cysteine accessibility (cysteine centric) assays have been 

developed that are complimentary approaches. 

Lipid centric (metabolic) labelling assays: Metabolic labelling approaches are most suited to 

analysis of isolated cells, rather than tissues, but provide information on dynamic 

palmitoylation of proteins during the relatively short (~4h) labelling period and insight into the 

species of lipid bound to cysteine residues. Alternative labels have now been developed 
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including a variety of biorthagonal lipid probes (for reviews see (30, 83-85, 157, 250) such as 

the commercially available 17-octadecynoic acid (17-ODYA), that can be used in both 

fluoresecent imaging and protein purification assays. These labels are modified fatty acids, 

with chemical reactive groups, such as an alkyne or azide group, that are incorporated into 

S-acylated proteins by the zDHHC enzymes. Using Staudinger ligation or ‘click’ chemistry a 

range of fluorophores or protein capture reagents can then be conjugated to the reactive 

group. In particular, development of a family of -alkynyl fatty acid probes of different chain 

lengths (such as Alk-C16 and Alk-C18) have been exploited for proteomic profiling as well as 

single cell imaging with improved sensitivity (63) and have been used for proteomic profiling 

of S-acylated proteins in a variety of cell lines (see (31, 83, 156, 157, 278, 282).   In all these 

metabolic labelling assays it is essential to discriminate incorporation via S-acylation, 

through a labile thioester linkage to cysteine residues, rather than lipid incorporation via 

other mechanisms including: onto free N-terminal cysteines of proteins via an amide linkage 

(N-palmitoylation), addition via an oxyester linkage to a serine residue (O-palmitoylation and 

oleoylation) as well as myristate via amide linkages on glycine residues (84, 144, 219).  The 

most common method to discriminate S-acylation is to use hydroxylamine cleavage (at 

neutral pH) of the lipid: only lipids attached via a thioester bond (s-acylation) are cleaved.   

Cysteine centric (cysteine accessibility) assays: Acyl-biotin exchange (ABE) and resin-

assisted capture (Acyl-RAC):  To circumvent the limitations of the labelling approach, which 

requires metabolic incorporation of lipid typically to isolated cells, a number of related 

approaches have been developed that exploit the exposure of a reactive cysteine following 

hydroxylamine cleavage (at neutral pH) of the cysteine-acyl thioester linkage.  The newly 

exposed cysteine thiol can then react with cysteine-reactive groups (such as biotin-BMCC or 

biotin-HPDP used in the ABE approach (43-45, 265)) or thiopropyl sepharose (used in Acyl-

RAC (56)) typically to allow purification of S-acylated proteins. While it must be remembered 

that these assays do not determine the nature of the bound lipid, rather the presence of a 

cysteine with a cleavable thioester linkage, these approaches have been exploited to 
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determine the ‘S-acylated proteome’ in a number of species and tissues (118, 122, 156, 162, 

265, 266, 268, 276, 282). These methods have also been adapted to allow more quantitative 

labelling in vivo (266) and have been reported to improve detection of high molecular weight 

proteins. Cysteine accessibility approaches determine the net amount of pre-existing S-

acylated proteins; however, caution is required to eliminate false positives, in particular it is 

necessary to fully block all reactive cysteines prior to hydroxylamine cleavage.   

In conjunction with site–directed mutagenesis of candidate S-acylated cysteine residues, the 

lipid- and cysteine- have provided substantial insight into the diversity of proteins that are S-

acylated. These approaches can be refined to determine peptides that encompass the S-

acylated cysteine. However, mass spectrometry–based approaches to identify the native 

lipid specifically bound to S-acylated cysteines remain a significant challenge, in particularly 

for low abundance proteins such as membrane proteins (114, 128, 129, 158, 234). Similarly, 

tools widely available for other PTMs such as phospho-specific antibodies, to allow assay in 

tissue sections for example, are not available in the S-acylation field. A recent novel 

approach has been the exploitation of an intrabody that recognises the S-acylation induced 

conformational changes in the scaffolding protein PSD-95, rather than S-acylation per se 

and this can be used as an indirect measure of S-acylation in cells (62). 

 

V.ii. Pharmacological manipulation of S-acylation 

Although significant advances have been made with respect to assays for detecting S-

acylated proteins, the pharmacological toolkit to manipulate S-acylation in vitro and in vivo 

remains very limited, compared to many other PTMs. For example, the palmitate analogue 

2- bromopalmitate (2-BP), that is very widely used for functional analysis of S-acylation, 

should be used with caution, even though it remains our best pharmacological inhibitor of 

zDHHCs (207, 289). Unfortunately, 2-BP does not show selectivity toward specific zDHHC 

proteins (113); also inhibits acylthioesterases (192); is a non-selective inhibitor of lipid 
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metabolism and many proteins with a membrane accessible cysteine residue (see for 

example, (39)) and; at high concentrations has many pleiotropic effects on cells, including 

cytotoxicity (207). Other, less widely used, lipid inhibitors include cerulenin, which affects 

many aspects of lipid metabolism, and tunicamycin that also inhibits N-linked glycosylation 

(207). Although some non-lipid inhibitors have been developed, these are not widely used 

(46, 113) and there are currently no known activators of zDHHCs or compounds that inhibit 

specific zDHHCs.  In the last few years, a number of inhibitors for the acylthioesterases 

APT1 and APT2 have been developed (3, 12, 40). However, several of these compounds, 

such as palmostatin B, are active against several members of the larger serine hydrolase 

family. Clearly, the development of novel S-acylation inhibitors and activators that display 

both specificity and zDHHC selectivity would represent a substantial advance for 

investigation of S-acylation. 

 

V.iii. Genetic tools and models 

Since the seminal discovery of the mammalian enzymes that control S-acylation (61) both 

overexpression and knockdown strategies have been developed to interrogate S-acylation. 

Overexpression studies have predominantly exploited expression of candidate zDHHCs,and 

their catalytically ‘dead’ DHHS mutants, in heterologous expression or native systems and 

analyzed increases in 3H-palmitate incorporation to define zDHHCs that may S-acylate 

specific proteins. Although this is a powerful approach, caution is required as overexpression 

can result in S-acylation of cysteine residue(s) that are not endogenously S-acylated in 

native cells (248). Increasingly, knockdown of endogenous zDHHCs using siRNA, and 

related approaches, is beginning to reveal the identity of zDHHCs that S-acylate native 

proteins. However, relatively few studies have taken a systematic knockdown approach to 

identify zDHHCs (for examples see (132, 248, 249)). Furthermore, as some zDHHCs and 

APTs are themselves palmitoylated, the functional effect of overexpressing or knocking 

down individual zDHHCs on the localization and activity of other zDHHCs, and APTs, must 

also be carefully determined. For example, siRNA-mediated knockdown of zDHHC 5, 7 or 17 
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in HEK293 cells paradoxically results in an upregulation of zDHHC23 mRNA expression 

(249). An important, caveat of many of these approaches is the lack of tools to analyse 

native zDHHC protein expression due to the lack of high quality antibodies for western 

blotting and immunocytochemistry for most zDHHCs. Increasingly, a variety of mouse Gene-

trap and global as well as conditional knockout models for some zDHHCs are becoming 

available although full phenotypic analysis is limited in most cases (see section III.iv).  

Similar overexpression and knockdown approaches have also started to be exploited to 

interrogate APT function. 

 

VI. Diversity of proteins regulated by S-acylation 

As highlighted in the previous sections, an eclectic array of proteins from viruses to man 

(Figure 5), have been reported to be S-acylated and the ‘catalogue’ is ever expanding with 

the increasing number of S-acylation (palmitoyl) proteomic screens (30, 83, 108, 118, 122, 

139, 155-157, 162, 265, 266, 268, 276, 278, 282). Furthermore, available predictive tools 

suggest a large proportion of the cellular proteome may be S-acylated.  

In this section we highlight a number of cellular pathways and protein families in eukaryotes 

that have been shown to be S-acylated. While not exhaustive, we attempt to emphasise the 

diverse array of physiological processes and mechanisms that may be regulated by S-

acylation to reveal both the opportunities and challenges for investigators entering the field. 

VI.i Membrane receptors and signalling 

Multiple types of cellular signalling receptors are now known to be regulated by S-acylation, 

from classical G-protein coupled receptors to the more recent insights into membrane 

receptors for steroid hormones. 

VI.i.a G-protein coupled receptor (GPCR) signalling 
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Since the ‘prototypical’ G-protein coupled receptor, rhodopsin, was shown to be S-acylated 

more than 30 years ago (180, 185)  the large majority of GPCRs examined have been 

shown to be S-acylated at typically one, two or three residues in the C-terminal cytoplasmic 

tail following the last transmembrane domain (for reviews see (37, 201). Notable exceptions 

include the GnRH receptor and a Thromboxane A2 splice variant that lack the conserved 

cysteine residues.   However, although the S-acylated cysteines are conserved, and S-

acylation has been proposed to generate additional ‘loops’ in the C-terminus for many 

GPCRs, the effect of S-acylation on particular GPCRs cannot be easily predicted and the 

reported functional effects are as diverse as the family of GPCRs and their agonists. Indeed. 

In the 1-adrenoreceptor different sites of S-acylation in the C-terminal tail turn over at 

different rates and control distinct functions (294). 

S-acylation has been reported to control tertiary structure including by controlling receptor 

dimerization in 2-adrenergic and -opioid GPCRs (36, 290). Furthermore, recent insights 

from mice lacking S-acylated rhodopsin, via knock-in mutations of the S-acylated cysteines, 

reveals an important structural role for S-acylation by controlling the stability of rhodopsin, 

rather than its signalling via G-proteins, in vivo (153). S-acylation is required for correct 

maturation in the ER, subsequent trafficking to the plasma membrane and targeting to ‘lipid 

raft’ domains for several, but not all, GPCRs. Moreover, efficient coupling between agonist 

binding and G-protein activation is reported for several GPCRs, including adrenalin 

stimulation of the 2-adrenoreceptor through Gs proteins to activate adenylate cyclase. 

Here, the S-acylation deficient 2-adrenergic receptor C341G mutant is less efficient at 

stimulating adenylate cyclase activity than the wild type protein (181), an effect due to the 

C341G mutant being hyperphosphorylated by PKA and thus resembling a desensitised 

receptor, again demonstrating important cross-talk between distinct signalling pathways 

(169, 170). Moreover, for some GPCRs S-acylation can act as a switch to allow differential 

coupling with different effectors. In the V2 vasopressin receptor, S-acylation is required for 

stimulation of the MAPK pathway following receptor internalisation (29) and in the endothelin 
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A receptor is required for coupling through Gq to regulate phospholipase C (103).  In both 

cases, S-acylation did not affect coupling to adenylate cyclase through Gs. In contrast, de-

acylation of the proteinase-activated receptor 2 promotes activation of the ERK pathway 

highlight diverse effects of S-acylation of GPCR coupling (17). Agonists can also modify the 

S-acylation status of GPCRs (148) and S-acylation controls receptor desensitization and 

internalisation. 

Recent studies reveal how S-acylation-dependent control of GPCR signalling is potentially 

even more complex as both G-proteins, multiple effectors as well as a range of molecules 

that regulate GPCR signalling may also be S-acylated.  

The Galpha subunits of heterotrimeric G-proteins themselves are S-acylated and S-acylation 

is required for plasma membrane localisation (37, 201). For example, zDHHC3 & 7 

overexpression robustly S-acylated Gq, Gs and Gi subunits expressed in HEK293 cells. S-

acylation controls Gq shuttling between the Golgi, where Gq is S-acylated, and the plasma 

membrane with inhibition of Gq S-acylation blocking 1-adrenergic signalling through Gq 

(255).  

Several members of two important protein families that control GPCR function are also S-

acylated: members of the GPCR kinase (GRK) family important in the control of GPCR 

desensitization and the regulator of G-protein signalling (RGS) proteins that regulate the 

activity of G-proteins themselves, by accelerating GTP hydrolysis, and terminating Gi/o 

signalling by speeding Gi/o deactivation at the plasma membrane  (37, 201).. As examples, 

GRK6 is S-acylated at a cluster of three cysteine residues in the C-terminus that promotes 

its targeting to the plasma membrane and stimulates kinase activity thus enhancing GPCR 

desensitization (117, 238). Several members of the RGS family are S-acylated at the N-

terminus however the role of S-acylation differs between family members with both positive 

and negative effects on GTPase activity reported. However, S-acylation also indirectly 

regulates some members of the RGS family. For example, membrane targeting of RGS-R7 
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is controlled through assembly with an S-acylated R7 binding protein (R7-BP), that also acts 

as an allosteric activator, to control G-protein coupled potassium channel activity (115).  In 

neurones, R7-BP S-acylation is dynamically controlled by zDHHC2, furthermore R7-BP S-

acylation is increased upon activation of Gi-linked GPCRs through slowing of de-acylation 

R7-BP revealing an intimate interplay between G-protein signalling and control of G-protein 

activity via S-acylation of R7-BP (116). In addition, several downstream effectors of G-

proteins, including some members of the Rho guanine nucleotide exchange factor (RhoGEF) 

family, are also S-acylated.  For p63RhoGEF, a Gq regulated RhoGEF, S-acylation of a 

conserved cluster of cysteine residues (C23, 25 & 26) in the N-terminal domain target 

p63RhoGEF to the plasma membrane. This constitutive targeting (unlike most other 

RhoGEFs that are sequestered in the cytosol) to the plasma membrane promotes basal 

activity of p63RhoGEF as mutation of the S-acylated cysteines reduces activity and re-

localises it to the cytoplasm (9). 

Clearly defining the network of S-acylation within the GPCR-signalling complex will remain a 

significant, yet important challenge, to identify key principles and nodes that are critical for 

signalling by this very important class of cell-surface receptors.  

 

VI.i.ii Membrane receptors for steroid hormones 

The ‘classical’ steroid receptors exist predominantly in the nucleus where they mediate both 

ligand-dependent and independent control of gene transcription. However, for many steroid 

receptors, including the oestrogen (ER, progesterone PR) and androgen (AR) receptors, a 

significant fraction of the receptor may be localised at the plasma membrane where they can 

mediate non-genomic steroid signalling cascades. The membrane targeted fraction of these 

receptors are S-acylated, at a single cysteine residue, in the ligand binding domain of the 

receptor (191) by zDHHCs 7 and 21 (189). S-acylation is required for both membrane 

targeting as well as the rapid, non-genomic effects of these steroids.  For example, site 
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directed mutation of the S-acylated cysteine to alanine in the ERreceptor, prevent 

ER

that controls non-genomic regulation of the MAPK/ERK and PI3Kinase/AKT signalling 

pathways.  In contrast, de-acylation of ER  

ERdegradation and abrogates oestrogen induced gene transcription revealing cross-talk 

between the non-genomic and genomic mechanism of action of oestrogen (130). Recent 

analysis of mice with knock-in mutations of the S-acylated cysteine in ER, to alanine, 

reveal discrete developmental and physiological functions controlled via the membrane (S-

acylated) ER receptors including in the female reproductive, endocrine and vascular 

systems (4, 190). The in vivo roles of PR and AR S-acylation remain to be fully explored. 

Furthermore, whether other steroid receptors, that also have the conserved cysteine in the 

ligand binding domain, and have been reported to have membrane mediated effects (e.g 

receptors for cortisol) are also regulated by S-acylation remains to be examined.  

S-acylation is also critical for the rapid non-genomic effects of thyroid hormone (TH) 

signalling via a novel membrane TH receptor, that lacks the conserved cysteine residue 

seen in the ER and other steroid receptors above (119). In this case, the membrane receptor 

is generated by translational initiation from an internal methionine (M150) of the ligand-

activated transcription factor receptor TR. This produces a receptor (p30 TR1) that is 

unable to stimulate transcriptional but is instead targeted to caveolae through S-acylation of 

two cysteine residues C254 and C255 in osteoblasts. S-acylation of p30 TR1 is essential 

for the non-genomic actions of thyroid hormone as signalling through the NO/cGMP 

signalling cascade to ultimately control extracellular signal related kinase (ERK) and Akt was 

abolished in mutants deficient for S-acylation. Thus this novel receptor is required for the 

rapid non-genomic signalling of thyroid hormone and the control of cell survival and 

proliferation.  
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VI.ii Membrane and vesicle trafficking 

Vesicle trafficking, exocytosis and endocytosis are fundamental mechanisms for controlling 

bulk trafficking of proteins in cells as well as the control of intercellular communication 

through the release of hormones and neurotransmitters. S-acylated proteins are involved in 

both vesicle translocation as well as fusion/retrieval from membranes.  

VI.ii.a Vesicle trafficking and exocytosis 

The fusion of vesicles to their target membrane requires assembly of SNARE complex 

proteins to promote membrane fusion. In neurones multiple components of the vesicle fusion 

machinery are S-acylated including both the pre-synaptic membrane SNARE proteins 

syntaxin and SNAP25, the vesicle protein synaptobrevin (VAMP2) as well as the calcium 

sensor for fusion Synaptotagmin 1 (see (122, 200). S-acylation controls multiple aspects of 

protein sorting and localisation to membrane microdomains for these proteins.  

Multiple members of the syntaxin family, including both neuronal (e.g syntaxin 1) and non-

neuronal (e.g syntaxin 11) expressed syntaxins, have been reported to be S-acylated 

although in most cases the functional role is very poorly understood.  The endosomal 

syntaxin 7, S-acylated at a cysteine residue (C239) juxtaposed to its single transmembrane 

domain is important for trafficking between endosomal and plasma membranes as its S-

acylation deficient mutant is trapped on the plasma membrane (90).  Recent analysis of the 

atypical syntaxin, syntaxin 11, that lacks a transmembrane domain, reveals an important role 

for S-acylation in membrane targeting, and localisation of syntaxin11 to the immunological 

synapse in natural killer (NK) cells and association of loss of S-acylation dependent targeting 

in familial hemophagocytic lymphohistiocytosis type 4 (FHL-4) (92).  Syntaxin 11 is widely 

expressed in immune cells and in NK cells is required for secretory lysosome exocytosis, 

required for elimination of pathogens or tumor cells a function severely abrogated in FHL-4.  

In NK cells, Syntaxin 11 is S-acylated at a cluster of cysteine residues at the C-terminus of 

the protein, a region that is lost due to frameshift mutations (e.g Q286X) in patients with 
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FHL-4. Syntaxin that is not S-acylated does not bind membranes resulting in disruption of its 

interaction with the Sec-1/munc18-like protein Munc18-2 at the immunological synapse in 

activated NK cells.  

SNAP25, and the related non-neuronal protein SNAP23, are both peripheral membrane 

proteins that interact with membranes through S-acylation of multiple cysteines in cysteine 

rich domains of the proteins. SNAP25, plays a role in both synaptic and endosomal 

membrane fusion events and its targeting to membranes is controlled by S-acylation of a 

cluster of four cysteine residues C85, C88, C90 & C92, predominantly by zDHHCs 3, 7 and 

17 in the Golgi network (75). Importantly, the number of cysteine residues of SNAP25 that 

are S-acylated appears to act as a code to specify the precise sub cellular distribution in the 

recycling pathway between recycling endosomes, the trans Golgi network (TGN) and the 

plasma membrane (73). For example, in neuroendocrine PC12 cells mutation of any 

individual S-acylated cysteine to leucine enhanced SNAP25 localisation at recycling 

endosomes and the TGN although mutation of either C88 or C90. had the greatest effect. As 

SNAP25 S-acylation is dynamic this suggests that controlling the extent of SNAP-25 S-

acylation is a key determinant in defining its localisation and supports multiple lines of 

evidence that S-acylation is not a simple membrane anchor. Moreover, the number of S-

acylated cysteines in both SNAP25 and SNAP23 are important determinants in the role of 

these proteins to support secretion in neuroendocrine cells.  For example, engineering an 

additional cysteine into SNAP25 (to have 5 rather than 4 S-acylated cysteines) results in 

reduced stimulated secretion compared to wild-type whereas in a converse experiment 

deleting a cysteine in SNAP 23 (so it has 4 rather than the normal 5) results in enhanced 

secretion (214).   

Cysteine string protein  (CSP) is a ubiquitously expressed DnaJ chaperone protein that 

regulates secretory vesicle dynamics likely by stabilising multiple synaptic proteins including 

SNAP25, and represents one of the most heavily S-acylated proteins per mole. S-acylation 

of CSP occurs on multiple residues in a core cysteine-rich domain. Mutations within this 
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cysteine rich domain (L115R or L116), recently shown to cause the neurodegenerative 

disorder adult-onset neuronal ceroid lipofuscinosis, result in aggregation of CSP (76). The 

mutations mistarget CSP resulting in aggregates of mutant CSP that are membrane 

bound with incorporated palmitate. Although oligomerization of mutant CSP can also occur 

in the absence of S-acylation (286) chemical de-acylation solubilises the aggregates in cell 

lines and in post-mortem brains of patients suggesting that CSP S-acylation of these 

mutants is a major driver of the onset of this disease and aggregate formation (76).  

Synaptobrevin is S-acylated at a single cysteine residue within its transmembrane domain 

and although the functional role of S-acylation is not known S-acylation of synaptobrevin 

may be developmentally regulated as synaptic vesicles prepared from adult rat brain 

efficiently incorporated 3H-palmitate whereas vesicles isolated from embryonic brains did not 

(259).  

Synaptotagmins represent a large family of calcium-sensors for vesicle fusion with a single 

transmembrane domain. The major neuronal isoform synaptotagmin 1 is S-acylated at 

multiple cysteine residues at the boundary between the transmembrane domain and 

cytosolic domain. In neurones, synaptotagmin1 S-acylation is enhanced by inhibiting 

synaptic activity and mutation of the S-acylated cysteines results in enhanced surface 

expression and diffuse localisation rather than punctate localisation to presynaptic 

membranes (121) suggesting a role of S-acylation in clustering and stability at the plasma 

membrane. Synaptotagmin VII (Syt VII) is an example of a more broadly expressed 

synaptotagmin that is localised to lysozomes, as well as other compartments, in a variety of 

cells including macrophages.  In bone marrow macrophages from SytVII knockout mice, 

phagocytosis, which is dependent upon lysosomal membrane delivery to the cell surface, is 

disrupted and this could be restored by overexpression of wild-type but not S-acylation 

deficient mutants (55). Wild-type SytVII was correctly targeted to lysozomes where it is 

assembled in clusters with the tetraspanin CD63 whereas S-acylation deficient SytVII 
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mutants localised at the Golgi and did not assemble with CD63.  S-acylation dependent 

assembly of SytVII with CD63 is required at the level of the Golgi to allow SytVII to traffic to 

lysozomes directed by the lysosomal targeting motifs of CD63. 

VI.ii.b Microtubule-mediated trafficking 

S-acylation has also been implicated in the control of dynein-dependent motor protein 

function that controls multiple aspects of cellular function: from long range transport of cargo 

vesicles to mitosis. The anterograde motor protein dynein is an important microtubule 

associated motor protein and is regulated by a protein complex composed of the proteins 

LIS1 and the evolutionary conserved NUDE proteins Ndel1 and Nde1.  Both Ndel1 and 

Nde1 are S-acylated, with zDHHCs 2, 3 and 7 the major candidates, most likely at multiple 

sites although in both proteins conserved C273 in the Ndel1 dynein binding domain appears 

to be the major residue (227). However the effect of S-acylation is divergent between Ndel1 

and its paralog Nde1.  For Ndel1, S-acylation reduces the ability of Ndel1 to interact with 

cytoplasmic dynein that results in reduced dynein activity and hence disruption of a number 

of key dynein–dependent processes including maintenance of the Golgi apparatus, 

trafficking from ER to Golgi and long range vesicular trafficking in neurites. In contrast, S-

acylation of Nde1 does not significantly affect dynein activity or function.  Importantly, S-

acylation of Ndel1 is involved in neuronal migration both in vivo and in vitro. In vivo (using in 

utero electroporation), expression of a dominant negative mutant of zDHHC7, or the C273S 

Ndel1 mutant, resulted in reduced neuronal migration in the developing cortex (227).  

VI.ii.c Massive endocytosis 

Endocytosis of transmembrane proteins may occur through multiple mechanisms including 

the ‘classical’ clathrin-dependent pathway as well as clathrin-independent pathway. For a 

variety of proteins, clathrin-independent endocytosis may occur through S-acylation 

dependent partitioning of the protein into cholesterol and sphingolipid rich lipid raft 

microdomains. Recently, a mechanism (massive endocytosis, MEND) that promotes large 

scale (e.g up to 50%) endocytosis of such ordered plasma membranes has been described 
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to be, in part, triggered by S-acylation in cardiac myocytes and other cells (100, 143). MEND 

is activated in cardiac cells upon calcium influx or insults that that result in elevations in acyl-

CoA in the cytoplasm, along with activation of PKC.  These conditions are manifest following 

re-oxygenation of cardiac cells following acute ischaemic events, for example during heart 

attacks.  Thus reoxygenation of anoxic cardiac myocytes initates MEND, a process that is 

proposed to result from formation of permeability transition pores in the mitochondrial 

membrane resulting in release of Coenzyme A into the cytoplasm. The release of Coenzyme 

A results in a rapid increase in acyl-CoA providing an unlimited supply of acyl-CoA for 

zDHHC enzymes with consequent enhanced S-acylation of multiple membrane proteins  

including phospholemman and flotillin.  The increased S-acylation of such proteins is then 

hypothesised to result in clustering and association of these proteins in ordered lipid raft 

domains and thus promoting endocytosis.  Although the precise mechanisms that result in 

such massive membrane internalisation remain to be established, knockdown of zDHHC5 in 

cardiac myocytes (via siRNA or using myocytes from a mouse with a hypomorphic allele of 

zDHHC5 largely prevented MEND (143). Furthermore, hypomorphic zDHHC5 mice retained 

ventricular function following ischaemia suggesting that zDHHC5 mediated S-acylation is a 

critical check-point in MEND and reperfusion injury in the heart. 

 

VI.iii Ion channels and Transporters 

S-acylation has been reported to control a diverse array of ion channels as well as 

transporters that move ions, lipids or other solutes across membranes. S-acylation is 

important for controlling both channel/transporter activity as well as trafficking to target 

membranes, effects that are mediated by S-acylation of the pore/transporter subunits or 

associated regulatory/accessory subunits.  Recent extensive reviews have highlighted the 

diversity of ion channels and mechanisms/properties regulated by S-acylation and thus here 

we focus on a few select examples to illustrate key points (225, 226, 246).  
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VI.iii.a Ion channels 

Since the discovery of the first S-acylated ion channels more than 25 years ago (220, 239) 

more than 50 different ion channel subunits have been reported to be S-acylated (for 

reviews see (225, 226, 246). S-acylation has been reported to control all aspects of the ion 

channel life cycle from assembly, trafficking, kinetics and regulation by other PTMs at the 

destination membrane to degradation and sensitivity to toxins and pharmacological agents. 

Importantly, ion channels have been shown to be regulated by S-acylation of pore forming 

subunits as well as an array of regulatory subunits that control channel trafficking and 

function.  To illustrate some of the key features and diverse roles S-acylation plays in ion 

channel function two exemplars from the ligand-gated and voltage gated ion channel families 

will be discussed: the glutamate activated 

­amino­3­hydroxyl­5­methyl­4­isoxazole­propionate (AMPA) receptors and large 

conductance calcium- and voltage activated potassium (BK) channels, respectively.  

AMPA receptors (AMPAR) are critical determinants of glutamatergic signalling in central 

synapses and the control of AMPAR surface expression and function key to mechanisms of 

synaptic plasticity. The pore forming subunits, encoded by four genes Glu1-4, are S-acylated 

at two distinct sites.  S-acylation of a single cysteine residue in Glu1, that is located adjacent 

to a cytosolic hydrophobic segment between two transmembrane domains, promotes 

retention of AMPAR at the Golgi apparatus (86). In contrast, S-acylation of a cluster of 

cysteine residues in the cytosolic C-terminus of GluA1, just downstream of the last 

transmembrane domain, blocks PKC-mediated phosphorylation of GluA1 likely through a 

mechanism of steric hindrance (142).  This S-acylation-dependent regulation of PKC 

phosphorylation prevents GluA1 binding to its cytoskeletal adapter protein 4.1N and 

reducing AMPAR insertion into the plasma membrane.  The functional diverse effects of S-

acylation at two distinct site within the same pore-forming subunit are also observed for BK 
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channels.  The pore forming subunit of BK channels encoded by the single gene KCNMA1, 

is again S-acylated at two sites. Firstly, S-acylation of a cluster of cysteine residues (C53 & 

56) in a cytosolic loop between the first two transmembrane domains is required for efficient 

trafficking of the BK channel from the ER to Golgi and subsequently the cell surface (110, 

249). In contrast, S-acylation of a BK channel C-terminal splice variant (STREX) in a 

cysteine-rich cytosolic domain acts as a switch to specify STREX BK channel regulation by 

AGC-family protein kinases (247). Channels S-acylated in the STREX insert are inhibited by 

PKA-dependent protein phosphorylation but are insensitive to PKC regulation. In contrast, 

de-acylation of the STREX insert switches the channel from being inhibited by PKA to being 

inhibited by PKC (292), a mechanism proposed to involve accessibility of the PKC 

phosphorylation site only when the STREX domain is not S-acylated and hence dissociated 

from the plasma membrane. 

Importantly, in both AMPAR and BK channels the distinct sites of S-acylation appear to be 

under control of distinct members of the zDHHC family. How, zDHHCs discriminate between 

these distinct sites is as yet unknown.  

While S-acylation of the pore-forming subunits can have differential effects, the diversity of 

effects of S-acylation on channel function is also illustrated in these two channel types 

through S-acylation of distinct regulatory subunits and adapter proteins.  For example, S-

acylation of the AMPAR interacting protein PICK1, retains endocytosed AMPAR in 

intracellular compartments and thus contributes to long-term depression of glutamatergic 

synapses (245). Another AMPAR interacting protein Grip1b, that is also S-acylated by 

zDHHC 5 & 8 as for PICK1, accelerates local recycling of AMPAR to the plasma membrane 

in dendritic spines through interaction of S-acylated Grip1b with dendritic trafficking vesicles 

(244). Moreover, S-acylation of another AMPAR interacting adapter protein, PSD-95, in 

dendritic spines controls AMPAR clustering at the postsynaptic membrane (62).  The role of 

regulatory subunits in BK channels is likely to be as complex. For example, S-acylation of 

the regulatory 4-subunit, at a single juxtatransmebrane cysteine residue C193, is required 
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for the up-regulation of BK channel surface expression when 4-subunits are expressed with 

pore-forming subunits in neurones through control of ER exit. Intriguingly, this S-acylation 

dependent mechanism is only manifest with specific C-terminal splice variants of the pore-

forming subunit illustrating how surface expression may be finely and differentially tuned in 

different cell types (33). Such mechanisms likely contribute to the diverse roles that BK 

channels play in an eclectic range of physiological process: from control of neuronal 

excitability to endocrine, vascular and renal function.  

A recent intriguing study has also revealed a role for S-acylation in controlling trafficking of 

the cystic fibrosis transmembrane conductance regulator (CFTR). CFTR is a chloride and 

bicarbonate channel that is central to the pathogenesis of the enhanced mucus lining the 

lung in cystic fibrosis (159).  Several disease causing mutations of CFTR, including F508del, 

result in reduced, but not abolished, trafficking to the cell surface as  deletion of Phe508 

results in misfolded CFTR that is recognised for degradation by ER-associated degradation 

(ERAD). Rescue of F508del surface expression by small molecule correctors allows 

functional rescue as the F508del mutant retains partial transport activity at the plasma 

membrane. Both wild-type CFTR and the F508del mutant are S-acylated, with zDHHCs 3 

and 7 likely candidates, resulting in increased steady-state levels of the protein. S-acylation 

promotes biogenesis of core-glycosylated CFTR promoting trafficking of both wild-type and 

F508del mutant channels from the ER to the Golgi where they are sequestered.  It is likely 

that additional de-acylation steps are required for efficient transport to the cell surface from 

the Golgi. However, manipulation of mutant CFTR S-acylation, in conjunction with 

established small molecule enhancers of trafficking/function may provide a new strategy for 

treatment of this disabling disorder.  

VI.iii.b Ion, solute and lipid transporters 

A wide variety of neurotransmitter, ion, solute and lipid transporters have also now been 

revealed to be regulated by S-acylation and below we highlight some key examples. 



47 

 

Dopamine transport is essential in controlling synaptic levels of dopamine and consequent 

regulation of a wide range of nervous system functions including in emotion, reward and 

motor pathways. The efficiency of active reuptake of dopamine from the extracellular space, 

back into presynaptic nerve terminals in central synapses, by the dopamine transporter 

(DAT) is enhanced by S-acylation of the transporter at at least two sites, including a cysteine 

(C580) at the intracellular end of transmembrane 12 (57).   Acute pharmacological inhibition 

of S-acylation, using 2-BP, reduced transporter V0.5max in synaptosomes without affecting 

transporter expression or surface membrane expression. However chronic inhibition, or site-

directed mutagenesis of C580 to serine, resulted in enhanced receptor degradation and 

enhanced protein kinase C-dependent down-regulation of transporter function (57).   

Dopamine transporters are targets for both therapeutic drugs and drugs of abuse, and thus 

both short and long term effects of S-acylation may have major impacts on dopamine 

neurotransmission and dopaminergic disorders. However, whether DAT S-acylation is 

compromised in disease states, such as Parkinson;s and schizophrenia, or can be targeted 

to enhance dopamine transport remains to be examined.  

The ATP-binding cassette transporters ABCA1 and ABCG1 are both found at the plasma 

membrane, where they transport cholesterol out of the cell to apoliporotein A1 and 

subsequent formation of high density lipoprotein (LDL) (79, 231).  In both cases S-acylation 

is required for efficient trafficking of the transporter from the ER to plasma membrane thus 

transporter deacylation results in reduced cholesterol export in a variety of cell types. ABCA1 

is S-acylated on 5 cysteine residues, with two residues within the intracellular N-terminus 

(C3 and C23) and a dicysteine motif (C1110 and C1111) in the large intracellular linker 

between transmembrane domains 6 and 7. Mutation of any cysteine has similar effects on 

ABCA1 surface expression and cholesterol efflux suggesting the cysteine residues play 

similar functions (231). ABCA1 is S-acylated by multiple zDHHCs although zDHHC8 shows 

the most robust S-acylation in overexpression assays. Moreover, zDHHC8 overexpression 

up regulates ABCA1 transporter function (231). In contrast, ABCG1 is S-acylated at 5 



48 

 

residues although residue C311 appears to be primarily responsible for controlling trafficking 

and cholesterol efflux (79). This again highlights that cysteines at distinct locations with 

proteins can display similar or distinct functions. The apolipiporoteins are also  S-acylated 

and S-acylation of ApoB at C1085 is important for its intracellular sorting and formation of 

LDL (288). Whether dysregulation of ABC transporter S-acylation is associated with 

disruption of cholesterol transport in a range of disorders including artherosclerosis, Macula 

degeneration and some cancers remains to be determined.  

The glucose transporters Glut1 and Glut4 are both reported to be S-acylated and the level of 

S-acylation changes in diet-induced models of hyperglycaemia or obesity respectively (198, 

205).  However, although the functional role of Glut1 or 4 S-acylation is not fully understood, 

S-acylation plays an important role in controlling insulin dependent Glut4 translocation to the 

plasma membrane via indirect mechanisms.  Several components important for Glut4 

vesicle trafficking, including cytoplasmic linker protein 170-related 59 kDa (ClipR59), 

involved in regulating glucose homeostasis and peripheral insulin sensitivity, are S-acylated 

in adipocytes. ClipR-59, acts as a scaffold to drive phosphorylation of the Rab GTPase 

activating protein AS160 (that is also S-acylated Ren:2013fa) by the protein kinase Akt to 

drive insulin-dependent recruitment of Glut4 to the plasma membrane. S-acylation of two 

cysteine residues (C534 and C535) of ClipR-59 promotes membrane interaction and allows 

ClipR-59 to recruit the kinase Akt to the plasma membrane (206).  ClipR-59 assembles with, 

and is predominantly S-acylated by, zDHHC17. Knockdown of zDHHC17 prevents ClipR-59 

and Akt recruitment to the plasma membrane and impairs insulin-induced Glut4 translocation 

to the plasma membrane. As multiple components required for Glut 4 trafficking, including 

Glut 4 itself, are S-acylated this PTM may play a complex role in Glut4 translocation and 

insulin signalling.  

Phospholemman (FXYD1) is a transmembrane protein that is a major regulatory subunit of 

the sodium pump (Na/K ATPase) function in cardiac cells and a major target for PKA and 

PKC mediated regulation of the pump.  FXYD1 may be S-acylated at two cysteines (C40 
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and C42) in its short intracellular N-terminus (256). S-acylation has neo effect on FXYD1 

membrane expression but S-acylation increases the half-life of FXYD1 expression.  

Importantly, S-acylation was essential for FXYD1 to mediate inhibition of pump activity: non- 

S-acylated FXYD1 was unable to inhibit pump activity. Furthermore, PKA dependent 

phosphorylation of FXYD1 downstream of the sites of S-acylation promoted FXYD1 S-

acylation. Other members of the FXYD family are also predicted to be S-acylated and thus 

may control pump activity in other tissues via a S-acylation dependent mechanism. 

An intriguing function of S-acylation in transporter function is to control distinct functions of 

phospholipid scramblases (PLSCR) 1 & 3. PLSCR1 is a calcium-binding protein that controls 

phospholipid transfer across the plasma membrane.  PLSCR1 contributes to the 

reorganisation of lipids in a number of cell types including platelets and red blood cells in 

particular in response to elevated intracellular calcium in response to cell injury or apoptosis. 

PLSCR1 is multiply S-acylated in a core –184CCCPCC- motif that targets it to lipid raft 

domains and is essential for trafficking to the plasma membrane (267). In contrast, de-

acylated PLSRC1 is targeted to the nucleus where it can bind DNA and activate 

transcriptional cascades. Under normal conditions the large majority of PLSCR1 is located in 

the plasma membrane or endosomal membranes. The ability of S-acylation to act as a 

switch of PLSCR1 function is important following the rapid upregulation of PLSCR1 

expression following exposure to cytokines when newly synthesised PLSCR1 rapidly 

accumulates in the nucleus. Intriguingly S-acylation also appears to play a role in differential 

targeting of the scramblase PLSCR3: in this case to the mitochondrion, rather than the 

nucleus. S-acylation of a cluster of five cysteine residues (-159CGCSCCPC-) in PLSCR3 is 

required for mitochondrial localisation in macrophages. At the mitochondrion PLSCR3 

transports cardiolipin from the inner to outer mitochondrial membrane that ultimately results 

in release of cytochrome C into the cytosol and induction of apoptosis. The removal of 

PLSCR3 from the mitochondrion upon de-acylation reduces apoptosis supporting that S-
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acylation of PLSCR3 contributes to the pro-apoptotic function of PSCLR3 in macrophages 

(162).  

 

VI.iv Signalling adapters and chaperones 

The spatial and temporal coordination of cellular signalling cascades is, in large part, 

orchestrated by a diverse array of signalling adapter and chaperone proteins that reulate the 

organisation of macromolecular signalling complexes.  A large number of such adapter 

proteins are S-acylated and we are beginning to understand some of the roles of S-acylation 

in controlling information flow through these signalling networks.  

PSD-95 is the most abundant abundant scaffolding protein in the post-synaptic density of 

glutamatergic chemical synapses where it coordinates the assembly of a variety of ligand-

gated ion channels (including AMPA and NMDAR) and other signalling proteins and 

transmembrane adhesion molecules essential for the correct assembly and function of 

glutamatergic chemical synapses.  PSD-95 is S-acylated at its N-terminus on two residues 

by multiple zDHHC enzymes including zDHHC2, and is essential for its post-synaptic 

targeting (61, 252). PSD-95 S-acylation appears to play a primary role in assembly and 

maturation of dendritic spines through establishment of domains of PSD-95 and its 

interacting molecules.  Recent evidence, exploiting a conformation specific antibody that 

recognises the S-acylated conformation of PSD-95, revealed local acylation-deacylation 

cycles of PSD-95, driven by zDHHC2, serve to create nanodomains of clustered PSD-95 

that are maintained in the postsynaptic membrane of dendritic spines (62).  Importantly, 

activity-dependent remodelling and expansion of the PSD involves establishment of new 

PSD-95 nanodomains driven by increases in plasma membrane inserted zDHHC2 (62) that 

allow recruitment and stabilisation of PSD-95 into the nanodomains. Such PSD remodelling 

is thought to be central to the mechanisms underlying synaptic plasticity at synapses. 
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Ankyrin-G is another adapter protein that interacts with multiple transmembrane proteins 

anchoring them to the sub-membrane network of II-spectrin and actin.  Ankyrin G is S-

acylated towards its N-terminus, via zDHHC5 and 8, allowing Ankyrin-G to localise to the 

lateral membrane of polarized columnar epithelial MDCK cells. (88, 89)   Knockdown of 

zDHHC5 and 8, or site directed mutagenesis of the Ankyrin–G S-acylated cysteine mimics 

the effect of Ankyrin-G knockout itself: preventing lateral membrane assembly and thus 

significantly reducing epithelial cell height.  Intriguingly, this mechanism is also dependent 

upon phospholipid interactions with II-spectrin, that binds to Ankyrin-G, in micron-sized 

domains in the lateral membrane in which zDHHC5 and 8 are also co-localised (88). II-

spectrin mutants that cannot bind Ankyrin-G or phospholipids also disrupt lateral membrane 

assembly.  This highlights that an important interaction between two distinct lipid–dependent 

mechanisms is required for lateral membrane assembly: S-acylation of the adapter protein 

Ankyrin-G and phospholipid binding to its binding partner II-spectrin. Whether such a 

mechanism also controls assembly of other Ankyrin-G dependent complexes, such as at the 

axon initial segment, and how assembly controls lateral membrane assembly, perhaps 

through control of adhesion molecules, that control intercellular contacts, remains to be 

explored.  

The large family of cAMP-dependent protein kinase A (PKA) anchoring proteins (AKAPs) 

allow efficient signalling through PKA signalling pathways. Several members of the AKAP 

family are S-acylated and target PKA (via binding to the regulatory R subunits) to multiple 

effectors as well as other components of the signalling machinery. For example, the small 

AKAP15/18 targets PKA to the plasma membrane to promote PKA-dependent regulation of 

L-type calcium channels in neurones, endocrine and cardiac cells (58, 70). In hippocampal 

neurones, activity-dependent S-acylation of the multi-functional AKAP79/150 at two sites 

(C36 and C129) within its N-terminal polybasic domain targets AKAP79/150 to lipid rafts and 

recycling endosomal membranes in dendrites (123). This recruitment was important for 

AMPAR recruitment and synaptic plasticity, in part likely due to the role of AKAP79/150 in 
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coordinating AMPAR phosphorylation, as AKAP79/150 mutants that lack the S-acylation site 

do not support AMPAR trafficking and synaptic potentiation in vitro. In other systems, this S-

acylation dependent recruitment of AKAP79/150 to lipid rafts, from non-raft domains, 

promotes assembly with the calcium-dependent adenylate cyclase, AC8 (41) to coordinate 

PKA-dependent phosphorylation of multiple raft proteins upon store-operated calcium entry. 

Transmembrane adapter proteins (TRAPs) represent a large and diverse family of proteins 

that can coordinate signal transduction modules at the plasma membrane (236).  A 

significant number of TRAPs have been reported to be S-acylated, with linker of T-cell 

activation (LAT) representing a protypical TRAP expressed in T-cells, as well as other cells 

of the immune system, and important for T-cell receptor signalling. S-acylation of two 

juxtamembrane cysteine residues (C26 & C29) in LAT are required for its partitioning into 

lipid rafts with either mutation of the cysteines or pharmacological inhibition of S-acylation 

disrupting raft partitioning (137). S-acylation of C26,that is closest to the plasma membrane 

appears to play the dominant role in raft localisation in model systems again pointing to the 

importance of cysteine positioning for function.  Moreover, mutation of C26 increaseed the 

localisation of LAT on intracellular membranes. Correct raft partitioning is required for 

assembly of LAT with a range of proteins and assembly of a multimolecular signalling 

complex. It is likely that S-acylation of other TRAPs plays a similar role. 

Calnexin is a transmembrane chaperone localised in the endoplasmic reticulum where it 

facilitates the folding of nascent chains of glycosylated proteins and preventing their 

aggregation (see Section III.ii) (132). In addition calnexin plays a role in ER calcium content 

and the regulation of calcium signalling between the ER and mitochondria required for 

control of mitochondrial membrane potential (150, 151).  Recent studies have implicated S-

acylation in controlling these distinct properties, at least in part, by controlling the spatial 

organisation of calnexin in the ER and the assembly of calnexin with distinct protein 

complexes.  Calnexin is S-acylated at two juxtamembrane cysteine residues, predominantly 

C502, and appears to be largely catalysed by zDHHC6 (132, 150). S-acylation of calnexin 
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promotes calnexin localisation to two distinct regions of the ER: i) the perinuclear rough ER 

(RER) that is the site of the ribosome translocon complex (RTC) and ii) the mitochondria-

associated membrane (MAM) that provides communication between the ER and 

mitochondria.  In contrast, de-acylation redistributes calnexin to the tubular ER.  At the RER 

S-acylated calnexin assembles with core components of the RTC leading to recruitment of 

the actin cytoskeleton and stabilisation of the super-complex (132). S-acylation of calnexin at 

the RTC is thus essential for the ability of calnexin to perform its chaperone function and 

capture nascent polypeptides and promote their folding as they emerge from the translocon.  

Inhibition of zDHHC6 or mutation of the calnexin S-acylatied cysteines disrupts glycoprotein 

folding.  In contrast, at the MAM, S-acylated calnexin assembles with the sarcoplasmic 

reticulum ca2+-transport ATPase 2b (SERCA2b) and reduces the ability of mitochondria to 

uptake Ca2+ from the ER (151).  De-acylation of calnexin prevents its association with 

SERCA2b with subsequent loss of the inhibitory effect of calnexin on mitochondrial Ca2+ 

uptake from the ER.  Importantly, following a short term ER stress calnexin becomes de-

acylated thus shifting its function away from Ca2+ homeostasis and promotes its ER quality 

control functions, for example by interaction of de-acylated calnexin with the oxidoreductase 

ERp57. Taken together these data indicate S-acylation as an important switch to allow 

differential localisation and functions of calnexin in the ER with impacts on both protein 

folding and mitochondrial homeostasis.  

 

VI.v Transcriptional regulation 

Increasing evidence suggests that S-acylation may control transcription through a variety of 

mechanisms.  As outlined above, S-acylation of steroid receptors can determine whether the 

receptor acts as a receptor at the plasma membrane (S-acylated receptor) or conversely 

controls transcription via DNA binding in the de-acylated state (130, 189-191). Recent 

evidence also points to S-acylation controlling translocation of another transcription factor, 

nuclear factor of activated T-cells 5a, NFAT5a, from the plasma membrane to the nucleus to 
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control gene transcription (50). NFAT5a is myristoylated and S-acylated at its N-terminus 

with S-acylation being required for the localisation of NFAT5a at the plasma membrane 

under conditions of cells in the isotonic state.  However, upon osmotic stress NFAT5a is 

released from the plasma membrane and translocates to the nucleus, a process that likely 

requires de-acylation as site-directed mutants that lack the S-acylated cysteine, but not 

myristoylated residue, or acute inhibition of S-acylation with 2-BP, result in NFAT5a being 

located in the nucleus.  

Transcription requires remodelling of chromatin structure in the nucleus, a process intricately 

controlled by the post-translational regulation of histones, including by methylation and 

acetylation. Recent proteomic screens of S-acylation substrates in Jurkat cells revealed that 

a number of histone H3 variants, including H3.2, are S-acylated with the conserved cysteine 

C110 being a major site of S-acylation (268). The functional impact of H3 S-acylation has yet 

to be fully established although the localisation of H3 to the nuclear shell fraction in HeLa 

cells may support a role in perinuclear tethering of chromatin, a process associated with 

inactive heterochromatin. Intriguingly, 2-BP treatment of P19 mouse embryonic carcinoma 

cells impaired neuronal differentiation and cell cycle exit with associated changes in H3, and 

Histone 4 (H4), acetylation (34). This suggests that S-acylation may, directly or indirectly 

control histone acetylation and hence chromatin remodelling. Of note, H4 has also been 

reported to be O-acylated on serine 47 (S47) by nuclear localised acyl-CoA: 

lysophosphatidylcholine acyltransferase (Lpcat1) via a calcium-dependent mechanism (293). 

Knockdown of Lpcat1, the cytosolic form of which also catalyzes an acyltransferase reaction 

by adding a palmitate to the sn-2 position of lysophospholipids, or the H4 S47A mutant 

decreased global mRNA synthesis.  

 

VI.vi Enzymes and kinases 
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S-acylation is now implicated in controlling a wide diversity of protein and lipid kinases as 

well as an eclectic array of other enzymes and signalling proteins. 

VI.vi.a Tyrosine kinases 

Perhaps the best studied examples of S-acylated protein kinases are members of the Src-

family of non-receptor tyrosine kinases (SFK) implicated in a wide diversity of signalling 

responses including cell proliferation, changes in cell-morphology and migration as well as 

differentiation.  Members of the family are co-translationally myristoylated at glycine residue 

2 but are differentially S-acylated at cysteine residues immediately downstream of the 

myristoylated glycine (127). For example, Src-kinase is not S-acylated, whereas Lyn and 

Yes kinases are mono-acylated at C3 whereas Fyn is S-acylated at both C3 and C6 cysteine 

residues. The subcellular organisation of these kinases is important for their functional role 

and the degree of S-acylation has been proposed to control the mode of SFK trafficking and 

predominant subcellular localisation. In an elegant series of studies, exploiting both site-

directed mutants and cysteine ‘knock-in’ experiments Sato and co-workers revealed three 

distinct modes of SFK trafficking (217). Non S-acylated SFKs, such as Src, enter a rapidly 

recycling pathway between endosome and the plasma membrane that is controlled by 

myristoylation. In contrast, SFKs that may be singly S-acylated, such as Lyn and Yes are S-

acylated in the Golgi apparatus where they enter the secretory pathway for delivery to the 

cell surface. In this case, if Lyn or Yes are not S-acylated they remain largely in the Golgi 

apparatus due to their myristoylation. In contrast, dually S-acylated Fyn is targeted directly to 

the plasma membrane. Introduction of an addition S-acylated cysteine in Yes, or mutation of 

just C6 in Fyn, resulted in the respective mutant SFKs entering the dually- or mono- S-

acylation pathways respectively.  Taken together, at least for these peripheral membrane 

proteins, the extent of S-acylation acts as a postcode to direct the kinases to distinct 

compartments.  For most SFKs the repertoire of zDHHCs that control S-acylation are not 

well established. For Fyn, zDHHC21 has been identified as a candidate and in mice with a 
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loss of function mutation in zDHHC21 Fyn is mislocalised in hair follicles and mice have 

significant hair loss (163) 

VI.vi.b Lipid kinases 

Phosphatidylinositol 4-phosphate (PI4P) is an important phospholipid required for Golgi 

membrane trafficking and control of phosphoinositide biosynthesis and signalling at the 

plasma membrane. At the Golgi, PI4P is predominantly synthesised by the lipid kinase 

phosphatidinylinositol 4-kinase II (PI4KII) that is very tightly associated with the 

membrane even though it lacks any transmembrane domains. PI4P assembles with 

zDHHC3 and 7 in lipid raft domains in the Trans-Golgi network in a cholesterol dependent 

mechanism (149). zDHHC3 and 7 S-acylate multiple cysteines in the 173CCPCC motif within 

the catalytic core of  PI4KII that is essential for both assembly with the zDHHCs and 

localisation in lipid raft domains (15, 149). Mutation of these cysteines, or knockdown of the 

cognate zDHHCs also significantly reduces PI4P kinase activity and consequently Golgi 

PI4P levels.  

VI.vi.c RAS superfamily of small GTPases 

The rat sarcoma (Ras) superfamily of small GTPases, comprising Rac, Rho, Rab, Arf and 

Ran subfamilies are important signal transducers that act as switches to control a diverse 

array of downstream effectors and regulate a variety of physiological mechanisms including 

cell growth, movement, differentiation and survival.  

The importance of S-acylation of H-Ras and N-Ras, in conjunction with prenylation, in 

controlling their trafficking and localisation at the plasma membrane to mediate effective 

signalling has long been recognised (for review see (144).  Importantly, H- and N-Ras 

plasma membrane targeting is intricately controlled by cycles of S-acylation and de-acylation 

coordinated through the activity of predominantly Golgi-localised zDHHCs and 
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palmitoylthioesterases at other internal membranes to promote accumulation of these 

GTPases at the plasma membrane (40, 209, 258). 

The Rho GTPase Rac1 is also S-acylated but at a cysteine residue (C178) in the C-terminus 

that is more proximal than the cysteine residues of H- and N-RAS that are located adjacent 

to the prenylated –CAAX box (176). S-acylation is required for correct localisation of Rac1 in 

lipid rafts at the plasma membrane and de-acylated Rac1 shows reduced GTP loading and 

increased oligomerization, with reduced activation of its downstream effector PAK kinase 

leading to defects in cell spreading and migration. Another intriguing variation on this theme, 

that also highlights the importance of alternative splicing in determining S-acylation of many 

proteins, is the example of the Rho GTPase Cdc42 (122).. The ‘canonical’ Cdc42 splice form 

is ubiquitously expressed and membrane association is determined by prenylation of the C-

terminus and differs from H-Ras and N-Ras in lacking the C-terminal S-acylation sites. 

However, a brain specific C-terminal splice variant replaces the C-terminal prenylation motif 

to a sequence with a di-cysteine motif (-CCAX) just upstream of the C-terminus. This brain 

specific isoform (bCdc42) was reported to be S-acylated and preferentially targeted to 

dendritic spines, compared to the canonical variant that locates in both spines and dendritic 

shaft. The S-acylated bCdc42 variant being more efficient at promoting spine remodelling in 

cultured neurones based on studies using mutants of both cysteines in the –CCAX terminus. 

However, functional diversity of the bCdc42 variant is expanded further as bCdc42 can exist 

in two forms via a novel form of –CAAX processing (178): a form that is tandemly prenylated 

and S-acylated, as it bypasses the canonical post-prenylation steps of proteolysis and 

carboxymethylation, with S-acylation occurring on the second cysteine of the –CCAX 

terminus; and a ‘canonical –CAAX’ processed form of bCdc42 that is not S-acylated. The 

dually prenylated and S-acylated form of bCdc42 does not interact with RhoGDI thus 

promoting the amount of bCdc42 at the plasma membrane and potentiating bCdc42 

signalling.  

VI.vi.d Other enzymes 
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Superoxide dismutase 1 (SOD1) is a ubiquitously expressed protein that protects cells from 

oxidative damage and mutations are associated with the familial variant of Amyotrophic 

lateral sclerosis (Lou Gehrig disease) as well as other disease of oxidative damage including 

artherosclerosis and diabetes. In endothelial cells, SOD1 is S-acylated on an N-terminal (C6) 

cysteine residue that, based on crystal structures of the mature protein is normally buried 

within the protein; this cysteine is also associated with other cysteine-dependent 

interactions, including disulphide bond formation (155). Whether C6 is S-acylated in the 

mature protein or in the apo-protein, in which C6 is thought to be exposed, remains to be 

determined. Several mutations of C6 are found in ALS patients with increased aggregation 

of SOD1, and thus S-acylation of C6 has been proposed as a potential protective 

mechanism especially in the aggregate prone apoprotein (155). In endothelial cells, S-

acylation of SOD1 is mediated predominantly via zDHHC21 and zDHHC21 knockdown, or 

C6S mutation, reduces SOD nuclear localisation and enzyme activity (155). 

S-acylation is also an important determinant of the function of several enzymes that produce 

gaseous transmitters such as nitric oxide (NO) and carbon monoxide (CO).  For example, in 

endothelial cells endothelial nitric oxide, eNOS is the major enzyme controlling nitric oxide 

production that is essential for vascular function. eNOS is dually myristoylated and S-

acylated (C15 and C26), largely through zDHHC21 in endothelial cells, although several 

other enzymes can S-acylate eNOS in overexpression assays (54, 64, 146). S-acylation is 

crucial for eNOS to be targeted to the plasma membrane and caveolae as zDHHC21 

knockdown or site directed mutation of C15 and C26 results in a more perinuclear and Golgi 

localisation of the enzyme (54).  Furthermore, inhibition of eNOS S-acylation abrogates both 

basal and stimulated NO synthesis in endothelial cells. S-acylation is also important for 

targeting haem oxygenase 1 to the mitochondrial associated membrane region of the ER as 

disruption of HMOX1 S-acylation redistributed the enzyme to other ER localisations (150).  

HMOX1 degrades haem to produce the anti-apoptotic gas carbon monoxide that is also an 

important determinant of mitochondrial and ion channel function. However, whether S-
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acylation also controls HMOX1 activity per se, in addition to its role in HMOX1 localisation, is 

currently not known. 

Enzymes involved in termination of signalling cascades are also regulated by S-acylation 

with the phosphodiesterase 10A (PDE10A) being another remarkable example of how S-

acylation works with other PTMs to control function (32). PDE10A is a dual (cAMP and 

cGMP) cyclic nucleotide PDE that is highly enriched in the striatum. PDE10A inhibitors and 

mouse models have implicated this PDE as a potential ant-psychotic strategy for disorders 

such as schizophrenia through compartmentalisation of cyclic nucleotide signalling 

cascades. PDE10A exists as two N-terminal splice variants: the longer PDE10A2 variant is 

predominantly membrane localised, including at postsynaptic membranes, that is controlled 

by S-acylation of C11. S-acylation of PDE10A2 is largely mediated via zDHHCs 7 & 19 in 

overexpression assays and mutation of C11 in PDE10A2, or the shorter PDE10A1 variant 

that lacks C11, has a cytosolic localisation and reduced trafficking to distal dendrites (32).  

Importantly, S-acylation of PDE10A2 is inhibited by PKA, or PKG, mediated phosphorylation 

of a Threonine residue (T16) immediately downstream of the S-acylated cysteine. Thus 

elevations of cAMP, or cGMP, prevent PDE10A2 S-acylation and trafficking to the 

membrane although acute stimulation of these pathways does not remove PDE10A2 already 

resident at the plasma membrane (32).  

S-acylation is also implicated in the control of enzymes involved in proteolytic processing as 

evidenced by the amyloid precursor protein (APP) processing enzymes aspartyl protease -

site APP-cleaving enzyme 1 (BACE1) and the multi-protein complex -secretase. APP 

processing involves sequential proteolysis by BACE1 and -secretase to generate A 

peptides that accumulate in the brains of patients with Alzheimer’s disease. BACE1 is S-

acylated at four cysteine resides at the junction of transmembrane and cytosolic domains 

and controls BACE1 localisation to ‘lipid rafts’ as site directed mutagenesis of these residues 

localised BACE1 to non-raft domains (263). However, although S-acylation controlled raft 

localisation, it had no effect on APP processing suggesting that BACE1 activity is similar in 
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both raft and non-raft domains. A similar mechanism, to control lipid raft localisation, with 

little if no effect on processing, is also observed with the effects of S-acylation of -secretase 

(35). Two subunits of -secretase, Nicastrin and APH-1, are S-acylated with Nicastrin S-

acylated at a single site (C689) whereas APH-1 is S-acylated at two sites (C182 & C245). S-

acylation increased stability of Nicastrin and APH-1 and localised -secretase to detergent 

resistant ‘lipid rafts’ without affecting complex assembly (35). However, S-acylation of the 

subunits was not required for processing of APP or other substrates, at least in cultured 

cells. This suggests the role of S-acylation is to protect the two nascent subunits from 

degradation until assembly into the complex (35). APP processing has been reported to be 

controlled indirectly by zDHHC12 by tethering APP at the Golgi membrane and inhibition of 

the generation of APP-containing vesicle and subsequent trafficking to the plasma 

membrane (168). However, the targets for zDHHC12 are unknown, APP itself is unlikely as it 

lacks a cytosolic cysteine residue, moreover, similar effects were seen with a catalytically-

dead zDHHC12 in overexpression assays suggesting the effect of APP trafficking may be 

independent of the acyltransferase activity of zDHHC12. Moreover, the mutant zDHHC12 

also increased non-amyloidogenic -cleavage of APP. Thus while this highlights another 

possible non-PAT function for zDHHC12, the role of S-acylation in APP processing remains 

elusive. 

 

VI.vii. Cell adhesion molecules: 

An increasing number of cell adhesion molecules (122)  are reported to be S-acylated with 

S-acylation controlling both membrane localisation and signalling including neurofascin, 

integrin-tetraspanin complexes and neural cell adhesion molecules.  

Neurofascin, a member of the L1 family of cell adhesion proteins, is S-acylated at a 

conserved cysteine residue (C1213) in the predicted membrane spanning domains. S-

acylation did not affect neurofascin membrane localisation, targeting to axons nor its ability 
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to interact with the adapter Ankyin-G or cell-adhesion activity in neuroblastoma cells. 

However, S-acylation targeted neurofascin to low density membrane compartments 

resembling caveolae (204).  

S-acylation also plays a complex role in controlling the formation of membrane 

microdomains enriched for tetraspanins and a variety of integrins that control cell 

morphology, migration and signalling. Tetraspanins and integrins can assemble into complex 

signalling networks dependent upon both S-acylation of individual tetraspanins and integrins. 

For example, S-acylated integrins (3, 6 and 4) can coexist with a number of tetraspanins 

such as CD9, CD63 and CD81. 4 integrins are S-acylated at multiple cysteine residues and 

that 4 integrins cannot be S-acylated result in disruption of both integrin and tetraspanin 

interactions, clustering of tetraspanins, as well as integrin signalling and control of cell 

morphology (277).  

The S-acylation of NCAMs themselves can also be dynamically regulated to control axonal 

outgrowth and targeting. In neuroblastoma cells, the two major NCAM isoforms NCAM140 

and NCAM180 are S-acylated and this can be stimulated by FGF2-mediated signalling 

through the FGF receptor (197). This mechanism appears to involve elevation of zDHHC7 

activity that is the major zDHHC S-acylating these NCAMs.  The NCAMs are S-acylated at 

multiple cysteine residues that targets the NCAM to lipid rafts and subsequent downstream 

signalling through tyrosine focal adhesion kinase and extracellular signal regulated 1/2 

kinase to stimulate neurite outgrowth (177). Deleted in colorectal cancer (DCC) is 

homologous to neuronal cell adhesion molecules (NCAM) and is a receptor for the guidance 

molecule netrin-1 that controls commissural axons in the developing nervous system. DCC 

is S-acylated at a juxtamembrane cysteine that is important for targeting DCC to lipid rafts 

and this S-acylation dependent targeting is required for netrin-1 signalling to ERK and 

neurite outgrowth (99).   
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S-acylation control of other cell adhesion molecules also plays and important role in non-

neuronal systems. In endothelial cells, the junctional adhesion molecule platelet endothelial 

cell adhesion molecule-1 (PECAM1, CD31), is S- acylated by zDHHC21 on C595 although 

zDHHC3 may play a role in other cell types such as HEK293 cells. Knockdown of zDHHC21 

leads to a significant reduction in PECAM1 surface expression although this is associated 

with a decrease in total PECAM1 expression suggesting S-acylation controls PECAM1 

stability (155). As PECAM1 is implicated in a diverse array of endothelial function from 

angiogenesis to flow sensing and transepithelial cell migration change sin S-acylation may 

control these important functions of endothelia. 

The examples above illustrate where the cell adhesion molecule itself is S-acylated however, 

control of cell adhesion molecule function may also be controlled by other S-acylated 

proteins they interact with. A recent example, is the activity dependent control of synaptic 

cadherin complexes by its S-acylated binding partner -catenin and the control of synaptic 

structure and organisation involved in memory formation (19). In hippocampal neurones, 

increases in synaptic activity, for example as observed following protocols that induce long-

term potentiation in vitro, or in vivo such as context-dependent fear conditioning, results in a 

transient increase in -catenin S-acylation mediated via zDHHC5. S-acylation of -catenin, 

predominantly at a di-cysteine motif (C960 and C961) in its C-terminus, targets -catenin to 

the plasma membrane facilitating its recruitment to synaptic clusters of cadherin. The 

functional effect is to stabilise cadherin at the synapse and promote activity dependent 

remodelling of postsynaptic spines and recruitment of synaptic AMPARs resulting in 

increased efficacy of neurotransmission. 

 

VI.viii S-acylated proteins of viruses, protozoa and plants 
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The discussion above has focussed on the role of S-acylation in predominantly mammalian 

systems. However, S-acylation plays a critical role in a diverse array of species from viruses 

to protozoans and plants, although bacteria lack the machinery for enzymatic S-acylation.  

Viral proteins were the first S-acylated proteins identified (221). Since then several classes 

of viral protein have been shown to be S-acylated including: spike proteins involved in 

membrane fusion (such as hemagluttinin (HA)) from influenza virus Viruses; viroporins such 

as the M2 ion channel protein of Influenza and; a variety of peripheral membrane proteins 

(for review see (260)). Although the role of S-acylation is not fully understood in many cases 

S-acylation plays a role in targeting viral proteins to lipid raft domains and controlling aspects 

of virus entry into host cells by controlling spike protein mediated membrane fusion events 

as well as subsequent virus assembly and release from cells. In contrast to many cellular S-

acylated proteins, most viral proteins do not appear to undergo cycles of S-acylation and de-

acylation, most likely reflecting that viral proteins are used only once in the viral lifecycle.  

Furthermore, the cellular enzymes that control viral protein S-acylation are ill defined, 

although as viral protein S-acylation occurs at the ER and Golgi it is likely to be a subset of 

the zDHHCs localised to these sites. Intriguingly, S-acylation is also important for host 

resistance to influenza viral infections. For example, S-acylation of interferon-induced 

transmembrane protein 3 (IFITM3) is required for its membrane clustering and antiviral 

activity (282).  

S-acylation plays a major role in all aspects of the lifecycle and function of the 

trypanosomatids, eukaryotyic single-celled flagellated protozoans, including the major 

species involved in human diseases such as the Leishmania’s, Chagas disease and African 

sleeping sickness (for review see (66)). For example, proteomic screens have identified > 

100 S-acylated proteins in Trypanosoma brucei (53) and global inhibition of S-acylation is 

lethal to these organisms.  
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The major cause of mortality in malaria infection, Plasmodium falciparum, also expresses a 

large (>400) compliment of S-acylated proteins several of which are involved in controlling 

the actin-myosin machinery required for these organisms to invade red blood cells of 

infected individuals and for asexual development (118). S-acylation has also been shown to 

play multiple roles in the lytic cycle of another member of the same phylum, Toxoplasma 

gondii, the causative agent of toxoplasmosis (see (59)). 

A large number of S-acylated proteins have been identified in Yeast (Saccharomyces 

cerevisiae) including many proteins involved in vesicle fusion/trafficking and amino acid 

transport (212). In S. pombe the level of Erf2 DHHC activity controls meiotic entry with high 

Erf2 activity promoting meiosis, in part through S-acylation of the small GTPase Rho3 

whereas low Erf2 activity delays entry into meiosis (285). S-acylation also controls telomere 

dynamics in yeast as S-acylation, via the DHHC Pfa, targets the telomere interacting protein 

Rif-1 to discrete foci at the periphery of the inner nuclear membrane allowing assembly of 

‘telomere clusters’ and subsequent regulation of telomere dynamics and silencing (187). 

More than 500 S-acylated proteins have been identified in Arabidopsis root cells (95) and S-

acylation is emerging as a major signalling pathway controlling multiple aspects of plant 

development and growth (96) including development of salt tolerance in Arabdopsis (291) 

 

VII. Conclusions and perspectives 

In this review we highlighted the key features of protein S-acylation, highlight the diversity of 

proteins controlled by this essential post-translational modification and the physiological 

function of S-acylation in health and disease.  As we outline, major goals, opportunities and 

challenges are to understand: 
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i) the mechanisms by which S-acylation is controlled, how covalent addition of lipid 

can control diverse properties of proteins and how this is spatiotemporally 

coordinated. 

ii) the physiological relevance of S-acylation at a systems and whole organism level.   

To address these issues it is clear that new tools are urgently required. However, the recent 

development of new proteomic, chemical biology, imaging and genetic tools are enabling 

studies to understand and interrogate S-acylation at multiple levels of analysis.   

Key questions for the future that need to be addressed include: 

i) How is zDHHC substrate specificity and activity controlled? A key challenge is to 

understand how zDHHCs themselves are regulated by post-transcriptional (e.g. 

mRNA splicing) and post-translational regulation, including by S-acylation itself. 

How are substrates recognised and how is this spatiotemporally coordinated?  

ii) Can we pharmacologically control distinct zDHHC and APTs? No specific 

inhibitors or activators of zDHHCs exist although a limited number of 

acylthioesterase inhibitors are now being explored. Targeting zDHHC will be a 

major challenge, in particular as we have no structural determination of any 

zDHHC to guide rationale drug design. 

iii) How is de-acylation controlled? The acyl thioesterases that control de-acylation 

and the spatiotemporal dynamics of de-acylation of most proteins is unknown. It 

is likely that several members of the larger serine hydrolase superfamily also 

function as deacylating enzymes for a range of proteins.  

iv) When and where does S-acylation occur? Recombinant zDHHCs may be 

localised in multiple compartments including the ER, Golgi and plasma 

membrane but for most zDHHCs we do not know the subcellular distribution of 

zDHHCs in native cells.  The lack of high quality antibodies against zDHHCs 

remains a major bottle neck. Furthermore, determining the cellular compartments 



66 

 

where specific proteins are S-acylated/de-acylated remains a significant 

challenge. The spatiotemporal dynamics of S-acylation for most proteins is very 

poorly understood and improved tools to quantify the spatiotemporal dynamics 

are required. 

v) How does S-acylation integrate with other post-transcriptional and post-

translational modifications to control cellular function? It is clear that significant 

cross-talk between S-acylation and other signalling pathways may occur. Insight 

into the rules, mechanisms and cross-talk of S-acylation with these modifications 

has broad implications for cellular signalling.  

vi) What is the functional impact of S-acylation at the systems/whole organism level? 

With recent developments of genome editing tools we now have the opportunity 

to interrogate the functional impact of S-acylation, and its disruption, on 

physiological homeostasis. For example, few studies have exploited ‘target-

protein-centric’ (e.g. site-directed mutagenesis of S-acylated cysteines) as well as 

‘S-acylation centric’ (e.g. knockout of specific zDHHC activity) approaches to 

understand how S-acylation controls the physiological function of key S-acylated 

proteins.  Furthermore, more rigorous development and analysis of global and 

conditional zDHHC knockout animals should provide insight into both the array of 

proteins controlled by distinct subsets of zDHHCs as well as the physiological 

processes controlled by these enzymes.   

vii) Is S-acylation disrupted in disease? While disruption of S-acylation has been 

associated with a variety of major disorders our understanding of how S-acylation 

may be dynamically controlled during normal ageing, in response to homeostatic 

challenge, or how it is disrupted in disease states remains rudimentary. A clearer 

understanding of loss of S-acylation regulation will be key to defining potential 

therapeutic opportunities to manipulate S-acylation and its associated pathways 

in disease. 
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We hope this review provides further impetus for both established S-acylation investigators 

to address these issues as well as to provide a platform for investigators new to the field to 

explore the scope and opportunities to understand the physiology of S-acylation. The 

development of new tools has the potential to provide a paradigm shift in our understanding 

of the physiology of S-acylation and the promise of potential new therapeutic avenues for a 

diverse array of major human disorders.  
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Figure legends 

Figure 1: Major lipid modifications of proteins. 

S-acylation is reversible due to the labile thioester bond between the lipid (typically, but not 

exclusively, palmitate) and a cysteine amino acid of a protein. The zDHHC family of 

palmitoyl acyltransferases mediate S-acylation. Other major lipid modifications result from 

stable bond formation between either the N-terminal amino acid (amide) or the amino acid 

side chains in the protein (thioether, and oxyester). Distinct enzyme families control these 

lipid modifications: N-myristoyltransferase (NMT) controls myristoylation of many proteins 

such as the src-family kinase, Fyn kinase; amide-linked palmitoylation of the secreted sonic 

hedgehog protein is mediated by Hedgehog acyltransferase (Hhat), a member of the 

membrane bound O-acyl transferase (MBOAT) family. Prenyl transferases catalyse 

farnesylation (farnesyltransferase, FTase) or geranylgeranylation (geranylgeranyl 

transferase I and II, GGTase I and II) of small GTPase proteins such as RAS and the Rab 

proteins respectively. Porcupine (Porcn) a member of the MBOAT family acylates secreted 

proteins such as Wnt.  

 

Figure 2: Protein S-acylation: a reversible lipid post-translational modification 

controlled by the zDHHC family of acyltransferases 

a) zDHHC enzymes typically utilise co-enzyme A (CoA)-palmitate however, other long chain 

fatty acids (either saturated or unsaturated) can also be used. Deacylation is mediated by a 

number of acyl thioesterases of the serine hydrolase family. b) Phylogenetic tree showing 

the relationships of the DHHC-CR domain of the 23 human zDHHC acyltransferases that are 

c) predicted transmembrane proteins (typically with 4, or 6, transmembrane domains) with 

the catalytic DHHC domain located in a cytosolic loop. 
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Figure 3: Location of sites of S-acylation in transmembrane and peripheral-membrane 

proteins. 

Schematic illustrating different locations of cysteine S-acylation in transmembrane and 

peripheral membrane proteins.  In many cases S-acylation allows a terminus or loop of a 

protein to associate with the membrane interface. S-acylation can also confer structural 

constraints in particular when located close to transmembrane domains where S-acylation 

has been proposed to control transmembrane orientation that may be important for 

controlling hydrophobic mismatch in different sub-cellular membrane compartments. 

 

Figure 4: S-acylation and regulation of the protein lifecycle 

Reversible S-acylation regulates multiple steps in the lifecycle of membrane and peripheral-

membrane proteins including: assembly and (a) ER exit; (b) maturation and Golgi exit; (c) 

sorting and trafficking to target membranes;  (d) recycling and internalisation; (e) clustering 

and localization in membrane microdomains; (f) control of properties and regulation by other 

signalling pathways; (g) partitioning of peripheral membrane proteins between the cytosol 

and membranes and; (h) recycling and final degradation.  

 

Figure 5: Diversity of S-acylated proteins 

Schematic illustrating the diversity of proteins demonstrated to be S-acylated. A large 

number of proteins identified to date are involved in cellular transport and signalling although 

structural, chaperone, cell adhesion and proteins required for translational/transcription are 

also S-acylated.  
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