
Strathprints Institutional Repository

Grassia, P. and Torres-Ulloa, C. and Berres, S. and Mas-Hernández, E. 

and Shokri, N. (2016) Foam front propagation in anisotropic oil 

reservoirs. European Physical Journal E, 39 (4). ISSN 1292-8941 , 

http://dx.doi.org/10.1140/epje/i2016-16042-5

This version is available at http://strathprints.strath.ac.uk/55767/

Strathprints is  designed  to  allow  users  to  access  the  research  output  of  the  University  of 

Strathclyde. Unless otherwise explicitly stated on the manuscript, Copyright © and Moral Rights 

for the papers on this site are retained by the individual authors and/or other copyright owners. 

Please check the manuscript for details of any other licences that may have been applied. You 

may  not  engage  in  further  distribution  of  the  material  for  any  profitmaking  activities  or  any 

commercial gain. You may freely distribute both the url (http://strathprints.strath.ac.uk/) and the 

content of this paper for research or private study, educational, or not-for-profit purposes without 

prior permission or charge. 

Any  correspondence  concerning  this  service  should  be  sent  to  Strathprints  administrator: 

strathprints@strath.ac.uk

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Strathclyde Institutional Repository

https://core.ac.uk/display/42593162?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://strathprints.strath.ac.uk/
mailto:strathprints@strath.ac.uk


DOI 10.1140/epje/i2016-16042-5

Regular Article

Eur. Phys. J. E (2016) 39: 42 THE EUROPEAN

PHYSICAL JOURNAL E

Foam front propagation in anisotropic oil reservoirs

P. Grassia1,2,a, C. Torres-Ulloa2, S. Berres2, E. Mas-Hernández3, and N. Shokri3

1 Dept. Chemical & Process Engineering, University of Strathclyde, James Weir Building, 75 Montrose St, Glasgow G1 1XJ,
UK

2 Departamento de Ciencias Matemáticas y F́ısicas, Universidad Católica de Temuco, Rudecindo Ortega 02950, Temuco, Chile
3 CEAS, University of Manchester, Oxford Rd, Manchester M13 9PL, UK

Received 27 December 2015 and Received in final form 18 February 2016
Published online: 20 April 2016
c© The Author(s) 2016. This article is published with open access at Springerlink.com

Abstract. The pressure-driven growth model is considered, describing the motion of a foam front through
an oil reservoir during foam improved oil recovery, foam being formed as gas advances into an initially
liquid-filled reservoir. In the model, the foam front is represented by a set of so-called “material points”
that track the advance of gas into the liquid-filled region. According to the model, the shape of the foam
front is prone to develop concave sharply curved concavities, where the orientation of the front changes
rapidly over a small spatial distance: these are referred to as “concave corners”. These concave corners need
to be propagated differently from the material points on the foam front itself. Typically the corner must
move faster than those material points, otherwise spurious numerical artifacts develop in the computed
shape of the front. A propagation rule or “speed up” rule is derived for the concave corners, which is
shown to be sensitive to the level of anisotropy in the permeability of the reservoir and also sensitive
to the orientation of the corners themselves. In particular if a corner in an anisotropic reservoir were to
be propagated according to an isotropic speed up rule, this might not be sufficient to suppress spurious
numerical artifacts, at least for certain orientations of the corner. On the other hand, systems that are
both heterogeneous and anisotropic tend to be well behaved numerically, regardless of whether one uses
the isotropic or anisotropic speed up rule for corners. This comes about because, in the heterogeneous
and anisotropic case, the orientation of the corner is such that the “correct” anisotropic speed is just very
slightly less than the “incorrect” isotropic one. The anisotropic rule does however manage to keep the
corner very slightly sharper than the isotropic rule does.

1 Introduction

During petroleum production, only a fraction of the oil
present in an oil reservoir is extracted via primary pro-
duction (i.e. driven out of the reservoir under the reser-
voir’s own pressure). Subsequently [1] fluids must be in-
jected into the reservoir with the aim of raising pressure
and displacing the oil that is still present. Foam offers ad-
vantages [2,3] over other possible choices of driving fluids
(e.g. water or gas) for various reasons. Foams have com-
paratively low mobility [4,5] within porous media such as
oil reservoirs. This low mobility arises [6] not only from
some bubbles in the foam becoming trapped within pores,
but also from high levels of viscous dissipation associated
with those bubbles that are moving. Thus, whereas gas in
the absence of foam is highly mobile, gas that is within
foam has much lower mobility, and this suppresses finger-
ing or channelling phenomena (which otherwise drive flow

a e-mail: paul.grassia@strath.ac.uk

along preferential flow paths bypassing much of the oil).
As a result [6], foams give a comparatively uniform sweep
through a reservoir reaching parts of the reservoir that
other displacing fluids might not reach.

Injection of low mobility fluid into an oil reservoir
would ordinarily demand very high driving pressures. Pro-
ducing foam via co-injection of gas and surfactant so-
lution therefore requires high pressures. This situation
can be mitigated by injecting first surfactant solution
and then gas (the so-called surfactant-alternating-gas pro-
cess [7–10]), and this is the situation that we study here.
Foam (i.e. bubbles of gas separated by thin liquid films,
typically with the bubbles being longer than the pore is
wide) is now formed in situ at the interface of the surfac-
tant solution and gas, and the resulting zone of low mo-
bility is then confined close to this interface, sufficient to
ensure uniform sweep without requiring excessive overall
driving pressure [6]. The degree to which the low mobility
zone is localised at the foam front depends on how read-
ily the foam collapses upstream of the front: less surfac-



Page 2 of 18 Eur. Phys. J. E (2016) 39: 42

concave
corner

X

Y

surfactant
filled region

foam front

gas/foam
filled region

gas
injection

of motion

point
material
of front

direction



X

Y

(a)

(b)

material point
motion of

direction of
front normal

 

Fig. 1. (a) A foam front formed as gas is injected into an oil
reservoir already flooded with surfactant solution. The evolu-
tion of the foam front can be described by discretising it into
segments and following the evolution (in an X, Y coordinate
system) of material points which are moving to the right and
downwards, with the normal to a front segment being oriented
at an angle α from the horizontal. Although the front shape is
predominantly convex (viewed from downstream) it is possible
for concave corners to form at discrete points on the front. (b)
In the case where the permeability is anisotropic (typically be-
ing larger in the horizontal than in the vertical), the direction
in which the front material points are moving is not necessarily
the same as the direction of the front normal. As drawn here,
the normal is at an angle α from the horizontal while the di-
rection of motion is at an angle βα from the horizontal, with
βα being a function of α, but not equal to α.

tant implies faster collapse and hence a more localised low
mobility zone [6]. If the surfactant concentration evolves
over time (due e.g. to downward migration of surfactant
solution under gravity [11] or perhaps due to surfactant
adsorbing onto pore walls), then the extent of the low
mobility zone should be smaller than in the case of con-
stant surfactant concentration: such complications are not
however considered here. The presence of oil also helps to
favour foam collapse [12], again tending to imply a low
mobility zone of smaller extent.

In order to exploit foams in improved oil recovery pro-
cesses, is it useful to be able to predict how the foam moves
through the oil reservoir. Towards this end, computation-
ally intensive foam simulation techniques have been de-
veloped [13–18]. A simpler alternative however is to use
a “pressure-driven growth” model [6, 19], which is a very
simple description of the evolving shape of a foam front
moving through an oil reservoir. Specifically the model

makes it possible to represent the front as a set of ma-
terial segments and to track the trajectories of material
points on these segments (thereby tracking the advance of
gas into the liquid-filled region): see fig. 1(a). The direc-
tions in which material points move depend on the orien-
tation of the material segment on which they are located,
whilst the speeds of material points turn out to depend on
their instantaneous location and their path history (de-
tails to be given later). By considering a sufficient number
of such material points it is thereby possible to recon-
struct a discretised representation of the resulting foam
front shape.

The physics behind the model is very simple [6, 19]:
the foam front advances according to the difference be-
tween an injection pressure and a hydrostatic pressure in
the reservoir. Since the hydrostatic pressure grows with
depth, the top of the front advances the furthest, while
points lower down advance less [19]. The net driving pres-
sure (injection pressure less hydrostatic) is balanced by
dissipative losses (the pressure losses associated with both
trapping films and dragging them through the reservoir
being lumped together). These dissipative losses are as-
sumed to be concentrated at the foam front itself, in the
aforementioned low mobility zone, where the number of
foam films is greatest. Upstream of the foam front [6, 20]
there are relatively few films (as films tend to have al-
ready ruptured upstream) and downstream of the front
there are no foam films (only surfactant solution). Hence,
away from the foam front, mobility tends to be high and
dissipative losses are negligible there.

In a typical situation at oil production scale, the dis-
sipative foam front region might be on the order of a
hundred metres across [19] (containing a multitude of in-
dividual bubbles). The front itself advances much more
than this, e.g. as much as several kilometres horizon-
tally [19, 21]. This reiterates that the foam front itself is
an exceedingly thin region compared to the distance that
the front has advanced overall. The front shape can then
be idealised as a 1-d curve in either 2-d space or more gen-
erally in a 3-d axisymmetric space. We focus here on the
2-d case (which is slightly simpler to formulate than the
3-d axisymmetric one, but which gives remarkably similar
results [6,19]). Useful data that can be extracted from the
pressure-driven growth model include not only rates of ad-
vance of foam fronts (and hence times for foam to migrate
from an injection well to a production well), but also the
front shapes [6, 19]. Based on these front shapes (i.e. 1-d
curves) it is possible to determine at any given time, how
much of the reservoir has been swept by foam, and how
much is left unswept, and more particularly where those
unswept regions are.

The front shapes resulting from the model can be
classed into two broad categories: wholly convex shapes
(viewed from downstream to upstream) and shapes con-
taining concavities. For the most part, the pressure-driven
growth model predicts convex front shapes and the model
handles these with ease [19]. Nonetheless there are certain
situations [11,19,22] where concavities are known to arise
in the front shape during at least part of its time evolution.
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These include gravity-driven drainage of the surfactant so-
lution used to make the foam [11], a sudden increase in
the injection pressure [22], and the case of a heterogeneous
stratified reservoir (mentioned by [19] but never studied
in detail).

Concavities have an interesting dynamics in the pres-
sure-driven growth model, focussing down from a smooth
concave curve at early times to an “arbitrarily sharp” con-
cave corner later on [11, 19, 22]. “Arbitrarily sharp” in
this context means that the orientation of the foam front
changes on a length scale comparable with the front thick-
ness, which (as mentioned above) is much smaller than the
overall distance that the front propagates. In the pressure-
driven growth model, these concave corners where two
otherwise convex segments of front meet require special
treatment. Specifically if, between two adjacent segments
of front, the tangent to the front turns through an angle
θ at a concave corner, then the corner must move more
quickly than surrounding material points [19] by a factor
1/ cos(θ/2). This reflects the fact that the concave cor-
ner is not itself a material point but instead a geometric
feature of the front shape: indeed material points are con-
tinually being consumed by the concave corner. In the
language of hyperbolic partial differential equations [23],
the material points propagate along characteristics, whilst
the concave corner moves as a “shock” (i.e. a discontinuity
in the tangent to the front, albeit with the front location
itself being continuous), and the speed of the discontinuity
differs from that of the characteristics.

If the concave corner is propagated without includ-
ing the 1/ cos(θ/2) speed correction factor which was
mentioned above, serious consequences can occur in a
numerical implementation of the pressure-driven growth
model [19]. Specifically, points on the front neighbouring
the corner are found to cross over one another, forming a
spurious loop that is topologically infeasible. Worse still,
as a result of the changed topology, the numerical scheme
treats the spurious loop as if it had higher pressure than its
surroundings causing it to grow indefinitely [19]. It must
be emphasised that the formation and growth of these
spurious loops are unphysical artifacts of the numerical
scheme, and not part of the pressure-driven growth model
per se. Including the 1/ cos(θ/2) correction factor in the
speed of the corner removes these artifacts [11,19,22].

It was mentioned earlier that the case of a hetero-
geneous reservoir was one of the cases of interest for
which concavities might arise in a foam front. Oil reser-
voirs are heterogeneous as a result of stratification, some
strata having different permeability than others. Another
effect of stratification however is that reservoirs might
be anisotropic: permeability is higher along a stratum
than between strata. The pressure-driven growth model
has been reformulated for the case of an anisotropic but
nonetheless homogeneous reservoir [21]. This led to a con-
vex front shape, similar to that for the heterogeneous
reservoir, albeit with increased “gravity override”, i.e. for
a given propagation distance of the leading edge of the
foam front, the area left unswept beneath the front is
greater.

However, in the particular case of a heterogeneous,
anisotropic reservoir (as opposed to a homogeneous, aniso-
tropic one), concavities and hence concave corners might
be expected to arise. These concave corners presumably
then need to be propagated rather more rapidly than sur-
rounding material points, but the question then arises of
precisely how rapidly they should move. The 1/ cos(θ/2)
speed up rule for concavities, that was mentioned ear-
lier [19], strictly speaking only applies to the case where
permeability is isotropic. Turning to anisotropic systems
however, using the incorrect speed up factor (e.g. employ-
ing the “isotropic” 1/ cos(θ/2) factor instead of a more
general formula for anisotropic systems) can potentially
lead to the same problematic numerical issues as omit-
ting the speed up factor altogether would, i.e. it can
lead to points on the curve crossing over one another
giving spurious loops as topologically infeasible numer-
ical artifacts. Thus a speed up factor for concave cor-
ners in the presence of anisotropic permeability needs to
be determined: this is the main purpose of the current
study.

The rest of this work is laid out as follows. Section 2
gives a general formulation of the pressure-driven growth
model. Then sect. 3 derives the “speed up” rule for a con-
cave corner in a pressure-driven growth system, account-
ing for anisotropy. Next sect. 4 analyses the consequences
of the anisotropic “speed up” rule for the motion of a
concave corner. After that sect. 5 describes a numerical
scheme for pressure-driven growth in heterogeneous and
anisotropic systems incorporating the motion of concave
corners. Results of the numerical scheme are described in
sect. 6 demonstrating that good numerical behaviour is
obtained provided a corner “speed up” rule is employed:
surprisingly however the system is not exceedingly sen-
sitive to which particular “speed up” rule is used, a re-
sult which follows owing to the particular orientation of
the corners that develop in heterogeneous and anisotropic
systems. Conclusions are offered in sect. 7.

2 Formulation: Pressure-driven growth model

As alluded to above, foam improved oil recovery gener-
ally proceeds by flooding an oil reservoir with surfactant
solution and then injecting gas under a specified driving
pressure (the so-called “surfactant alternating gas” pro-
cess [7–10, 21]). A foam front forms at the boundary be-
tween the surfactant solution and the gas, and this ad-
vances into the reservoir. The foam films encounter re-
sistance as they advance, and this is reflected in a low
mobility region near the foam front itself [6] which is
the zone where the number density of foam films is high-
est.

In what follows, equations governing how the foam
front moves under these circumstances are given (sect. 2.1)
and then are cast in dimensionless form (sect. 2.2). Modi-
fied equations incorporating explicit effects of heterogene-
ity and anisotropy are introduced in sect. 2.3.
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2.1 Governing equations for the foam front

Finding the time evolution of a foam front (see e.g. the
definition sketch in fig. 1(a)) is equivalent to finding the
trajectory of a set of material points that give a discretised
representation of the front. Suppose that coordinates X,
Y represent a front material point at a given time t, with
X being measured to the right, and Y being measured
upwards. The pressure-driven growth model, which is de-
scribed in detail by [6,19], and which, in the first instance,
is considered in a homogeneous and isotropic system, pre-
dicts the rate of change of X and Y with time t to be

dX

dt
=

k λr ∆P

Sgφ s τ̂
cos α, (1)

dY

dt
= −k λr ∆P

Sg φ s τ̂
sin α, (2)

where k is a reservoir permeability (homogeneous and
isotropic in the first instance), λr is a relative mobility
(the reciprocal of an effective viscosity) applicable specif-
ically to the foam front region (motion of the foam front
being highly dissipative [6], but mobility elsewhere being
exceedingly high), ∆P is a pressure difference (i.e. the
difference between an injection pressure Pinj and a back-
ground hydrostatic pressure Phyd, the latter growing with
depth), Sg is the gas fraction in the foam specifically at the
front where the foam meets the liquid-filled region down-
stream (Sg can be estimated via fractional flow theory [6]),
φ is the porosity of the reservoir (which again we assume
to be homogeneous), s is the distance that the point on
the foam front has propagated to date (since injection),
and τ̂ is the ratio between the front thickness and the dis-
tance that the front has propagated (which is a constant
much smaller than unity; the fact that τ̂ can be taken to
be constant follows from fractional flow theory [6, 15, 20],
which demonstrates that the thickness of the low mobility
zone at the foam front grows proportionally to the dis-
tance that the front travels). Finally α is the angle that
the normal to the front segment makes to the horizontal:
assuming that the foam front at any given instant is rep-
resented by a curve X vs. Y , then α can be determined
as α = arctan(dX/dY ), where the derivative dX/dY is
taken at a particular time t, moving along the front from
material point to material point.

As mentioned above, the hydrostatic pressure Phyd

grows with depth, the gradient of hydrostatic pressure
being ∆ρg (where ∆ρ is the density difference between
foam and surfactant solution, and g is acceleration due
to gravity). The implication is that, for a given injection
pressure Pinj, there is a maximum depth dmax to which
foam can penetrate (equal to Pinj/(∆ρg)): this is the
point at which injection pressure is exactly balanced by
hydrostatic pressure.

Equations (1)–(2) correspond to Darcy’s law taken
across the low mobility zone at the foam front. Although
it might appear that capillary effects have been discarded
entirely from the model, the fact that gas mobility within
foam is much lower than gas mobility in the absence of
foam actually arises due to capillary effects. Remember

that what the model is describing here is not an indi-
vidual foam film in a channel (for which capillary effects
might well be included explicitly in the model [24,25]), but
rather the evolution of an entire foam front, itself contain-
ing a multitude of bubbles (and with the entire foam front
now being represented simply by a low mobility zone).

2.2 Governing equations in dimensionless form

We make distances dimensionless with respect to the max-
imum depth dmax, and we also place the origin of the
spatial coordinate system at this maximum depth. Pres-
sures are likewise made dimensionless with respect to
Pinj. We also make times dimensionless1 with respect to
Sg φ d2

max τ̂ /(k λr Pinj).
In dimensionless form then, now treating X, Y , s and

t as dimensionless variables, we deduce

dX

dt
=

Y

s
cos α, (3)

dY

dt
= −Y

s
sin α. (4)

On the right-hand side of eqs. (3)–(4), the term Y repre-
sents the dimensionless analogue of the net pressure dif-
ference ∆P , with Y varying from 0 (at the bottom of the
front) to 1 (at the top surface). Note also that (since s rep-
resents the total distance travelled by a material point) it
follows

ds/dt = Y/s. (5)

Equations (3)–(4) are solved with suitable initial con-
ditions, typically with the foam front being initially ver-
tical. However the front begins to tilt over with time, as
material points higher up (which experience a higher net
driving pressure) migrate faster than those lower down.
As the front tilts over however, points must also begin
to move downwards (the angle α grows as the tilt grows,
leading to vertical motion in eq. (4)). Hence the generic
motion of a typical material point in fig. 1(a) is to the
right and downwards. A boundary condition is however
also required at the top surface, namely that the direction
of travel must be along that surface. This implies α = 0
at the top surface and hence dY/dt = 0 there, which also
requires distance s travelled at the top equals Cartesian
coordinate X. Equation (3) can then be solved for X at
the top surface (Y = 1) as a function of time t, the so-
lution (assuming an initial condition X = 0 when t = 0)

being simply X =
√

2t.

2.3 Accounting for heterogeneity and anisotropy

The above formulation applies to a homogeneous and
isotropic case. Changes to the model accounting for het-

1 To provide a sense of scale, for a reservoir with “typical”
properties [6], it has been estimated [11] that dmax would be
only 265 m given an injection pressure Pinj of 2.4× 106 Pa, but
larger injection pressures [21] gave dmax values [11] as high
as 2200 m. Moreover one unit of dimensionless time was esti-
mated [11] to correspond to around 11 days.
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Fig. 2. (a) In an anisotropic system, two segments of foam
front oriented at angles α± θ/2 from the horizontal, and mov-
ing in directions β ± ψ/2 from the horizontal, join up at a
concave corner. The apparent speed vapp of the concave corner
is expected to be greater than that of a hypothetical material
segment oriented at angle α, and similarly is expected to be
greater than that of a hypothetical material segment moving
in direction β. Moreover the apparent motion of the concave
corner is in a direction βapp, which is the direction of motion
corresponding to a hypothetical material element oriented in a
direction αapp. In general βapp differs from β, and αapp differs
from α. (b) In a time τ , a material point originally at C reaches
position B, moving a distance vaniso,C τ along a line with slope
− tan β+ ≡ tan(β + ψ/2). Likewise in a time τ , a material
point originally at D reaches position B, moving a distance
vaniso,D τ along a line with slope − tan β− ≡ tan(β − ψ/2).
The concave corner moves from location A to B in this same
time period, covering a distance vapp τ along a line with slope
− tan βapp. The original location A of the concave corner can
be found given the slopes of the material segments AC and
AD, which are respectively 1/ tan(α+) ≡ 1/ tan(α + θ/2) and
1/ tan(α−) ≡ 1/ tan(α − θ/2).

erogeneity [19] and anisotropy [21] are introduced gener-
alising eqs. (3)–(4) as follows:

dX

dt
=

Y

s

cos α

cos(α − βα)
J(Y ), (6)

dY

dt
= −kvY

s

sin α

cos(α − βα)
J(Y ), (7)

where we continue to present the governing equations in
dimensionless form, and where α is (as before) the orien-
tation of the front normal measured with respect to the
horizontal, βα is the direction of motion of the material
point (again measured with respect to the horizontal, with
βα being a function of α, but as shown in fig. 1(b), not
identical to α) and kv < 1 is an anisotropy factor, i.e.
the ratio of vertical to horizontal permeability. Note that
βα can be evaluated (see [21]) as arctan(kv tan α), which

is derived by considering the ratio of −dY/dt to dX/dt.
The term cos(α − βα) in the denominator represents [21]
the fact that fractional flow theory [6, 15, 20] gives the
thickness of the front measured along the direction of mo-
tion βα, but the thickness of the front measured along the
normal direction α is less than this. Moreover J(Y ) is a
heterogeneity factor, the precise form of which depends on
how the reservoir is stratified into layers. To illustrate the
model, we choose the following form for J(Y )

J(Y ) = 1 + khet sin(2πnhetY ), (8)

where khet < 1 is the relative variation of permeability
from layer to layer, and nhet (which for simplicity we
constrain to be an integer) is the number of high and
low permeability layers. For simplicity we assume that
the porosity of the reservoir (which enters our definition
of dimensionless time) is fixed, despite the variations of
permeability. However variations of porosity could read-
ily be absorbed into the function J(Y ) if required. In

lieu of eq. (5), the distance s that the foam front has
propagated now satisfies (remembering that βα equals
arctan(kv tan α) as mentioned above, and also employing
a trigonometric identity [26]),

ds

dt
=

Y

s

cos α
(

1 + tan2 βα

)1/2

cos(α − βα)
J(Y )

≡ Y

s

cos α

cos βα cos(α − βα)
J(Y ). (9)

We also assume (again for simplicity) that the ratio be-
tween foam front thickness (measured along the propaga-
tion direction) and distance that the front has propagated
is independent of permeability variations.

This now completes the formulation of the pressure-
driven growth model in the case of a heterogeneous and
anisotropic system. The important thing to note is that,
owing to heterogeneity, material points in low permeabil-
ity regions (with J(Y ) < 1) might lag behind those in
higher permeability regions (with J(Y ) > 1). This can
cause concavities to form in the front shape, and those
concavities might subsequently focus down into sharp con-
cave corners (such a corner is shown in the definition
sketch fig. 1). These corners are not material points, and
so propagate differently from material points. We need
to know how to propagate those concavities, and in par-
ticular (if the system is anisotropic in addition to being
heterogeneous) we are faced with the challenge of prop-
agating corners with anisotropy. This is discussed in the
next section.

3 Concave corner “speed up” rule for

anisotropic system

This section is laid out as follows. Section 3.1 defines the
configuration of a concave corner, and sect. 3.2 then de-
rives the formula for how a corner with a given configura-
tion moves. The set of possible configurations that needs
to be analysed is identified in sect. 3.3.
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3.1 Configuration of a concave corner

Consider a case (fig. 2(a)) where a section of front oriented
at an angle α+ ≡ α + θ/2 joins up with a section of front
oriented at an angle α− ≡ α−θ/2, both angles being mea-
sured from the horizontal to the front normal. Clearly the
front turns through a (concave) angle θ at the junction,
whilst the definition of α is a little more general than in
sect. 2 (previously it was the orientation of a particular
section of front, now it is the orientation of the bisector
between adjacent segments). Suppose that the directions
of motion of the two adjacent segments of front are ori-
ented at angles β+ ≡ β + ψ/2 and β− ≡ β − ψ/2 (again
measured from the horizontal). Note that β as defined here
is the bisector of the two propagation directions, which is
not necessarily the same as βα (given, as in sect. 2, by the
formula arctan(kv tan α)) although β and βα are usually
quite close (as we will see). The model described by [21]
makes it possible to determine β and ψ in terms of α and
θ. In particular

β =
1

2
arctan(kv tan(α + θ/2))

+
1

2
arctan(kv tan(α − θ/2)), (10)

ψ = arctan(kv tan(α + θ/2))

− arctan(kv tan(α − θ/2)), (11)

where (recall from sect. 2), kv is the ratio between vertical
and horizontal permeability, which for a stratified reser-
voir is taken to be a constant somewhere between zero and
unity.

Cases in which θ is a small value (i.e. θ ≪ π) are
common, because the concave corner once it has begun to
form, tends to be propagated in such a way as to prevent
it sharpening any further. In that case, we obtain

β ≈ arctan(kv tan α) (small θ limit). (12)

This implies that βα (as defined in sect. 2) and β tend
to coincide provided θ is small. Moreover ψ can be ob-
tained (by differentiating this β vs. α relation, and using
a relevant trigonometric identity [26])

ψ ≈ kv sec2 α

1 + k2
v tan2 α

θ

≡ kv + kv tan2 α

1 + k2
v tan2 α

θ (small θ limit). (13)

3.2 Motion of a concave corner

Returning to the case of finite θ, despite knowing β and
ψ via eqs. (10)–(11), we do not know a priori either the
speed or direction of motion of the concave corner. Its
speed may be greater than the speed of adjacent material
points, and it need not move along the direction β that
bisects the motion of adjacent material points, nor for that
matter along the direction βα.

The actual motion of the concave corner can however
be deduced with reference to fig. 2(b). That figure shows
the concave corner instantaneously at location A, and two
nearby material points at locations C and D. The material
points C and D follow well defined trajectories (in the
directions β + ψ/2 and β − ψ/2 respectively) and, after a
certain elapsed time τ , they coincide at location B. The
concave corner must in this same time τ move from A
to B.

Finding the locations of points A, B, C and D rela-
tive to one another is an exercise in coordinate geometry.
We elect to work in Cartesian coordinates here, although
note that a mathematically elegant vector formulation is
also available (see appendix A). In order to proceed, we
recall the shorthand notation introduced at the start of
this section, symbols α+ and α− being defined such that
α± ≡ α±θ/2, and symbols β+ and β− being defined such
that β± ≡ β±ψ/2. The slopes of the lines BC and BD in
an x, y coordinate system (x measured to the right, and y
measured upwards, but with the origin of the coordinate
system placed at B, and hence translated with respect to
the X, Y coordinate system defined in fig. 1) are respec-
tively − tan β+ and − tan β−. The lengths of the lines BC
and BD now become τ times the speed of each material
point, either point C or point D.

A complication is that, in an anisotropic system such
as this one, the material point speed depends on the ori-
entation of material segments. Specifically there is a ma-
terial point speed that we denote vaniso,+, corresponding
to segments of front upon which the front normal is ori-
ented at angle α+ from the horizontal and moving in the
direction β+. There is a different material point speed,
denoted vaniso,−, corresponding to segments of front upon
which the front normal is oriented at angle α− and mov-
ing in direction β−. These speeds vaniso,± can be related
to the speed of a material point in an analogous isotropic
system (denoted viso) via a formula (which can be derived
from the work of [21], using also some trigonometric iden-
tities [26])

vaniso,± =
cos α±

cos β± cos(α± − β±)
viso

=
1

cos2 β± (tan α± tan β± + 1)
viso , (14)

where viso is a known and well-defined function of the
material point position and of its path history. Via the
theory presented in sect. 2, this is equal in fact to

viso = Y s−1 J(Y ), (15)

where Y is the coordinate defined in fig. 1, and s is path
length executed to date, and J(Y ) represents the hetero-
geneity (if any), and α± and β± are (as above) shorthand
for α ± θ/2 and β ± ψ/2.

Equation (14) can be analysed as follows. In the limit
as kv → 1, then β± → α±, and hence vaniso,± → viso.
Moreover in the opposite limit as kv → 0, then β± → 0,
and vaniso,± is again the same as viso. However in a special
case where θ and ψ are small (so that α± ≈ α and β± ≈ β
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and moreover vaniso,+ ≈ vaniso,−), and supposing also2 β ≈
α/2, the ratio vaniso,±/viso is less than unity, specifically

it is cos(α)/ cos2(α/2) which (owing to a trigonometric

identity [26]) is 1 − tan2(α/2).
According to eq. (14), vaniso,± depends not only on α±

and β±, but also on viso (i.e. the speed of material points in
an “analogous” isotropic system). Remembering that ma-
terial points tend to move not only to the right, but also
downwards, observe that viso (which equals Y s−1 J(Y ) as
we have said) tends to fall with falling Y as a material
point moves downwards (since the difference between the
injection pressure and the reservoir hydrostatic pressure
then falls). Moreover viso falls as a material point exe-
cutes longer and longer paths thereby increasing s: this is
because the dissipative “low mobility” region at the foam
front becomes thicker the further the point travels [6]. Fi-
nally in the case of a layered heterogeneous reservoir viso

is sensitive to any permeability variations J(Y ) from layer
to layer in the reservoir.

We focus here on a concave corner and material points
very close to it. Although there will be some variation in
viso from material point to material point moving away
from the corner in either direction, locally this will be
insignificant compared to the significant change in front
orientation at the corner itself. In spite of this, it is actu-
ally possible to contemplate a discontinuous jump in viso

at the corner, since viso is sensitive to path lengths and
front material points may have different path histories de-
pending upon which side of the corner they are located. In
the interests of keeping the presentation simple however,
these possible discontinuities in viso at the corner will be
neglected (numerical evidence suggests they are less sig-
nificant than the changes in orientation angle [27]). In any
case, the motion of the corner even with discontinuities in
viso can still be computed (see e.g. appendix A), but we
focus for now on the simpler “continuous” case. Time vari-
ation in viso (associated not only with the time evolution
of path lengths s of material points but also with changes
in Y coordinate) is also ignored for the purposes of com-
puting the corner’s instantaneous velocity, because points
closely neighbouring the corner are liable to be consumed
by that corner within a very short time, and viso barely
changes within that short time frame. To summarise, even
though viso does actually vary in space and time, in order
to compute the local dynamics of the corner itself (which
is our main focus here), it is possible to treat viso as be-
ing effectively uniform and constant, at least for the pur-
poses of computing the dynamics of the corner relative
to nearby material points. Our immediate aim then is to
compute how much the speed of the corner differs from
this assumed locally uniform and constant viso (which is
the speed corresponding to “isotropic” material points).

Returning now to fig. 2(b), if we multiply the speed of
material point C (denoted vaniso,C say, and corresponding
to segment orientation α+ and motion direction β+) by
the time interval τ , we obtain the length of BC. Likewise,

2 Note that in any given system with a fixed kv value, the
situation β = α/2 or can be true only for one particular orien-
tation satisfying tan(α/2)/ tan(α) ≈ kv.

if we multiply the speed of material point D (denoted
vaniso,D say and corresponding to segment orientation α−

and motion direction β−) by the time interval τ , we ob-
tain the length of BD. Since we have the slopes of BC
and BD already (− tan β+ and − tan β− respectively), we
know (for any given τ) exactly where the points C and D
are located relative to B.

The slopes of the lines AC and AD are also known.
Since the normals to these lines are oriented at α + θ/2
and α − θ/2 from the horizontal, their tangents are at
π/2−α−θ/2 and π/2−α+θ/2 from the horizontal, and the
slopes are 1/ tan(α+θ/2) and 1/ tan(α−θ/2) respectively.
Given the slopes of these lines AC and AD, and given they
pass through known coordinate locations C and D, their
intersection, namely point A, can be determined (relative
to point B). After some algebra, the coordinates of point
A relative to B are found as:

xAB = −
(

1

tan α− cos β−

− 1

tan α+ cos β+

)

×
(

1

tan α−

− 1

tan α+

)−1

visoτ

= −
(

tan α+

cos β−

− tan α−

cos β+

)

visoτ

(tan α+ − tan α−)
, (16)

yAB =

(

1

cos β+

− 1

cos β−

)

visoτ

(tan α+ − tan α−)
. (17)

We define a speed vapp (the apparent corner speed) as

vapp = τ−1
(

x2
AB + y2

AB

)1/2
. (18)

We are interested in the ratio vapp/viso. Also of interest is
the ratio vapp/vaniso,α where vaniso,α denotes the speed of
a hypothetical material segment oriented at angle α from
the horizontal: this segment of orientation α is referred to
as “hypothetical” because, in the configuration of interest
here, the orientation actually jumps discontinuously from
α−θ/2 to α+θ/2. The speed vaniso,α is given (analogously
to eq. (14)) by

vaniso,α =
cos α

cos βα cos(α − βα)
viso

=
1

cos2 βα(tanα tan βα + 1)
viso , (19)

where recall βα is defined by βα ≡ arctan(kv tan α). This
is the direction in which this hypothetical material seg-
ment moves, and it turns out to be close to β, albeit3 not
exactly β.

We define a direction βapp (the apparent direction of
propagation of the corner) as

βapp = − arctan(yAB/xAB), (20)

3 We reiterate that β bisects the direction of motion of two
adjacent segments, which is not quite the same as βα, the di-
rection of motion of a segment the orientation of which bisects
the orientations of the original two adjacent segments.
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and we also define

αapp = arctan(k−1
v tan βapp) (21)

(the orientation of a hypothetical material element that
would move in the direction βapp).

We are interested in how βapp (the apparent direction
of motion of the concave corner) compares with β (the
bisector of the direction of motion of the material elements
that are adjacent to the corner). To the extent that β is
close to βα, this is essentially equivalent to asking how
αapp compares with α, but (to avoid repetition in what
follows) we will focus on results for βapp rather than for
αapp.

Another quantity of interest is the ratio vapp/ vaniso,hyp

where vaniso,hyp is the speed of a hypothetical material
point moving along the direction βapp (a contrast with
eq. (19), which indicates the speed of a hypothetical ma-
terial point oriented in the direction α and hence mov-
ing along the direction βα). We deduce (again completely
analogously to eq. (14))

vaniso,hyp =
cos αapp

cos βapp cos(αapp − βapp)
viso

=
1

cos2 βapp (tan αapp tan βapp + 1)
viso. (22)

This completes our set of formulae for the motion of
a concave corner. Before we can proceed to analyse these
formulae however, we need to decide on the domain of α
values to be analysed. This is discussed in the next sub-
section.

3.3 Domain of α under consideration

Note that fig. 2 considered a case where α > 0, i.e. the
components of the front normal point downward and to
the right. As already mentioned earlier, this situation is
believed to be typical because the upper parts of the foam
front tend to advance more rapidly than the lower parts (a
larger hydrostatic pressure opposes the front motion the
deeper down in the reservoir that one moves). However
in a heterogeneous reservoir it is possible that parts of
the front in low permeability regions may be left behind
relative to other parts of the front, and this may produce
regions with α < 0 (front normal pointing upwards and to
the right, see e.g. sect. 6 later on). It is thus possible to
contemplate a concave corner that occurs in a region with
α < 0.

It turns out however that it is possible to transform an
α < 0 configuration into an α > 0 configuration simply by
reflecting vertically about a horizontal plane. This trans-
formation replaces the original α by −α, but preserves the
original value of θ (indeed θ > 0 is a requirement for the
corner to be concave). It is now possible to proceed to
compute values of β, ψ, xAB , yAB , vapp, βapp, etc. using
the geometry corresponding to α > 0 as discussed above.
We can reflect back from the transformed configuration

into the original one, which changes the sign of β, yAB

and βapp, but leaves ψ, xAB and vapp unchanged. In effect
this means that, for the purposes of computing the motion
of the concave corner, it is sufficient to analyse the case
α ≥ 0 which is what we consider below.

There is one further subtlety regarding the domain of
α here: fig. 2 shows a case for which both angles α + θ/2
and α − θ/2 are less than π/2. For any given finite θ, it
is possible to contemplate a situation such that α + θ/2
exceeds π/2 but α− θ/2 remains less than π/2. Consider,
e.g., the particular case for which π/2 − θ/2 < α < π/2.
Equations (10)–(11) still apply, but with the slight com-
plication that now tan(α + θ/2) < 0. When we multiply
this by kv and take the arctan in eqs. (10)–(11) we must
select a solution branch between π/2 and π.

This is of course only a minor complication, but in
what follows we avoid it altogether by truncating the α
domain to exclude values very close to π/2. In other words
we consider 0 ≤ α ≤ π/2− θ/2 instead of 0 ≤ α ≤ π/2. In
practice truncating the domain by an amount θ/2 in this
fashion is not at all restrictive because θ tends to be quite
small (the corner tends to propagate in such a way as to
stop θ from increasing, as we already mentioned earlier)
and moreover in systems of practical interest (e.g. the case
of anisotropic and heterogeneous reservoirs) concave cor-
ners are never observed for α values exceedingly close to
π/2, but instead tend to develop at rather smaller α val-
ues. This is because (as we will see later on in sect. 6) the
corners tend to develop in regions that lag behind the rest
of the front, implying X is typically not too far away from
a local minimum, so that segment orientations (given in
sect. 2 as arctan(dX/dY )) and hence α itself are seldom
exceedingly large.

4 Analysing the motion of a concave corner

We now analyse the behaviour of the above equations for
various combinations of the parameters kv, α and θ (the
values of β and ψ then being computed in terms of kv, α
and θ).

In sect. 4.1 we examine specifically the quantities β and
ψ. Then we look at the apparent speed vapp of the concave
corner starting with a simple symmetric case (sect. 4.2)
and then more general cases (sect. 4.3). Next we consider
the apparent direction of motion βapp (sect. 4.4) with a
special focus on the limit of small kv (sect. 4.5), giving also
a geometrical interpretation of the implications of the re-
sults (sect. 4.6). Based on the geometrical interpretation,
sect. 4.7 considers how a concave corner interacts with ad-
jacent material points on the front, and we re-analyse the
velocity fields (sect. 4.8) in light of this geometry.

4.1 Behaviour of β and ψ

Before we can analyse the motion of the corner (i.e. the
behaviour of vapp and βapp), we first need to understand
the behaviour of β and ψ. The general behaviour of β and
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Fig. 3. In a system where two segments of front meet at a
concave corner, a plot of β (bisector of the direction of motion
of the two adjacent segments) as a function of α (bisector of the
orientation of the normals of the two adjacent segments). Both
a weakly anisotropic case kv = 0.9 and a strongly anisotropic
case kv = 0.1 are shown. Cases are moreover considered where
the angle θ through which the front turns at the corner is
arbitrarily small, as well as a situation with finite θ = π/18:
this latter case is only plotted for kv = 0.1 (as for kv = 0.9, any
dependence on θ is exceedingly weak). For isotropic systems
(with kv → 1), β is identical to α (regardless of θ).

ψ can be readily appreciated by focussing on the expres-
sions in the small θ limit (given in eqs. (12) and (13)).
These show that β and ψ are increasing functions of α,
with β changing from 0 to π/2 as α itself changes from 0
to π/2. Meanwhile ψ over this same domain changes from
kv θ to θ/kv (remember that kv is less than or equal to
unity here).

When kv is close to unity (weak anisotropy), the ratios
β/α (see e.g. fig. 3) and ψ/θ (see e.g. fig. 4(a)) are roughly
uniform (with very little sensitivity to α). However for
kv ≪ 1 (strong anisotropy), significant deviations from
uniformity of β/α and ψ/θ are observed (again see fig. 3
and also fig. 4(b)). In the domain α ≪ 1, linear approx-
imations apply, giving β ≈ kvα, and ψ/θ ≈ kv. In fact,
when kv ≪ 1, we have β ≈ kv tan α (an order kv quan-
tity) even for α values of order unity. The value of β only
starts to increase significantly when tanα becomes order
1/kv which requires α values within an amount O(kv) of
π/2. In other words, when kv is small, the value of β re-
mains small for almost all values of α, with significant
increases in α only seen when α is very close to π/2.

The above analysis is restricted to the limit of arbi-
trarily small θ. There is a slight modification in the case
of small but finite θ particularly in the case of strongly
anisotropic systems, with kv ≪ 1. Recall that (as men-
tioned in sect. 3.3) we restrict consideration to values of
α ≤ π/2 − θ/2 (implying that the maximum permitted
value of α+ is π/2). In this case we expect the maximum
possible α− to be π/2 − θ. According to eqs. (10)–(11),
and approximating tanα− for small values of θ, we de-
duce the maximum possible β is π/4+ 1

2
arctan(kv/θ), and

the corresponding ψ is π/2−arctan(kv/θ). In cases where
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kv=0.1, small 
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Fig. 4. (a) In the case of two segments of front meeting at a
concave corner, the ratio ψ/θ plotted against α, where ψ is the
change in direction of motion from segment to segment, θ is
the change in orientation from segment to segment (data here
correspond in fact to the limit of arbitrarily small θ), and α is
the orientation of the bisector of the two segments. Two weakly
anisotropic cases are shown with kv = 0.9 and kv = 0.98. (b)
Analogous data for ψ/θ vs. α but now for strongly anisotropic
systems kv = 0.01 and kv = 0.1: note the logarithmic scale.
In addition to presenting data in the limit of arbitrarily small
θ, a case with kv = 0.01 and finite θ = π/18 is also plotted.
Nonetheless data for kv = 0.1 with θ = π/18 are not shown
here since (on the scale of this graph), they would be difficult to
distinguish from the situation where kv = 0.1 with arbitrarily
small θ.

kv ≪ θ, we have β ≈ π/4, β/α ≈ 1
2

and ψ ≈ π/2. Note
in particular that (distinct from eq. (13)), ψ/θ no longer
attains values as large as order 1/kv but only ever attains
the value π/(2θ), which is considerably smaller than 1/kv

in the case when kv ≪ θ.

Were we to substitute α = π/2 − θ/2 into eqs. (12)–
(13) (which are nominally for arbitrarily small θ) and then
evaluate assuming kv ≪ θ ≪ 1, we would obtain nomi-
nally β/α ≈ 4kv/(θπ), ψ/θ ≈ 4kv/θ2. These are not only
less than the α+ → π/2 values of β/α and ψ/θ according
to eqs. (10)–(11) (respectively 1

2
and π/(2θ) as mentioned

above), they are also substantially less than the β/α and
ψ/θ values (respectively unity and 1/kv) in the α → π/2
limits of eqs. (12)–(13) themselves. For small kv then, if
α is varied close to π/2, the values of β/α and ψ/θ be-
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come very sensitive to the exact values of α and θ that are
chosen (see e.g. fig. 3 and fig. 4(b)).

Clearly, based on the above discussion, there are some
quantitative differences in the behaviour of β and ψ in the
case of finite θ compared to the limiting case of arbitrarily
small θ. However the qualitative behaviour is much the
same, namely (regardless of the value of θ) both β and
ψ/θ are increasing functions of α.

Moreover, when kv ≪ 1, there are strong non-uniform-
ities in the values of β/α and ψ/θ. Specifically β/α and
ψ/θ are much smaller than unity for most of the α range
of interest, but show sudden increases near the largest
values of α within the domain. Restricting the domain of
α a little (i.e. considering not 0 ≤ α ≤ π/2 but instead
0 ≤ α ≤ π/2 − θ/2, as we do here) tends to truncate this
region of sudden increases. Ordinarily θ is comparatively
small (since the “speed up” rule for the concave corner
is specifically designed to prevent the corner itself from
sharpening and hence to prevent increases in the value of
θ). Truncating the domain from 0 ≤ α ≤ π/2 to 0 ≤ α ≤
π/2 − θ/2, has little bearing however on computing the
motion any concave corners that might appear, as these
typically occur at rather smaller α values where there is
very little difference in β/α and/or ψ/θ between the case
with arbitrarily small θ and that with small but finite θ.
Hence the intuition gained from the small θ limiting case
is actually very useful in practice.

4.2 Symmetric case α
−

= −α+

Having elucidated the general behaviour of β and ψ with
respect to α, θ and kv, we now begin to consider the mo-
tion of the concave corner. To begin, we consider a sym-
metric case for which α = 0 and hence α− = −α+: two
elements of front therefore join at a concave corner such
that the bisector of the corner is horizontal. On symme-
try grounds it follows that β = βapp = αapp = 0 and
moreover β− = −β+. We deduce yAB = 0 (on symme-
try grounds) and it follows from eqs. (16) and (18) that
xAB = visoτ/ cos β+, and hence vapp = viso/ cos β+.

Note that (since β = 0) we have β+ = ψ/2, and in cases
of interest here with small values of θ, eq. (13) implies
ψ ≈ kv θ. It follows therefore that the “speed up” factor
vapp/viso is no longer 1/ cos(θ/2) (as per the isotropic case)
but instead 1/ cos(kvθ/2). Provided θ is small, the speed
up factor approximates to 1 + k2

v θ2/8, which is closer to
unity than was the case for isotropic systems (where the
speed up factor approximates to 1 + θ2/8). Thus already
we can see that a different “speed up” rule is needed in
anisotropic systems compared to isotropic ones.

We continue to investigate how this “speed up” rule
changes as a result of anisotropy in the following subsec-
tion.

4.3 Variation of vapp with respect to α

In fig. 5(a) we show a graph, plotted as a function of α,
of the apparent speed of the concave corner, vapp (nor-
malised by viso which recall, in the neighbourhood of the
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Fig. 5. (a) In a weakly anisotropic system kv = 0.9 where two
segments of front turn through an angle θ = π/18 at a con-
cave corner, the ratios of speeds vapp/viso and vapp/vaniso,α as
functions of α (the orientation of the bisector to the two seg-
ments of front). Here vapp is the apparent speed of the concave
corner (which is not itself a material point), viso is speed of
material points in an analogous isotropic system, and vaniso,α

is the speed corresponding to a (hypothetical) material seg-
ment oriented along the bisector direction. Also shown is the
ratio of speeds or “speed up” factor for the isotropic system
1/ cos(θ/2). (b) A zoomed view of the same data.

corner, is taken to be constant and uniform in the first
instance) in the case kv = 0.9 with θ = π/18: these pa-
rameter values have been chosen arbitrarily in order to
illustrate the model. For comparison, on fig. 5(a), we also
show the constant value 1/ cos(θ/2), which is the “speed
up” factor for the isotropic case. The main observation is
that vapp/viso is quite close to unity (and hence quite close
also to 1/ cos(θ/2) with θ = π/18 here) in this kv = 0.9
case.

This is unsurprising, given that in the limit kv → 1, we
find that vapp/viso is identically 1/ cos(θ/2) regardless of
α, a fact which can be demonstrated directly from eq. (18)
by taking the kv → 1 limit (although we omit the proof
here). Notice however that (for kv = 0.9) as α increases,
vapp/viso falls. For very small α, vapp/viso starts off in
fact greater than unity (consistent with the predictions
of sect. 4.2) but it falls below unity for α greater than
about 0.2 (see the zoomed view in fig. 5(b)).
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Fig. 6. Data for vapp/viso and vapp/vaniso,α vs. α analogous
to those presented in fig. 5 but now for a strongly anisotropic
system kv = 0.1, still however with segments turning through
an angle θ = π/18 at the front. Again the isotropic speed up
factor 1/ cos(θ/2) is shown for comparison.

Interestingly however the function vapp/vaniso,α is in-
variably in excess of unity, and in fact for α values greater
than about 0.25, it even exceeds 1/ cos(θ/2). This means
that were we to treat the concave corner as if it were ori-
ented in the direction α, but with a velocity “sped up”
relative to a material point by a factor 1/ cos(θ/2) (the
isotropic speed up factor) we would actually be moving
the point too slowly, at least for α greater than 0.25. The
discrepancies in velocity are however never very large in
this weakly anisotropic kv = 0.9 case: the largest value
that vapp/vaniso,α attains is around 1.008, compared with

1/ cos(θ/2) which is around 1.004.

For comparison, in fig. 6 we show data for kv =
0.1 (again the value is chosen arbitrarily here, but the
anisotropy is now much stronger than before) still with
θ = π/18 as above. Qualitatively we see similar features
to what is seen in fig. 5(a) namely vapp/viso falls as α in-
creases, whereas vapp/vaniso,α grows to exceed 1/ cos(θ/2).
However the overall scale of the graph is very different: in
particular, as α grows, vapp/vaniso,α reaches values in ex-
cess of 3. This implies that were we to move a concave
corner with a speed up factor of just 1/ cos(θ/2) relative
to a material point oriented in direction α we would in fact
be moving the corner far too slowly, at least for larger α
values.

The details of what is happening near α ≈ 0 are dif-
ficult to resolve on the scale of fig. 6: in the interests of
brevity, we have not provided zoomed views of this plot.
We assert however that for α → 0, vapp/viso is much
closer to unity than 1/ cos(θ/2) is: it is in fact found to be
1 + k2

vθ2/8 with kv = 0.1 here. As a result of limα→0 vapp

being so close to unity, we only need comparatively small
α values for vapp/viso to fall below unity: this happens
already by α = 0.1. Moreover as α grows, vapp/vaniso,α

rises above 1/ cos(θ/2) comparatively quickly: this hap-
pens around α = 0.2.

These fine details for comparatively small α will be-
come relevant later on (see sect. 6). Our main point for
now is that for certain α values, vapp/vaniso,α is potentially

significantly larger than unity, and likewise significantly
larger than 1/ cos(θ/2). In other words, were we to speed
up the concave corner by an amount of just 1/ cos(θ/2)
relative to material points (instead of the correct amount
vapp/vaniso,α), we would actually be moving the corner too
slowly. A possible consequence is that the angle through
which the corner turns continues to sharpen, and eventu-
ally the front shape could develop a spurious loop along
the lines already discussed in the introduction (these spu-
rious loops being a consequence of moving the corner too
slowly).

To date we have considered just the speed of motion of
the concave corner (compared to that of material points
oriented in direction α). There is however another relevant
question concerning whether the direction of motion of
the concave corner is necessarily the same as that of a
hypothetical material segment oriented in the direction
α. In the isotropic case (kv → 1) this is certainly true,
as the direction of motion of the concave corner bisects
directions of motion of points on the adjacent material
segments. The anisotropic case however is more subtle, as
we shall see below.

4.4 Variation of βapp with respect to α

Figure 7(a) shows βapp (the direction of motion of the
concave corner) plotted vs. α for the case kv = 0.9 and
θ = π/18. Also shown here (again plotted vs. α) are values
of βα (the direction of motion of a hypothetical material
element oriented in the direction α), as well as β+ and β−

(the directions of motion of material points on material
segments either side of the corner).

Note that βα is nearly halfway between β+ and β−.
The value of βapp is however slightly less than βα. It does
however always fall between β+ and β− at least for this
weakly anisotropic case kv = 0.9. As a first approximation
then, it seems reasonable to assume that the concave cor-
ner moves in a direction roughly corresponding to βα (but
moving at a slightly higher speed than a material point
would move as per fig. 5(a)–(b)).

Analogous data for kv = 0.1 (i.e. strong anisotropy)
still with θ = π/18 are however somewhat surprising: see
fig. 7(b). Over much of the domain of α, the value of βapp

is actually significantly below βα (and even below β−).
Hence, not only are there significant adjustments to the
speed of the concave corner due to anisotropy (see fig. 6),
but there are also significant adjustments to its direction
of motion. The reasons for this are considered below.

4.5 Direction of concave corner motion for small kv

In the limit of small kv, the values of β, β+ and β−, are
expected to be much smaller than unity over almost the
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Fig. 7. (a) For a weakly anisotropic system, with kv = 0.9,
a plot of βapp (the apparent direction of motion of a concave
corner) vs. α (the bisector direction of the orientations of the
segments adjacent to the concave corner, assuming the corner
turns through an angle θ = π/18). For comparison, also shown
are values of βα (the direction of motion corresponding to a
hypothetical material segment which is itself oriented along the
corner bisector), and β± (the directions of motion of material
segments either side of the concave corner). (b) Analogous data
for βapp, βα and β± as functions of α but now for a strongly
anisotropic system, kv = 0.1, still however with θ = π/18: note
the logarithmic scale.

entire domain of α. From eqs. (16)–(17) then

xAB ≈ −viso τ, (23)

yAB ≈ (β2
+ − β2

−)viso τ

2(tan α+ − tan α−)

=
(β+ − β−)(β+ + β−)viso τ

2(tan α+ − tan α−)
. (24)

By definition however β+ − β− = ψ. Moreover to a good
approximation, β± ≈ kv tan α±, and if in addition θ is
small, we can approximate β+ + β− by 2kv tan α which
is essentially 2β. Likewise 2(tan α+ − tan α−) can be ap-
proximated by 2θ sec2 α so that

yAB ≈ ψ kv tan α

θ sec2 α
viso τ ≈ k2

v tan α

1 + k2
v tan2 α

viso τ, (25)

where eq. (13) has been used. Equation (20) then implies

βapp ≈ k2
v tan α

1 + k2
v tan2 α

. (26)

Since we are restricting consideration to small values of β
(and hence to small values of kv tan α) we can approximate
further

βapp ≈ k2
v tan α ≈ kvβ. (27)

In other words βapp is (in this small kv limit), a factor
kv times smaller than β (with β itself being on the order of
kv times smaller than α). As a result, the concave corner
is moving very nearly horizontally. It follows that βapp is
not only less than β, but also can be less than β−.

Note in particular that β− becomes greater than zero
once α− itself becomes greater than zero (or equivalently
when α exceeds θ/2). It follows that βapp given by βapp ≈
kvβ (with kv ≪ 1) can be smaller than β− for α values
just very slightly in excess of θ/2 (and θ/2 is itself typically
quite small, e.g. it is θ/2 = π/36 for our data).

4.6 Geometrical interpretation for small kv case

The above observations (in particular the direction of ap-
parent corner motion βapp being smaller than β−) can be
interpreted geometrically as follows. Consider a concave
corner where the segment orientation jumps from α+ to
α−, and the direction of motion of material points jumps
from β+ to β−. Were we to “round off” this concave cor-
ner into a region of large but finite curvature, we would
encounter material segments with all possible orientations
between α+ and α− and moving in all possible directions
between β+ and β−. However the motion of the concave
corner itself (prior to being “rounded off”) is not in any
of these directions between β+ and β−, and does not cor-
respond to any orientation between α+ and α−.

There is no contradiction here: the concave corner is
not a material point, and so need not move in a direction
that corresponds to any of the material elements in the
“rounded off” corner. The result is nonetheless surprising
when seen in the context of the isotropic system, for which
the direction of motion of the corner always corresponds
to the direction of motion of the material points at the
centre of the rounded off corner.

Another consequence of βapp being smaller than β− is
that the definition sketch of fig. 2 must be modified: see
fig. 8. In fig. 8, material point D (referred to more correctly
in this case, for reasons to be explained shortly, as “vir-
tual” material point D) is no longer “below” the concave
corner A (as was formerly the case in fig. 2) but now is
higher up. In other words, the slope of the trajectory AB
of the corner is smaller in magnitude than the slope of
the trajectory DB of material point D (these magnitudes
being tanβapp and tanβ−, respectively).

The fact that the system adopts a configuration such
as this has some additional important implications (as we
consider in the next subsection).
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Fig. 8. Material segment AC meets material segment AE at
the concave corner A, the segment orientation turning through
an angle θ at the corner. Over a time τ , material point C mi-
grates to a new location B along a line with slope − tan β+.
During this same time τ , the concave corner which is not it-
self a material point, also migrates to B along a line with
slope − tan βapp. All the material points between A and C
are thereby consumed. Meanwhile material point E migrates
to a new position F along a line with slope − tan β−. The
distance BF is however greater than AE. Even though mate-
rial point E has a small velocity component in the direction
from E to A, the concave corner has an even larger velocity
component in this direction, and so “outruns” the motion of
point E. This means that new material points must continu-
ally be “extracted” from the concave corner. In particular the
new material point which is “extracted” or created at time τ ,
can be considered to have originated from a “virtual” material
point at location D (on an extrapolation of the segment AE),
with the additional property that DB is parallel to EF . In fact
all the “virtual” material points on the segment AD between
A and D need to be extracted from the corner at some stage
during the time interval τ .

4.7 Consumption vs. creation of material points

In the case of an isotropic system, whenever two material
segments turn through an angle θ at a concave corner, it
is known [19] that the motion of the concave corner con-
sumes nearby material points. Specifically the motion of
the concave corner bisects the angle at which the two ma-
terial segments meet. This means that the motion of the
concave corner has a component that is tangent to each
of the material segments. Material points themselves have
no tangential motion in an isotropic case, moving instead
purely along segment normals. Thus the tangentially mov-
ing corner invariably manages to consume the tangentially
fixed material points.

The case of a weakly anisotropic system as shown in
fig. 2 is just a slight generalization of what happens in the
above mentioned isotropic case. The main complication is
that the velocities of the material points now also have
a component along the tangent to the material element.
For example, in fig. 2(b), material point C (which is mov-
ing in the direction CB) has a component of its motion
parallel to the segment AC. Nonetheless the tangential
motion of the concave corner A (which is moving in the
direction AB) actually exceeds that of the material point
C implying that the corner still manages to consume ma-

terial point C as time proceeds (an event which occurs at
location B).

The case of material point D is more subtle. The mo-
tion of concave corner A (moving along AB as mentioned
above) still has a component tangent to the segment AD
but this component can be either in the direction A to D
or from D to A, depending on the exact level of anisotropy.
The motion of material point D (moving in the direction
DB) however very definitely has a tangential component
directed from D to A: this material point therefore mi-
grates towards the corner, allowing the corner to consume
it (again an event which occurs at location B).

Contrast this with the case of a strongly anisotropic
system in fig. 8. Whilst the concave corner A still man-
ages to consume material point C in the same manner as
described above, the situation on the segment denoted AE
is rather different. Material point E indicated on fig. 8 has
a tangential component of its motion directed from E to
A, but the concave corner at A has an even larger tangen-
tial component in this same direction, and so “outruns”
the material point. By the time the concave corner reaches
location B, the material point E has attained location F ,
even further away from the corner than where it started.
As a consequence therefore, new material points need to
be created or “extracted” from the corner.

These newly created points can be considered to have
originated from “virtual” material points which are dis-
tributed along a segment AD shown in fig. 8 which is
initially behind the foam front. The point D for instance
ceases to be “virtual” only once the corner reaches location
B. Once extracted from the corner, the material point in
question then migrates away from the corner. There is an
implication for a numerical simulation of pressure-driven
growth that new numerical grid points continually need
to be created in the neighbourhood of the corner. Whilst
the need to add material points to simulations of pressure-
driven growth is not in itself unusual (indeed it is standard
practice in the case of convex foam front shapes [19]), this
is the first situation where we have encountered a need
to add new material points to a pressure-driven growth
system for a concave shape. This would moreover never
happen in isotropic systems, where concavities always con-
sume material points, but never create them.

The need to create new material points in particular
on the segment that is oriented with its normal closer to
the horizontal (but not on the segment oriented with its
normal further from the horizontal) seems to be associ-
ated with the former segment being the faster moving of
the two. In an extreme case for instance in which mate-
rial points on segment AE move at the maximum allowed
speed viso and material points on segment AC do not move
at all, the direction of motion of the concave corner is well
defined: the corner is confined to the existing segment AC.
Given that the material elements turn through an angle
θ at the concave corner, it is then an exercise in elemen-
tary trigonometry to compute the speed of the concave
corner (which is viso cosec θ in this special case) and the
speed at which new material points are extracted (which is
viso cot θ). We emphasise however that these results only
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Fig. 9. Case of a strongly anisotropic system kv = 0.1 with
the front turning through θ = π/18 at a concave corner. The
velocity ratios vapp/viso and vaniso,hyp/viso are plotted against
orientation α of the corner bisector, vapp being the apparent
speed of the concave corner, vaniso,hyp being the material point
speed on a hypothetical material segment travelling in the same
direction as the concave corner and viso is the material point
speed in an analogous isotropic system.

apply in this extreme (and somewhat artificial) case in
which one material segment moves and the other is fixed
in position. Generally speaking both material segments
move, albeit at different rates, and the trajectory of the
corner must reflect that.

4.8 Re-analysis of velocities at the corner

There is one further consequence of the angle βapp being
outside the range β− through β+ in the case of strongly
anisotropic systems: this consequence is related to speeds
of motion. Consider a comparison between vapp (the ap-
parent speed of the corner) with vaniso,hyp (defined in
sect. 3 as the speed of a hypothetical material point mov-
ing in the same direction βapp as the corner). Results
are shown for the case kv = 0.1 in fig. 9. Observe that
(counter-intuitively) there are α values such that the cor-
ner can move more slowly than the (hypothetical) mate-
rial point. For kv = 0.1, this actually happens for α values
greater than about 0.1, but on the scale of the figure, it is
easiest to see for α values greater than about 0.7.

At first sight this appears problematic, since intuition
from the isotropic case suggests that a sharp concave cor-
ner moves faster than any material point contained in
a “rounded off” version of the corner (where the two ma-
terial segments are joined by an arc of large but finite
curvature). There is however no contradiction here: in the
case of a strongly anisotropic system with kv much smaller
than unity, the “rounded off” version of the corner only
contains material points moving in directions between β−

and β+: it does not contain any faster-moving material
points travelling in the direction βapp. The corner (moving
at speed vapp) is actually travelling faster than material
points moving in directions between β− and β+ (see e.g.

the curve labelled vapp/vaniso,α in fig. 6 which corresponds

specifically to motion in the direction βα, with βα itself
between β− and β+ according to fig. 7(b)).

This completes our analysis of how the “speed up” rule
of a concave corner is affected by anisotropy (and in par-
ticular how the corner’s motion differs from the isotropic
case). In what follows, we aim to implement this within a
numerical code to simulate a propagating foam front via
the pressure-driven growth model. However, rather than
analysing a concave corner oriented at a specified pre-
determined angle (as has been done above), what we will
do instead is study a system that is both heterogeneous
and anisotropic, allowing the concave corners to develop
naturally as a result of the heterogeneity, with whatever
orientation that the dynamics producing the corner de-
mands.

5 Numerical scheme: Pressure-driven growth

The numerical scheme for simulating isotropic systems via
pressure-driven growth is already well established in the
literature [11, 19, 22], so we give here just a very brief de-
scription of how the scheme generalizes to a heterogeneous
and anisotropic case. For the purposes of simulating a het-
erogeneous and anisotropic reservoir we chose parameter
values khet = 0.3 and nhet = 3 (heterogeneity; see eq. (8))
and kv = 0.1 (anisotropy; see eq. (7)). The above values
are chosen arbitrarily for the purposes of illustrating the
model.

We adopted the X, Y coordinate system from sect. 2.
We discretised the foam front initially into 200 mate-
rial points. We assumed that these were initially equally
spaced vertically over the interval 0 ≤ Y ≤ 1. Initially
X and s values were set to a uniform value s0 with
s0 = 0.001. Choosing a small but non-zero s0 ensures that
velocities (which are proportional to s−1) are finite at time
t = 0.

Choosing a time step δt = 10−5, we propagated the
material points according to eqs. (6)–(7): the distances be-
tween adjacent material points tends to change over time.
We added new material points whenever segments grew to
be greater than 0.02 and removed material points when-
ever segments shrunk to be smaller than 0.002. We also
moved the top boundary point denoted Xtop according to

Xtop = (2t + s2
0)

1/2 which turns out to satisfy our bound-
ary condition that the front motion at the top is parallel
to the boundary itself.

As the front propagated, concavities were found to de-
velop upon it, typically in the low permeability regions for
this heterogeneous system. These concavities became in-
creasingly tightly curved over time. We considered that a
sharp concave corner had formed once the angle between
adjacent front elements reached the value θ = π/18. As
before, this value is chosen arbitrarily for the purposes of
illustrating the model, but similar results are expected [19]
for any “small” θ value provided θ ≪ π.

We could determine viso specifically at the sharp corner
as it formed (viso is equal to Y s−1 J(Y ) in this case).
Moreover the angle α at the concave corner is defined as
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Fig. 10. The predicted shape of a foam front for a heteroge-
neous, anisotropic system: khet = 0.3, nhet = 3 and kv = 0.1.
Concave corners are formed, but points in the concavity con-
tinue to be propagated as if they were material points without
any speed up factor, which leads to spurious loops (see inset)
after time approximately t ≈ 8.

the angle below the horizontal of the bisector of the two
material segments that meet there.

Using the theory in sect. 3, we could then determine
vaniso,α and vapp (via the ratios vaniso,α/viso and vapp/viso),
as well as the angles βα and βapp.

The concave corner once formed of course might need
to be propagated differently from neighbouring material
points. We looked at several different options here.

1. The corner was propagated (incorrectly) exactly as if
it were a material point, i.e. at speed vaniso,α and at
an angle βα from the horizontal.

2. The corner was propagated (again incorrectly) at a
speed 1/ cos(θ/2) times vaniso,α at an angle βα from
the horizontal (corresponding to what would happen
in an isotropic system).

3. The corner was propagated at the correct speed vapp

and at the correct angle βapp from the horizontal for
an anisotropic system.

In the following section, we consider the numerical con-
sequences of moving the concave corner according to the
various different rules above.

6 Numerical results

Numerical data for the computed front shape at selected
times are shown in fig. 10. As time proceeds, a concave
corner is seen to form. In this particular figure, we do
not apply any speed up rule whatsoever once the concave
corner forms. Spurious loops develop as a result: already
by time t = 8 they have begun to form (see the zoomed
inset), and they grow as time proceeds.

In fig. 11 we show data where the concave corner is
sped up after it forms (i.e. once the angle θ through
which the front turns at the corner exceeds π/18). In
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Fig. 11. (a) Foam front shapes for the same parameter values
as in fig. 10, but moving the concavity faster than material
points, as soon as the angle θ between adjacent material seg-
ments exceeds π/18. Specifically the corner is propagated as it
would move in an isotropic system using a speed 1/ cos(θ/2)
higher than the material point speed, albeit with the direction
of motion unchanged. Spurious loops do not now appear. (b)
Foam front shape propagating the concave corner using the
correct anisotropic propagation rules, i.e. with the correct ap-
parent speed vapp and in the correct apparent direction βapp

(see formulae in sect. 3). Again spurious loops do not appear,
but the corners are maintained comparatively sharp.

fig. 11(a) the speed up factor relative to material points
is 1/ cos(θ/2), which is the speed up rule applicable to an
isotropic system rather than an anisotropic one. The cor-
ner still moves in the same direction as material points do,
i.e. it moves in direction βα when its bisector is oriented
in direction α. This is sufficient to eliminate the formation
of any spurious loops. In fig. 11(b) we show data for the
case where the concave corner propagates instead at speed
vapp in a direction βapp: these are the correct anisotropic
speed up rules. Again no spurious loops appear.

Comparing fig. 11(a) and fig. 11(b) we can however see
subtle differences between them. The concavities in the
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latter figure are sharp, but in the former figure they are
rounded off. This is a reflection of the fact that the speed
assigned to the corner in fig. 11(b) is actually less than
that in fig. 11(a), and the lower the speed, the sharper
the corner. At first sight fig. 11(b) having a lower prop-
agation speed appears surprising since fig. 5 and fig. 6
for instance show that over most of the domain of α val-
ues the anisotropic speed up factor vapp/vaniso,α exceeds
the isotropic one 1/ cos(θ/2). The resolution of this ap-
parent discrepancy however arises from the fact that all
the concavities in figs. 10–11 form at small values of α.
Specifically they appear in regions where the permeabil-
ity is low, meaning those parts of the front lag behind
the rest. At these points which lag behind the rest of the
front, the value of X as a function of Y is a local mini-
mum, so the front tangent is vertical and the front normal
is horizontal, implying α is low (α ≪ 1). The values of
βα and βapp are likewise very low, so the corner is moving
nearly horizontally regardless of which speed we assign to
it. For small α however, based on the analysis in sect. 4.2,
it follows that the anisotropic speed up factor approxi-
mates to 1/ cos(ψ/2) in contrast with the isotropic fac-
tor 1/ cos(θ/2). The anisotropic speed up is then slightly
smaller since ψ ≈ kvθ with kv < 1.

We have shown therefore that in a heterogeneous and
anisotropic system, it is necessary to take specific account
of the anisotropy in order to propagate a concave corner
in such a way as to keep it sharp (but still not so sharp
as to form spurious loops). The results shown here are of
course just preliminary ones demonstrating the feasibility
of our algorithm for propagating concavities. A thorough
parametric study of the behaviour of the heterogeneous
case, both isotropic and anisotropic, in terms of the vari-
ous system parameters khet, nhet and kv still remains for
future work.

7 Conclusions

In the context of a pressure-driven growth model, we have
considered the rule for propagating a concave corner in
the shape of a foam front, such as might occur during im-
proved oil recovery within a heterogeneous and anisotropic
oil reservoir. The concave corner needs to propagate more
quickly than neighbouring material points on the foam
front. If it were propagated (incorrectly) at the same speed
as those neighbouring material points, (undesired) spuri-
ous loops would develop in the numerically computed front
shape.

Whilst this situation also occurs in the case of a con-
cave corner that develops in isotropic systems, the corner
“speed up” factor for anisotropic cases may need to be
rather different from that for isotropic ones. Depending
on the orientation of the concave corner, the anisotropic
“speed up” factor determined here could be significantly
larger than the isotropic one. In that case, applying just
the isotropic “speed up” factor to the anisotropic systems,
still implies a risk of producing spurious loops. Moreover
switching from isotropic systems to anisotropic ones af-
fects not just the speed of the concave corner, but also

the direction in which it moves. Specifically it can prop-
agate in a direction that is much closer to the horizontal
than the direction of motion of any neighbouring mate-
rial points. For a numerical scheme computing the front
shape, this also means that new material points may need
to be created in the neighbourhood of the concave corner
(rather than material points being consumed by it, as is
the norm for isotropic systems).

One way that fronts are expected to develop concavi-
ties is by having a permeability that is heterogeneous vary-
ing with depth. Concavities then tend to develop in low
permeability regions, such that the foam front in these re-
gions is lagging behind the remainder of the front. The
concave corners are then oriented such that the corner bi-
sector is nearly horizontal, and the motion of the corner
is likewise nearly horizontal. Some of the more counter-
intuitive behaviours alluded to above (e.g. concave cor-
ners causing material points to be created rather than
consumed) are now avoided. Indeed this is a special case
in which the anisotropic speed up factor is actually less

than the isotropic one, so spurious loops are avoided us-
ing either of the two speed up factors. Using the slightly
smaller anisotropic speed up factor however keeps the con-
cave corners sharp.

Having now developed here a numerical scheme for
pressure-driven growth that can handle systems which are
anisotropic (and more generally systems which are both
heterogeneous and anisotropic), a thorough parametric
study of the foam front evolution in terms of the parame-
ters controlling heterogeneity and anisotropy remains for
future work. We anticipate that anisotropy will lead to
increased gravity “override”: when foam first arrives at a
production well, more oil will be left in place in anisotropic
systems than in analogous isotropic ones. Heterogeneity
may compound this, since (as mentioned above) it is the
introduction of heterogeneity that causes the formation
of concave corners. These corners then lag well behind
the leading part of the front (again implying significant
amounts of oil having been left in place between the con-
cave corner and the leading part of the front).
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Appendix A. Vector formula for motion of

the concave corner

This appendix presents an alternative derivation of the
formula for the motion of a concave corner that is equiv-
alent to the presentation considered in the main text.
Whereas the presentation in the main text was conve-
nient because it was particularly amenable to geometric
interpretation, the presentation here is arguably less easy
to interpret geometrically, but has a compact vector rep-
resentation, making it easy to implement in a computer
program.
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Consider the points A, B, C and D as defined in either
fig. 2 or fig. 8: the derivation works for either configuration.
Suppose that the velocity vector of the concave corner
denoted vA can be written in vector form as

vA = vACnAC + vADnAD, (A.1)

where nAC and nAD are normals to front elements, and
vAC and vAD are coefficients that we must find. Projecting
onto nAC , and equating to nAC ·vC (vC being the velocity
of material point C)

vaniso,C cos(α+ − β+) = vAC + vAD cos θ, (A.2)

where vaniso,C denotes the speed of the material point C,
and the factor cos(α+ − β+) represents projection, the
motion of point C being in direction β+ and the normal
to AC being in direction α+. The angle θ represents the
jump in direction between segments AC and AD. In the
above equation, all terms except vAC and vAD are known.
Geometrically the equation ensures that (despite the cor-
ner A not actually being a material point) the segment
from A to C propagates in the same way as a material
segment would, without the motion of the corner intro-
ducing any artificial rotation. Similarly projecting onto
nAD, and equating to nAD · vD (vD being the velocity of
material point D)

vaniso,D cos(α− − β−) = vAC cos θ + vAD, (A.3)

with vaniso,D, α− and β− being speed of point D, orien-
tation of the normal to AD, and direction of motion of D
respectively. Again vAC and vAD are the only unknowns
here.

Solving for vAC and vAD gives

(

vAC

vAD

)

=
1

(1 − cos2 θ)

(

1 − cos θ

− cos θ 1

)

×
(

vaniso,C cos(α+ − β+)

vaniso,D cos(α− − β−)

)

=
1

(1 − cos2 θ)

(

1 − cos θ

− cos θ 1

)

×
(

viso cos(α+)/ cos(β+)

viso cos(α−)/ cos(β−)

)

, (A.4)

where eq. (14) has been used with viso being the local ma-
terial point speed in an analogous isotropic system. Equa-
tion (A.4) as written remains valid even if viso exhibits a
discontinuous jump4 at A, leading to different viso values
at points C and D, although that is a complication we
do not consider any further here, treating instead viso as
being uniform at least locally.

4 A discontinuous jump in viso either side of A, could come
about from points on either side having different path histories,
and thus potentially different s values, upon reaching A.

Compared to the formulation given in the main text,
these expressions for vAC and vAD and hence for the ve-
locity vA of the corner are not remarkably easy to analyse
geometrically, but we demonstrate that they match intu-
ition in a number of special cases, as follows.

In the limit of an isotropic system for instance, for
which α± = β±, we deduce vAC = vAD = viso/(1 + cos θ),
from which it follows vA = viso(nAC + nAD)/(1 + cos θ).
Since |nAC + nAD|2 = 2(1 + cos θ), it follows (using vA

to denote the speed |vA|, and employing a trigonometric
identity [26]) that v2

A = 2v2
iso/(1 + cos θ) = v2

iso/ cos2(θ/2)

and hence vA = viso/ cos(θ/2), which is the known re-
sult [19] for the propagation of an isotropic corner.

Likewise in the anisotropic case with α → 0 and hence
α+ = −α− = θ/2 and β+ = −β− = ψ/2, we can deduce
similarly to the analysis above that vA = viso/ cos(ψ/2)
which is again a known result that we found in the main
text (it follows from sect. 4.2).

Now consider the case where kv is small (kv ≪ 1) so
that β+ and β− are likewise small, and

vAC/viso ≈ (cos α+ − cos θ cos α−)/(1 − cos2 θ), (A.5)

vAD/viso ≈ (− cos θ cos α+ + cos α−)/(1 − cos2 θ). (A.6)

In addition if θ is small, we can Taylor expand (remem-
bering α± = α ± θ/2)

vAC/viso ≈ −θ−1 sin α +
1

2
cos α, (A.7)

vAD/viso ≈ θ−1 sin α +
1

2
cos α. (A.8)

The vector vA is then

vA ≈ θ−1 sin α (nAC − nAD) +
1

2
cos α (nAC + nAD).

(A.9)
We compute the magnitude of this, recognising that the
vectors nAC − nAD and nAC + nAD are orthogonal, and
still considering the small θ limit, so that 1

2
(nAC+nAD) ≈

n where n is the bisector of the two normals, and also that
|nAC − nAD|2 = 2(1 − cos θ) ≈ θ2. Hence via eq. (A.9)

vA/viso = (v2
A/v2

iso)
1/2 ≈ (sin2 α+cos2 α)1/2 = 1, (A.10)

which again is a known result in the small kv limit (it
follows from eq. (23) for instance, recognising that the
motion of the corner is almost horizontal when kv ≪ 1).
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