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A variety of methods for examining the properties and solutions of nonlinear evolution equations are explored by using the
Vakhnenko equation (VE) as an example.he VE, which arises in modelling the propagation of high-frequency waves in a relaxing
medium, has periodic and solitary traveling wave solutions some of which are loop-like in nature. he VE can be written in an
alternative form, known as the Vakhnenko-Parkes equation (VPE), by a change of independent variables.heVPE has an�-soliton
solution which is discussed in detail. Individual solitons are hump-like in nature whereas the corresponding solution to the VE
comprises� loop-like solitons. Aspects of the inverse scattering transform (IST)method, as applied originally to the KdV equation,
are used to ind one- and two-soliton solutions to the VPE even though the VPE’s spectral equation is third-order and not second-
order. A Bäcklund transformation for the VPE is used to construct conservation laws. he standard IST method for third-order
spectral problems is used to investigate solutions corresponding to bound states of the spectrum and to a continuous spectrum.
his leads to �-soliton solutions and �-mode periodic solutions, respectively. Interactions between these types of solutions are
investigated.

1. Introduction

he physical phenomena and processes that take place
in nature generally have complicated nonlinear features.
his leads to nonlinear mathematical models for the real
processes. here is much interest in the practical issues
involved, as well as the development ofmethods to investigate
the associated nonlinear mathematical problems including
nonlinear wave propagation. An early example of the latter
was the development of the inverse scattering method for the
Korteweg-de Vries (KdV) equation [1] and the subsequent
interest in soliton theory. Now soliton theory is applied in
many branches of science.

he modern physicist should be aware of aspects of
nonlinear wave theory developed over the past few years.his
paper focuses on the connection between a variety of diferent
approaches and methods. he application of the theory of

nonlinear evolution equations to study a new equation is
always an important step. Based on our experience of the
study of the Vakhnenko equation (VE), we acquaint the
reader with a series of methods and approaches which may
be applied to certain nonlinear equations. hus we outline a
way in which an uninitiated reader could investigate a new
nonlinear equation.

2. A Model for High-Frequency Waves in
a Relaxing Medium

Starting from a general idea of relaxing phenomena in real
media via a hydrodynamic approach, we will derive a nonlin-
ear evolution equation for describing high-frequency waves.
To develop physical models for wave propagation through
media with complicated inner kinetics, notions based on
the relaxational nature of a phenomenon are regarded to
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be promising. From the nonequilibrium thermodynamics
standpoint, models of a relaxing medium are more general
than equilibrium models. hermodynamic equilibrium is
disturbed owing to the propagation of fast perturbations.
here are processes of the interaction that tend to return the
equilibrium. he parameters characterizing this interaction
are referred to as the inner variables unlike the macropa-
rameters such as the pressure �, mass velocity �, and density�. In essence, the change of macroparameters caused by the
changes of inner parameters is a relaxation process.

We restrict our attention to barotropic media. An equi-
librium state equation of a barotropic medium is a one-
parameter equation. As a result of relaxation, an additional
variable � (the inner parameter) appears in the state equation� = � (�, �) (1)

and deines the completeness of the relaxation process.here
are two limiting cases with corresponding sound velocities:

(i) Lack of relaxation (inner interaction processes are
frozen) for which � = 1:� = � (�, 1) ≡ �� (�) ,�2� = ����� . (2)

(ii) Relaxation which is complete (there is local thermo-
dynamic equilibrium) for which � = 0:� = � (�, 0) ≡ �� (�) ,�2� = ����� . (3)

Slow and fast processes are compared by means of the
relaxation time ��.

To analyze the wave motion, we use the following hydro-
dynamic equations in Lagrangian coordinates:���� − 1�0 ���� = 0,���� + 1�0 ���� = 0. (4)

he following dynamic state equation is applied to account
for the relaxation efects:�� (���� − �2� ���� ) + (� − ��) = 0. (5)

Here � ≡ �−1 is the speciic volume, and � is the Lagrangian
space coordinate. Clearly, for the fast processes (��� ≫ 1),
we have relation (2), and for the slow ones (��� ≪ 1)we have
(3).

he closed system of equations consists of two motion
equations (4) and the dynamic state equation (5).hemotion
equations (4) are written in Lagrangian coordinates since the

state equation (5) is related to the element of mass of the
medium.

he substantiation of (5) within the framework of the
thermodynamics of irreversible processes has been given in
[2, 3].We note that themechanisms of the exchange processes
are not deined concretely when deriving the dynamic state
equation (5). In this equation the thermodynamic and kinetic
parameters appear only as sound velocities ��, �� and relax-
ation time ��. hese are very common characteristics and
they can be found experimentally. Hence it is not necessary
to know the inner exchange mechanism in detail.

Let us consider a small nonlinear perturbation �� <�0. Combining the relationships (4) and (5) we obtain the
following nonlinear evolution equation in one unknown �
(the dash in �� is omitted) [4–6]:�� ��� (�2���2 − �−2� �2���2 + �� �2�2��2 )

+ (�2���2 − �−2� �2���2 + �� �2�2��2 ) = 0,
�� = 12�2

0

�2����2

����������=�0 , �� = 12�2
0

�2����2

�����������=�0 .
(6)

A similar equation has been obtained by Clarke [2], but
without nonlinear terms. In [4] it is shown by the multiscale
method [7] that for low-frequency perturbations (��� ≪1) (6) is reduced to the Korteweg-de Vries-Burgers (KdVB)
equation:���� + �� ���� + ���3� � ���� − �� �2���2 + �� �3���3 = 0,

�� = �2� ��2�2� (�2� − �2� ) , �� = �3� �2�8�4� (�2� − �2� ) (�2� − 5�2� ) , (7)

while for high-frequency waves (��� ≫ 1) we have obtained
the following equation:�2���2 − �−2� �2���2 + ���2� �2�2��2 + �� ���� + ��� = 0,

�� = �2� − �2����2� �� , �� = �4� − �4�2�2��4� �2� . (8)

Equation (7) is the well-known KdVB equation. It is encoun-
tered inmany areas of physics to describe nonlinearwave pro-
cesses [8]. In [9] it was shown how hydrodynamic equations
reduce to either theKdVor Burgers equation according to the
choices for the state equation and the generalized force when
analyzing gasdynamical waves, waves in shallow water [9],
hydrodynamic waves in cold plasma [10], and ion-acoustic
waves in cold plasma [11].

As is known, the investigation of the KdV equation (�� =0) in conjunction with the nonlinear Schrödinger (NLS) and
sine-Gordon equations gives rise to the theory of solitons [1,
8, 9, 12–18].
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We focus our main attention on (8). It has a dissipative
term ����/�� and a dispersive term ���. Without the non-
linear and dissipative terms, we have a linear Klein-Gordon
equation. At the time we were carrying out our research, it
turned out that (8) had not been investigatedmuch. It is likely
that this is connected with the fact, noted by Whitham [19],
that high-frequency perturbations attenuate very quickly.
However in Whitham’s monograph, the evolution equation
without nonlinear and dispersive terms was considered.

Note the fact that the dispersion relations � = �(�) for
the linearized versions of (7) and (8) are restricted to inite
power series in � and in �−1, respectively:� = ��� + ����2 − ���3, ��� ≪ 1,�2 = �2��2 (1 + ����−1 − ���−2) , ��� ≫ 1. (9)

Let us write down (8) in dimensionless form. In the mov-
ing coordinates systemwith velocity ��, ater factorization the
equation has the form in the dimensionless variables �̃ =√��/2(�−���), �̃ = √��/2���, �̃ = ���2�� (tilde over variables�̃, �̃, �̃ is omitted):��� ( ��� + � ���) � + ����� + � = 0. (10)

he constant � = ��/√2�� is always positive. Equation (10)

without the dissipative term has the form of the nonlinear
equation [20, 21]: ��� ( ��� + � ���) � + � = 0. (11)

Historically, (11) has been called the Vakhnenko equation
(VE) and we will follow this name.

It is interesting to note that (11) follows as a particular limit
of the following generalized Korteweg-de Vries equation:��� (���� + ����� − ��3���3 ) = �� (12)

derived by Ostrovsky [22] to model small-amplitude long
waves in a rotating luid (�� is induced by the Coriolis
force) of inite depth. Subsequently, (11) was known by dif-
ferent names in the literature, such as the Ostrovsky-Hunter
equation, the short-wave equation, the reduced Ostrovsky
equation, and the Ostrovsky-Vakhnenko equation depending
on the physical context in which it is studied.

he consideration here of (11) has interest not only from
the viewpoint of the investigation of the propagation of high-
frequency perturbations, but also more speciically from the
viewpoint of the study of methods and approaches that may
be applied in the theory of nonlinear evolution equations.

3. Loop-Like Stationary Solutions and
Their Stability

By investigating (11), we will trace a way in which an unini-
tiated reader could investigate a new nonlinear equation. As

a irst step for a new equation, it is necessary to consider the
linear analogue and its dispersion relation (these steps for (7)
and (8) are described already in Section 2). he next step is,
where possible, to link the equation with a known nonlinear
equation.

3.1. he Connection of the VE with the Whitham Equation.
Nowwe show how an evolution equation with hydrodynamic
nonlinearity can be rewritten in the form of the Whitham
equation. he general form of the Whitham equation is as
follows [19]:���� + ����� + ∫∞

−∞
� (� − �) ���� �� = 0. (13)

On one hand, (13) has the nonlinearity of hydrodynamic type;
on the other hand, it is known (see Section 13.14 in [19])
that the kernel �(�) can be selected to give the dispersion
required. Indeed, the dispersion relation �(�) = �(�)/�
and the kernel �(�) are connected by means of the Fourier
transformation: � (�) = � [� (�)] ,� (�) = �−1 [� (�)] . (14)

Consequently, for the dispersion relation � = −1/� corre-
sponding to the linearized version of (11), the kernel is as
follows: � (�) = �−1 [− 1�2 ] = 12 |�| . (15)

hus, the VE (11) is related to the particular Whitham
equation [19]:���� + ����� + 12 ∫∞

−∞
|� − �| ���� �� = 0. (16)

Since we can reduce the VE to the Whitham equation, we
can assert that the VE shares interesting properties with
the Whitham equation; in particular, it describes solitary
wave-type formations, has periodic solutions, and explains
the existence of the limiting amplitude [19]. An important
property is the presence of conservation laws for waves
decreasing rapidly at ininity; namely,��� ∫∞

−∞
� �� = 0,��� ∫∞

−∞
�2�� = 0,��� ∫∞

−∞
(13�3 + �̂�) �� = 0, (17)

where by deinition �̂� = ∫∞−∞ �(� − �)�(�, �)��.
For (10) the kernel is �(�) = (1/2)[�(2Θ(�) − 1) + |�|],

where Θ(�) is the Heaviside function. Hence, (10) can be
written down as���� + ����� + �� + 12 ∫∞

−∞
|� − �| ���� �� = 0. (18)

here is no derivative in the dissipative term �� of (18).
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3.2. he Traveling Wave Solutions. An important step in
the investigation of nonlinear evolution equations is to
ind traveling wave solutions. hese are solutions which are
stationary with respect to amoving frame of reference. In this
case, the evolution equation (a partial diferential equation)
becomes an ordinary diferential equation (ODE) which is
considerably easier to solve.

For the VE (11) it is convenient to introduce a new
dependent variable � and new independent variables � and� deined by � = (� − V)|V| ,� = (� − V�)|V|1/2 ,� = � |V|1/2 ,

(19)

where V is a nonzero constant [21]. hen the VE becomes��� + (���)� + � + � = 0, (20)

where � = ±1 corresponding to V ≷ 0.We now seek stationary
solutions of (20) for which � is a function of � only so that�� = 0 and � satisies the ODE(���)� + � + � = 0. (21)

Ater one integration (21) gives12 (���)2 = � (�) ,� (�) = −13�3 − 12��2 + 16� = −13 (� − �1) (� − �2) (� − �3) . (22)

� is a constant and for periodic solutions �1, �2, and �3 are
real constants such that �1 ≤ �2 ≤ �3. On using results 236.00
and 236.01 of [23], we may integrate (22) to obtain� = √6�1√�3 − �1 � (�, �) + √6 (�3 − �1)� (�, �) , (23)

sin� = �3 − ��3 − �2 ,� = �3 − �2�3 − �1 . (24)

�(�, �) and �(�, �) are incomplete elliptic integrals of the
irst and second kind, respectively. We have chosen the
constant of integration in (23) to be zero so that � = �3
at � = 0. he relations (23) give the required solution in
parametric form, with � and � as functions of the parameter�.

An alternative route to the solution is to follow the pro-
cedure described in [24]. We introduce a new independent
variable � deined by ���� = � (25)

so that (22) becomes 12�2� = � (�) . (26)

By means of result 236.00 of [23], (26) may be integrated

to give �� = �(�, �), where �2 = (�3 − �1)/6. hus, on
noting that sin� = sn(�� | �), where sn is a Jacobian elliptic
function, we have� = �3 − (�3 − �2) sn2 (�� | �) . (27)

With result 310.02 of [23], (25) and (27) give� = �1� + √6 (�3 − �1)� (��) , (28)

where �(��) fl �(am��, �). Relations (27) and (28) are
equivalent to (24) and (23), respectively, and give the solution
in parametric form with � and � in terms of the parameter �.

We deine the wavelength � of the solution as the amount
by which � increases when � increases by 2�; from (23) we
obtain � = 2√6√�3 − �1 [�1� (�) + (�3 − �1) � (�)] , (29)

where �(�) and �(�) are complete elliptic integrals of the
irst and second kind, respectively.

For � = 1 (i.e., V > 0), there are periodic solutions for0 < � < 1 with � < 0, �2 ∈ (−1, 0), and �3 ∈ (0, 0.5); an
example of such a periodic wave is illustrated by curve 2 in
Figure 1. � = 1 gives the solitary wave limit� = 32V sech2 (�2) ,

� = −� + 3 tanh(�2) (30)

as illustrated by curve 1 in Figure 1. he periodic waves and
the solitary wave have a loop-like structure as illustrated in
Figure 1. For � = −1 (i.e., V < 0), there are periodic waves for−1 < � < 0 with � > 0, �2 ∈ (0, 1), and �3 ∈ (1, 1.5); an
example of such a periodic wave is illustrated by curve 2 in
Figure 2. When � = 0 and � = 6 the periodic wave solution
simpliies to� (�)|V| = −16�2 + 12 , − 3 ≤ � ≤ 3, � (� + 6) = � (�) . (31)

his is shown by curve 1 in Figure 2. For � ≃ −1 the solution
has a sinusoidal form (curve 3 in Figure 2). Note that there
are no solitary wave solutions.

A remarkable feature of (11) is that it has a solitary wave
(30) which has loop-like form; that is, it is a multivalued
function (see Figure 1). Whilst loop solitary waves (30)
are rather intriguing, it is the solution to the initial value
problem that is of more interest in a physical context. An
important question is the stability of the loop-like solutions.
Although the analysis of stability does not link with the
theory of solitons directly, however, the method applied in
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Figure 2: Traveling wave solutions with V < 0.
Section 3.3 is instructive, since it is successful in a nonlinear
approximation.

We note that the notion of a “soliton” will be deined later.
Wewill prove (see Section 5.4) that the solitarywave (30) is, in
fact, a soliton. Nowwe point only out that the soliton is a local
traveling wave pulse with remarkable stability and particle-
like properties.

3.3. Stability and Interpretation of the Loop-Like Solutions.
From a physical viewpoint, the stability or otherwise of
solutions is essential for their interpretation. Some methods
for the investigation of the stability of nonlinear waves were
discussed by Infeld and Rowlands in Chapter 8 of [25] and
references therein. One such method is the so-called �-
expansion method. It is restricted to long wavelength pertur-
bations of small amplitude. It has been applied successfully
to a variety of generic nonlinear evolution equations (see
[26], e.g.) and speciic physical systems (see [27], e.g.). A
particularly informative description of the method is given
in [28] in the context of the Zakharov-Kuznetsov equation.
Some criticism was levelled at the work in [28] by Das et al.

[29]; however, ater a detailed reinvestigation of the problem,
Das et al. [29] vindicated the method used in [28].

he �-expansionmethodwas applied to theVE (11) in [21]
and is outlined as follows. We assume a perturbed solution of
(21) in the form� = �0 (�) + {�� (�) exp [� (�� − ��)] + cc} , (32)

where �0 is the periodic solution given by (27) and (28),��(�) is a complex function with period � given by (29), �
is a real constant, � is a constant (possibly complex), and cc
denotes complex conjugate. Substitution of (32) into (20) and
linearization with respect to �� yield

L�� = �, (33)

where the linear operatorL and � are given by

L�� fl (�0��)�� + ��,� fl (−�� + �2�0) �� + � [���� − 2� (�0��)�] , (34)

respectively. As (21) implies that L�0� = 0, we may deduce
that, for (33) to have periodic solutions, the condition⟨�0�0��⟩ = 0 (35)

must be satisied, where ⟨⋅⟩ denotes an integration over the
wavelength �.

Formally, the solution of (33) is�� = �0��, (36)

where �� = (� + ∫ �0�0�� ��)(�0�0�)2 (37)

and � is a constant determined from⟨(� + ∫ �0�0�� ��)(�0�0�)2 ⟩ = 0. (38)

As �� appears on the right-hand side of (36) via �, we solve
(36) iteratively by assuming that � is small in comparisonwith2�/� (so that the perturbations in (32) have long wavelength)
and introduce the expansions�� = ��0 + ���1 + ⋅ ⋅ ⋅ ,� = ��1 + �2�2 + ⋅ ⋅ ⋅ , (39)

so that � = ��1 + �2�2 + ⋅ ⋅ ⋅ ,� = �0 + ��1 + ⋅ ⋅ ⋅ ,� = �0 + ��1 + ⋅ ⋅ ⋅ . (40)
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At zero order in �, condition (35) is satisied identically, (38)
gives �0 = 0, and then, from (37), � is constant. Hence,
from (36), we may take ��0 = �0�. At irst order, condition
(35) is again satisied identically. It is straightforward (see
[21]) to ind �1 from (38) and �1� from (37); use of these
expressions in (35) at second order leads to the desired
nonlinear dispersion relation for the perturbations in the
form �0 + �1�1 + �2�2

1 = 0. (41)

he coeicients �0, �1, and �2 depend on �1, �2, and �3
as deined in (22). It turns out that the dispersion relation
(41) has real roots for �1 for both the families of solutions
(corresponding to � = 1 and � = −1, resp.) derived in
Section 3.2. Consequently, it is predicted that both families
of solutions are stable to long wavelength perturbations. For
the loop-like solutions, the existence of singular points at
which the derivatives tend to ininity casts somedoubts on the
validity of themethod. However, in [21] it is argued that as the
method depends on the average behaviour over a wavelength,
the method is indeed valid.

he ambiguous structure of the loop-like solutions is
similar to the loop soliton solution to an equation thatmodels
a stretched rope [30]. Loop-like solitons on a vortex ilament
were investigated by Hasimoto [31] and Lamb [32]. From
the mathematical point of view, an ambiguous solution does
not present diiculties whereas the physical interpretation
of ambiguity always presents some diiculties. In this con-
nection the problem of ambiguous solutions is regarded as
important. he problem consists in whether the ambiguity
has a physical nature or is related to the incompleteness of the
mathematical model, in particular to the lack of dissipation.

We will consider the problem related to the singular
points when dissipation takes place. At these points the
dissipative term �(��/��) tends to ininity. he question
arises: are there solutions of (18) in a loop-like form?he fact
that the dissipation is likely to destroy the loop-like solutions
can be associated with the following well-known fact [8].
For the simplest nonlinear equation without dispersion and
without dissipation, namely,���� + ����� = 0, (42)

any initial smooth solution with boundary conditions�|�→+∞ = 0,�|�→−∞ = �0 = const. > 0 (43)

becomes ambiguous in the inal analysis. When dissipation is
considered, we have the Burgers equation [33]:���� + ����� + ��2���2 = 0. (44)

he dissipative terms in this equation and in (7) for low fre-
quency are coincident. he inclusion of the dissipative term
transforms the solutions so that they cannot be ambiguous
as a result of evolution. he wave parameters are always

unambiguous. What happens in our case for high frequency
when the dissipative term has the form �� (see (18))?Will the
inclusion of dissipation give rise to unambiguous solutions?

By direct integration of (10) (written in terms of variables
(19)) within the neighborhood of singular points � = 0, where�� → ±∞ and �� ≪ ��, it can be derived (see [4]) that the
dissipative term, with dissipation parameter less than some
limit value �∗, does not destroy the loop-like solutions. Now
we give a physical interpretation to ambiguous solutions.

Since the solution to the VE has a parametric form
(23), (24) or (27), (28), there is a space of variables in
which the solution is a single-valued function. Hence, we
can solve the problem of the ambiguous solution. A number
of states with their thermodynamic parameters can occupy
one microvolume. It is assumed that the interaction between
the separated states occupying one microvolume can be
neglected in comparison with the interaction between the
particles of one thermodynamic state. Even if we take into
account the interaction between the separated states in
accordance with the dynamic state equation (5) then, for
high frequencies, a dissipative term arises which is similar to
the corresponding term in (8), but with the other relaxation
time. In this sense the separated terms are distributed in
space, but describing the wave process we consider them as
interpenetrable. A similar situation, when several compo-
nents with diferent hydrodynamic parameters occupy one
microvolume, has been assumed in mixture theory (see, e.g.,
[34, 35]). Such a fundamental assumption in the theory of
mixtures is physically impossible (see [34, page 7]), but it
is appropriate in the sense that separated components are
multivelocity interpenetrable continua.

Consequently, the following three observations show
that, in the framework of the approach considered here, there
are multivalued solutions when we model high-frequency
wave processes: (1) All parts of loop-like solution are stable to
perturbations. (2) Dissipation does not destroy the loop-like
solutions. (3) he investigation regarding the interaction of
the solitons has shown that it is necessary to take into account
the whole ambiguous solution, not just the separate parts.

4. The Vakhnenko-Parkes Equation

he multivalued solutions obtained in Section 3.3 obviously
mean that the study of the VE (11) in the original coordi-
nates (�, �) leads to certain diiculties. hese diiculties can
be avoided by writing down the VE in new independent
coordinates. We have succeeded in inding these coordinates.
Historically, working separately, we (Vyacheslav Vakhnenko
in Ukraine and John Parkes in UK) independently suggested
such independent coordinates in which the solutions become
one-valued functions. It is instructive to present the two
derivations here. In one derivation a physical approach,
namely, a transformation between Euler and Lagrange coor-
dinates, was used whereas in the other derivation a pure
mathematical approach was used.

Let us deine new independent variables (�, �) by the
transformation ��� = �� − ���, � = �. (45)
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he function � is to be obtained. It is important that the
functions � = �(�, �) and � = �(�, �) turn out to be
single-valued. In terms of the coordinates (�, �) the solution
of the VE (11) is given by single-valued parametric relations.
he transformation into these coordinates is the key point in
solving the problem of the interaction of solitons as well as
explaining the multiple-valued solutions [4]. Transformation
(45) is similar to the transformation between Eulerian coor-
dinates (�, �) and Lagrangian coordinates (�, �). We require
that � = � if there is no perturbation, that is, if �(�, �) = 0.
Hence � = 1 when �(�, �) = 0.

he function � is the additional dependent variable in the
equation system (47) and (48) towhichwe reduce the original
equation (11). We note that the transformation inverse to (45)
is �� = ��� + ���, � = �, � (�, �) ≡ � (�, �) . (46)

hen, by taking into account the condition that �� is an exact
diferential, we obtain ���� = ���� . (47)

his equation, together with (11) rewritten in terms of�(�, �)
and �(�, �), namely, �2���2 + �� = 0, (48)

is themain systemof equations.he equation system (47) and
(48) can be reduced to a nonlinear equation in one unknown� deined by �� = �. (49)

We study solutions � that vanish as |�| → ∞ or,
equivalently, solutions for which � tends to a constant as|�| → ∞. From (47) and (49) and the requirement that� → 1 as |�| → ∞wehave� = 1+��; then, by eliminating� from (48) we arrive at the transformed form of the VE (11)���� + (1 + ��) �� = 0 (50)

or, in equivalent form,����� − ����� + �2�� = 0. (51)

Furthermore it follows from (46) that the original inde-
pendent space coordinate � is given by� = � (�, �) = �0 + � + �, (52)

where �0 is an arbitrary constant. Since the functions �(�, �)
and �(�, �) are single-valued, the problem of multivalued
solutions has been resolved from the mathematical point of
view.

Alternatively, in a pure mathematical approach, we intro-
duce new independent variables �, � deined by� = � (�, �) = � + ∫�

−∞
� (��, �) ��� + �0, � = �, (53)

where �(�, �) = �(�, �) and �0 is a constant. From (53) it
follows that��� = ��� + � ��� ,��� = � ��� ,

with � (�, �) = 1 + ∫�

−∞
�����, (54)

so that �� = ��. (55)

From (11) and (54) we obtain��� + �� = 0. (56)

By eliminating � between (55) and (56) we obtain (51) or, on
introducing �, (50).

he transformation, as has already been pointed out, was
obtained by us independently of each other; nevertheless,
we published the result together [36–38]. Following [39–42],
hereater (50) (or in alternative form (51)) is referred to as the
Vakhnenko-Parkes equation (VPE).

For example, we will rewrite the solutions (23) and (24)
for (11) in the transformed coordinates (�,�), that is, ind
the traveling wave solutions for (11) in new coordinates.
Diferentiating the relationship (23)with respect to�, we take±√ 23 ���� = ±√ 23 (−V + ����)

= ±√ 23 (−V + �� (�, �)) = ±√ 23�= �√(� − �1) (� − �2) (�3 − �) ����, (57)

or ±√ 23 = 1√(� − �1) (� − �2) (�3 − �) ����. (58)

hen ater integration, we obtain±√ 23� = ∫�3

�

��√(� − �1) (� − �2) (�3 − �)= 2√�3 − �1 � (�, �) . (59)

Together with � = �(�, �) + V this relationship (59)
determines the desired dependence �(�, �) in parametrical
form. hus, we have the solution for (11) in new coordinates(�, �).
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Figure 3: Traveling wave solutions with V > 0 in coordinates (�, �).
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Figure 4: Traveling wave solutions with V < 0 in coordinates (�, �).
he solutions for V > 0 in coordinates (�, �) are

illustrated in Figure 3. Curves 1 and 2 in this igure relate to
curves 1 and 2 in Figure 1.he solutions in coordinates (�, �)
for V < 0 are plotted in Figure 4. Curves 1, 2, and 3 in this
igure relate to curves 1, 2, and 3 in Figure 2.

On one hand, we have attained the goal; namely, we
have found the solutions in new coordinates in which the
solutions become one-valued functions. On the other hand,
it is important that periodical solution shown by curve 1
in Figure 3, that is, the solution consisting of parabolas,
becomes not periodical in new coordinates. Hence, we reveal
some accordance between curve 1 in Figure 1 and curve 1 in
Figure 2.his feature is important for inding the solutions by
inverse scattering method [38, 43–47].

5. Hirota Method

Now let us deine the notion “soliton” more precisely. Apart
from the fact that a soliton is a stable solitary wave with

particle-like properties, a soliton must possess additional
properties. One property is that two such solitary waves may
pass through each other without any loss of identity. Consider
two solitons with diferent speeds, the faster one chasing the
slower one. he faster soliton will eventually overtake the
slower one. Ater the nonlinear interaction, two solitons again
will emerge, with the faster one in front, and each will regain
its former identity precisely. he only interaction memory
will be a phase shit; each soliton will be centered at a location
diferent from where it would have been had it traveled
unimpeded. However, this property is still not suicient in
order that the solitary wave be a soliton. here are equations
which possess solutions which are a nonlinear superposition
of two solitary waves but which do not have all the properties
enjoyed by soliton equations. A soliton equation, when it
admits solitary wave solutions, must possess a solution which
satisies the “�-soliton condition” (see Section 5.3). he
solitary wave with these properties deines a soliton.he term
“soliton” was originally coined by Zabusky and Kruskal in
1965 [48].

One of the key properties of a soliton equation is that it
has an ininite number of conservation laws. hese soliton
equations satisfy the Hirota condition (“�-soliton condi-
tion”) and are exactly integrable.

heHirota method not only gives the �-soliton solution,
but also enables one to ind a way from the Bäcklund
transformation through the conservation laws and associated
eigenvalue problem to the inverse scattering method. hus
the Hirota method, which can be applied only for inding
solitary wave solutions or traveling wave solutions, allows us
to formulate the inverse scattering method which is the most
appropriate way of tackling the initial value problem (Cauchy
problem). Consequently, in this case, the integrability of an
equation can be regarded as proved.

5.1.he�-Operator and�-Soliton Solution. Various efective
approaches have been developed to construct exact wave
solutions of completely integrable equations. One of the fun-
damental direct methods is undoubtedly the Hirota bilinear
method [14, 15, 49, 50], which possesses signiicant features
that make it practical for the determination of multiple
soliton solutions.

In the Hirota method the equation under investigation
should irst be transformed into the Hirota bilinear form [14]

� (��, ��) � ⋅ � = 0, (60)

where � is a polynomial in �� and ��. Each equation has its
own polynomial.heHirota bilinear�-operator is deined as
(see Section 5.2 in [14])

��
���

�� ⋅ � = ( ��� − ���� )� ( ��� − ����)� � (�, �)
⋅ � (��, ��)���������=�� ,�=�� . (61)
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If the polynomial � satisies conditions (see (5.41) and (5.42)
in [14])� (��, ��) = � (−��, − ��) , � (0, 0) = 0, (62)

then the Hirota method can be applied successfully.

According to [14], the�-soliton solution reads as follows:

� = ∑
�=0,1

exp[[2 ( �∑
�=1

���� + (�)∑
�<�

���� ln ���)]] , (63)

where�2�� = −� [2 (�� − ��) , −2 (�� − ��)]� [2 (�� + ��) , −2 (�� + ��)] ,
�� = ��� − ��� + ��. (64)

he connection between �� and �� is found by the dispersion
relations � (2��, −2��) = 0, � = 1, . . . , �. (65)

In (63), ∑�=0,1 means the summation over all possible

combinations of �1 = 0 or 1, �2 = 0 or 1, . . . , �� = 0 or 1, and∑(�)
�<� means the summation over all possible combinations of� elements under the condition � < �.
Moreover, for there to be an �-soliton solution (NSS) to

(60) with �(≥ 1) arbitrary, �(��, ��) must satisfy the “�-
soliton condition” (NSC) [14]; namely,�(�) (�1, . . . , ��) = 0, � = 1, 2, . . . , �, (66)

where �(1) (�1) fl 0 (67)

and, for � ≥ 2,
�(�) (�1, . . . , ��) fl � ∑

�=±1

{{{� ( �∑
�=1

����, �∑
�=1

��Ω�)
⋅ (�)∏
�>�

� (���� − ����, ��Ω� − ��Ω�) ����}}} . (68)

In (68) Ω� are given in terms of �� by the dispersion relations�(��, Ω�) = 0 (� = 1, . . . , �), ∑�=±1 means the summation
over all possible combinations of �1 = ±1, �2 = ±1, . . . , �� =±1, and � is a function of �� that is independent of the
summation indices �1, . . . , ��.

From (67) it follows that (66) is satisied for � = 1.
If �(�, Ω) = �(−�, −Ω), then (66) is satisied for � = 2.
However, whether or not (66) is satisied for � ≥ 3 depends
on the particular form of �(�, Ω), that is, on the original
equation being studied.

5.2. Bilinear Form of the Vakhnenko-Parkes Equation. In
order to ind soliton solutions to VPE (50)���� + (1 + ��) �� = 0 (69)

by using Hirota’s method [14] we need to express (50) in
Hirota form [36]. Transformation (53) of the independent
variables in the original equation (11) is a key step in
inding an exact explicit �-soliton solution to (50) by use
of the Hirota method and hence an exact implicit �-soliton
solution to (11). By taking� = 6 (ln�)� , (70)

we ind that

�� = 3�2
�� ⋅ ��2 ,

���� + ���� = 3���3
�� ⋅ ��2

(71)

and the bilinear form of the VPE is as follows:� (��, ��) � ⋅ � = 0,
� (��, ��) fl ���3

� + �2
�. (72)

In passing we note that the Hirota-Satsuma equation
(HSE) for shallow water waves [51]−�� + ���� + ��� + �� ∫�

−∞
����� + �� = 0 (73)

may be written as���� + (1 + ��) �� − �� = 0, � = �� = 6 (ln�)�� (74)

or in bilinear form(���3
� + �2

� + ����) � ⋅ � = 0. (75)

Clearly (74) and (75) are similar to, but cannot be transformed
into, (50) and (72), respectively. Hence solutions to the
HSE cannot be transformed into solutions of the VPE. he
solution to the HSE by Hirota method is given in [51].

he Hirota method can be applied successfully if we can
prove “�-soliton condition” (NSC) (66)–(68) for (72). Let us
present this proof [37].

5.3. he “�-Soliton Condition” for the VPE. Since, for (72),
we have �(�, Ω) = �(−�, −Ω), then (66) is satisied for � = 2.
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With � given by (72), the dispersion relations give Ω� =−1/�� and (66) may be written:

�(�) (�1, . . . , ��) fl ( �∏
�=1

��) ∑
�=±1

{{{( �∑
�=1

����)2

⋅ [1 − ( �∑
�=1

���� ) ( �∑
�=1

����)] (�)∏
�>�

(���� − ����)2
⋅ (�2

� + �2
� − ��������)}}} .

(76)

hepresence of the irst product term in (76) ensures that�(�)

is a homogeneous polynomial in ��.
In passing we remark that previous work suggests, but

does not prove, that (72) does have an NSS for all � ≥ 1. he
expression for� given by (72) is a special case of one proposed
by Ito (see Equation (B.10) in [52]). Ito claimed that this �
satisies 3SC. Hietarinta [53] performed a search for bilinear
equations of the form (72) that have � that satisies 3SC. One
such � was found to be the one given by (72). Hietarinta
[54] later claimed that this � also passed 4SC. he bilinear
equation (72) is a special case of one given in Grammaticos et
al. (see Equation (4.4) in [55]); they showed that this equation
has the Painlevé property. According to Hietarinta [54] a
bilinear equation that has 4SS and the Painlevé property is
almost certainly integrable. All this evidence suggests that it is
highly likely that (72) does have anNSS for all� ≥ 1. Here we
remove any doubt by using induction to prove that condition

(66) is satisied with �(�) given by (76).

We need the following properties of�(�) (as given by (76))
for � ≥ 3:

(i) �(�)(�1, . . . , ��)|�1=0 ≡ 0.
(ii) �(�)(�1, . . . , ��)|�1=±�2 = ±24�6

1[∏�
�=3(�2

� − �2
1)2(�4

� +�4
1 + �2

� �2
1)]�(�−2)(�3, . . . , ��).

(iii) �(�)(�1, . . . , ��)|�21+�22±�1�2=0 = ±(�1 ∓ �2)(�2
1 −�2

2)(�2
1 + �2

2 ∓ �1�2)[∏�
�=3[{(�1 ± �2)2 + �2

� }2 − (�1 ±�2)2�2
� ]]�(�−1)(�1 ± �2, �3, . . . , ��).

(We established property (iii) by adapting the argument used
to obtain equation (28) in [56] in the context of a shallow
water wave equation.) Furthermore, because of � summation

in (76), �(�) is an odd, symmetric function of ��. As already
noted, the condition (66) is satisied for � = 1 and � = 2. We

now assume that the condition is satisied for all � ≤ � − 1,
where � ≥ 3; then the properties of �(�) imply that it may be
factorized as follows:

�(�) (�1, . . . , ��) = [ �∏
�=1

��] [[(�)∏
�>�

(�2
� − �2

�)2
⋅ (�2

� + �2
� + ����) (�2

� + �2
� − ����)]]⋅ �̃(�) (�1, . . . , ��) ,

(77)

where �̃(�)
is a homogeneous polynomial. It follows that the

degree of �(�) is at least 4�2 − 3�. On the other hand, from

(76) the degree of �(�) is at most 2�2 − � + 2. As 4�2 − 3� >2�2 − � + 2 for � ≥ 3, it follows that �(�) ≡ 0. It now follows
by induction that the NSC is satisied.

5.4. he �-Soliton Solution of the VPE. With � given by (72)
for the VPE ���� + (1 + ��) �� = 0 (78)

the dispersion relations (65) �(2��, −2��) = 0 (� = 1, . . . , �)
give �� = 1/4�� and then�� = �� (� − ���) + �� with �� = 14�2� . (79)

Also, without loss of generality, we may take �1 < ⋅ ⋅ ⋅ < ��
and then

��� = �� − ���� + �� √ �2� + �2� − �����2� + �2� + ���� , where � < �, (80)

so that 0 < ��� < 1.
Consequently, the relationship (63) with (79) and (80)

gives� for theVPE. Finally, substitution of (63) into (70) gives
the �-soliton solution �(�, �) of the VPE [37].

However, followingMoloney and Hodnett [57], it is more
convenient to express � in the form� = ℎ� + ℎ̂��2�� (81)

for a given � with 1 ≤ � ≤ �, where

ℎ� = ∑
�=0,1

exp
[[[2 ( �∑

�=1
(� ̸=�)

���� + (�)∑
�<�

(� ̸=�,� ̸=�)

���� ln ���)]]] ,
ℎ̂� = ∑

�=0,1
exp

[[[2 ( �∑
�=1
(� ̸=�)

���� + (�)∑
�<�

(� ̸=�,� ̸=�)

���� ln ��� + �−1∑
�=1

�� ln ��� + �∑
�=�+1

�� ln ���)]]] . (82)
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henwemay write the�-soliton solution for VPE (50) in the
form� = �∑

�=1
��,

where �� = 6�� (1 + tanh��) , �� (�, �) = �� + 12 ln[ℎ̂�ℎ� ] . (83)

From (83) and the relationship � = ��, the �-soliton
solution for VPE (51) is� = �∑

�=1
��, where �� = 6�� ����� sech2��. (84)

With � and � given by (83) and (84), respectively, and by
using (45), (46), and (52), we may write the �-loop soliton
solution to VE (11) in the parametric form:� (�, �) = � (�, �) ,� = � (�, �) ,� (�, �) = � + � (�, �) + �0. (85)

5.5. he One-Loop Soliton Solution. he solution to (72)
corresponding to one soliton is given by� = 1 + �2�, where � = �� − �� + �, (86)

and �, �, and � are constants. he dispersion relation (65) is�(2�, −2�) = 0 from which we ind that � = 1/4� and then� = � (� − ��) + � with � = 14�2 . (87)

Substitution of (86) into (70) gives� (�, �) = 6� (1 + tanh �) (88)

so that � (�, �) = 6�2sech2�. (89)

he one-loop soliton solution to the VE is given by (85) with
(88) and (89). From (85) with V = 1/� we have� − V� = −V (� − ��)+ 6� (1 + tanh [� (� − ��) + �]) + �0. (90)

Clearly, from (89) and (90), �(�, �) and � − V� are related
by the parameter � = � − �� so that �(�, �) is a soliton that
travels with speed V in the positive �-direction. he fact that
this soliton is a loop may be shown as follows. From (54) we

have �� = �−1��, and on using (87) and (89) we also have� = 1 − �� and �� = −���. Hence�� = − ���(1 − ��) . (91)

hus, as � goes from ∞ to −∞ in (90), so that � − V� goes
from −∞ to +∞, �� changes sign once and remains inite

whereas �� given by (91) changes sign three times and goes
ininite twice. he one-loop soliton solution may be written
in terms of the parameter � as� = 3V2 sech2 (√V�2 ) ,

� − V� = �̃0 − V� + 3√V tanh(√V�2 ) (92)

with V(> 0) and �̃0 arbitrary. Solution (92) is essentially the
one-loop soliton solution given by (30) (see [20, 21] too).

Usually it is assumed that the value � is real in order
that the solution �(�, �) is a real function. However, the real
solution is obtained also at� = −��+�̃ (�̃ is real) (see Sections
9.1 and 11.2 and Appendix B). In this case the soliton solution
(singular soliton solution) is discontinuous [58]� (�, �) = 6�2sinh−2�. (93)

5.6. he Two-Loop Soliton Solution. he solution to (72)
corresponding to two solitons is given by� = 1 + �2�1 + �2�2 + �2�2(�1+�2),

where �� = ��� − ��� + ��, (94)

�2 = −� [2 (�1 − �2) , −2 (�1 − �2)]� [2 (�1 + �2) , −2 (�1 + �2)] , (95)

and ��, ��, and �� are constants. he dispersion relation is�(2��, −2��) = 0 from which we ind that �� = 1/4�� and
then �� = �� (� − ���) + �� with �� = 14�2� . (96)

Without loss of generality we may take �2 > �1 and then� = �2 − �1�2 + �1 √ �21 + �22 − �1�2�21 + �22 + �1�2 . (97)

Substitution of (94) into (70) gives the two-soliton solution of
the VPE. Following Hodnett and Moloney [57, 59], we may
write �(�, �) in the form� = �1 + �2,

where �� = 6�� (1 + tanh��) , (98)

�1 (�, �) = �1 + 12 ln[1 + �2�2�21 + �2�2 ] ,
�2 (�, �) = �2 + 12 ln[1 + �2�2�11 + �2�1 ] . (99)

It follows that � may be written:� = �1 + �2, where �� = 6�� ����� sech2��. (100)

he two-loop soliton solution to the VE is given by (85) with
(98) and (100) [36].
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5.7. Discussion of the Two-Loop Soliton Solution. We now
consider the two-loop soliton solution found in Section 5.6
in more detail. First it is instructive to consider what happens
in �-� space.

As �1 > �2, we have� − �2� �→ ±∞
as � �→ ±∞ with � − �1� ixed, (101)� − �1� �→ ∓∞
as � �→ ±∞ with � − �2� ixed. (102)

From (99) and (100) with (101) it follows that, with � − �1�
ixed, �1 ∼ 6�21sech2�1 as � �→ −∞,�1 ∼ 6�21sech2 (�1 + ln �) as � �→ +∞. (103)

Similarly, from (99) and (100) with (102), with � − �2� ixed,�2 ∼ 6�22sech2 (�2 + ln �) as � �→ −∞,�2 ∼ 6�22sech2�2 as � �→ +∞. (104)

Hence it is apparent that, in the limits � → ±∞, �1 and �2
may be identiied as individual solitons moving with speeds�1 and �2, respectively, in the positive �-direction. In contrast
to the familiar interaction of twoKdV “sech squared” solitons
[60], here it is the smaller soliton that overtakes the larger one.

he shits Δ � of the two solitons �1 and �2 in the positive�-direction due to the interaction areΔ 1 = −(ln �)�1 ,
Δ 2 = (ln �)�2 , (105)

respectively. As ln � < 0, the smaller soliton is shited
forwards and the larger soliton is shited backwards. Since the

“mass” of each soliton is given by ∫∞−∞ ���� = 12��, where
we have used (100), and the shits satisfy �1Δ 1 + �2Δ 2 = 0,
“momentum” is conserved.

Let � fl �1/�2 and recall that here we are assuming

that 0 < � < 1. (From (103) and (104), �2 is the ratio of
the amplitudes of the individual smaller and larger solitons.)
Note that ���(�int, �int) = 0 for � = � = 0.53862, where(�int, �int) is the center of the interaction. For � < � < 1,
we have ���(�int, �int) > 0 and the two-soliton solution
in �-� space always has two peaks; during interaction the
two humps exchange amplitudes. For 0 < � < �, we have���(�int, �int) < 0 and the two humps of the individual
solitons coalesce into a single hump for part of the interaction;
the smaller hump appears to pass through the larger one.

Now let us consider what happens in �-� space. From (85)
with V� = 1/�� we have� − V�� = −V� (� − ���) + � (�, �) + �0. (106)

Note that in (103) taking the limits � → ±∞ with � − �1�
ixed is equivalent to taking the limits� → ±∞with�−�1�
ixed; also note that � = � from (45). Accordingly from (103)
and (106) with � = 1 we see that, in the limits � → ±∞ with�−�1� ixed,�1(�, �) and�−V1� are related by the parameter� − �1�. Similarly, from (104) and (106) with � = 2, in the
limits � → ±∞ with � − �2� ixed, �2(�, �) and � − V2�
are related by the parameter � − �2�. It follows that, in the
limits � → ±∞, �1 and �2 may be identiied as individual
loop solitons moving with speeds V1 and V2, respectively, in
the positive�-direction,where��(�, �) = ��(�, �). As V2 > V1,
the larger loop soliton overtakes the smaller loop soliton.

he shits, ��, of the two-loop solitons �1 and �2 in the
positive �-direction due to the interaction may be computed
from (106) as follows. From (103), as� → −∞,�1 = �1max =6�21, where � − �1� = −�1/�1; then �1 = 6�1 and, by use of
(101),�2 = 0. Similarly, as� → ∞,�1 = �1max = 6�21, where�−�1� = −(�1 + ln �)/�1; then �1 = 6�1 and �2 = 12�2. Use
of these results in (106) with � = 1 gives�1 = 4�1 ln � + 12�2. (107)

By use of (102), (104), and (106) with � = 2, a similar
calculation yields �2 = −4�2 ln � − 12�1. (108)

From (108) it is found that, for 0 < � < 1, �2 > 0 so
that the larger loop soliton is always shited forwards by the
interaction. However, for �1 we ind that,

(a) for �� < � < 1, �1 < 0 so the smaller loop soliton is
shited backwards;

(b) for � = ��, where �� = 0.88867 is the root of ln �+3/� =0, �1 = 0 so the smaller loop soliton is not shited by
the interaction;

(c) for 0 < � < ��, �1 > 0 so the smaller loop soliton is
shited forwards.

At irst sight it might seem that the behaviour in (b)
and (c) contradicts conservation of “momentum.” he fact
that this is not so is justiied as follows. By integrating (11)

with respect to � we ind that ∫∞−∞ � �� = 0; also, by
multiplying (11) by � and integrating with respect to � we

obtain ∫∞−∞ �� �� = 0. hus, in �-� space, the “mass” of each

soliton is zero, and “momentum” is conserved whatever �1
and �2 may be. In particular �1 and �2 may have the same
sign as in (c), or one of them may be zero as in (b).

Cases (a), (b), and (c) are illustrated in Figures 5, 6, and 7,
respectively; in these igures � is plotted against � for various
values of �. For convenience in the igures, the interactions of
solitons are shown in coordinates moving with speed (V1 +
V2)/2.
5.8. Discussion of the �-Loop Soliton Solution. We now
interpret the �-loop soliton solution found at beginning of
Section 5.4 in terms of individual loop solitons [37].

First it is instructive to consider what happens in �-�
space. From (83) and (84) and the fact that �1 > ⋅ ⋅ ⋅ > ��
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Figure 5: he interaction process for two-loop solitons with �1 =0.99 and �2 = 1 so that � = 0.99 and �1 < 0.
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Figure 6: he interaction process for two-loop solitons with �1 =0.88867 and �2 = 1 so that � = 0.88867 and �1 = 0.
we deduce the following behaviour: with � − ��� ixed and� → −∞,

�� ∼ {{{{{{{
6�21sech2�1, if � = 1,6�2� sech2 (�� + �−1∑

�=1
ln ���) , if 2 ≤ � ≤ �; (109)

with � − ��� ixed and � → +∞,��

∼ {{{{{6�2� sech2 (�� + �∑
�=�+1

ln ���) , if 1 ≤ � ≤ � − 1,6�2�sech2��, if � = �. (110)

t = 9

t = 0 u1

u1 u2

u2

x

0 5 10−10 −5

Figure 7:he interaction process for two-loop solitonswith �1 = 0.5
and �2 = 1 so that � = 0.5 and �1 > 0.
Hence it is apparent that, in the limits � → ±∞, each ��
may be identiied as an individual soliton moving with speed�� in the positive �-direction. Smaller solitons overtake larger
ones.

he shits, Δ �, of the solitons in the positive �-direction
due to the interactions between the � solitons are given byΔ 1 = − 1�1 �∑

�=2
ln �1�,

Δ � = 1�� (�−1∑
�=1

ln ��� − �∑
�=�+1

ln ���) , 2 ≤ � ≤ � − 1,
Δ� = 1���−1∑

�=1
ln ���.

(111)

Since the “mass” of each soliton is given by ∫∞−∞ ���� = 12��,
where we have used (84), and the shits satisfy

�∑
�=1

��Δ � = 0, (112)

“momentum” is conserved.
Now let us consider what happens in �-� space. From (85)

with V� = 1/�� we have� − V�� = −V� (� − ���) + � (�, �) + �0. (113)

Note that in (109) and (110) taking the limits � → ±∞ with�−��� ixed is equivalent to taking the limits� → ±∞with�−��� ixed; also note that� = � from (53). Accordingly from
(109), (110), and (113), with a given �, we see that, in the limits� → ±∞with�−��� ixed,��(�, �) and �−V�� are related by
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the parameter � − ���. It follows that, in the limits � → ±∞,��may be identiied as an individual loop solitonmovingwith
speed V� in the positive �-direction, where ��(�, �) = ��(�, �).
As V1 < ⋅ ⋅ ⋅ < V�, larger loop solitons overtake smaller ones.

In order to calculate the shits, ��, of the loop solitons ��
in the positive�-direction due to the interactions between the�-loop solitons, we need the following results: from (109), as� → −∞, �� → ��max = 6�2� , where

� − ��� = {{{{{{{
−�1�1 , for � = 1, then � �→ 6�1,−���� − 1�� �−1∑

�=1
ln ���, for 2 ≤ � ≤ �, then � �→ 6�� + �−1∑

�=1
12��; (114)

from (110), as � → ∞, �� → ��max = 6�2� , where
� − ��� = {{{{{{{−���� − 1�� �∑

�=�+1
ln ���, for 1 ≤ � ≤ � − 1, then � �→ 6�� + �∑

�=�+1
12��−���� , for � = �, then � �→ 6��. (115)

Use of these results in (113) gives

�1 = �∑
�=2

(4�1 ln �1� + 12��) ,
�� = �∑

�=�+1
(4�� ln ��� + 12��) − �−1∑

�=1
(4�� ln ��� + 12��) ,2 ≤ � ≤ � − 1,�� = −�−1∑

�=1
(4�� ln ��� + 12��) .

(116)

he three-loop soliton solution is discussed in detail in
[37].here, the interaction of three-loop solitons is illustrated
in igures. he interaction process is more complicated than
that for the two-loop soliton solution [36] given in Sections
5.6 and 5.7. From the three examples illustrated in [37] it is
clear that several diferent types of interaction are possible
and it is not always possible to predict what will happen on
the basis of the results in [36] alone.

6. The Vakhnenko-Parkes Equation from
the Viewpoint of the Inverse Scattering
Method for the KdV Equation

Unlike the earlier Sections 5.5–5.8 where the interaction of
the solitons was studied by the Hirota method [14, 15, 49], we
use now elements of the inverse scattering transform (IST)
method as developed for theKdVequation [38].he formula-
tion of the ISTmethod is discussed for theVakhnenko-Parkes
equation (50). It is shown that the equation system for the
inverse scattering problem associated with the VPE cannot
contain the isospectral Schrödinger equation. he results

of this section were completed before we made appreciable
progress in formulation of the IST problem for the VPE.

As we will prove later in Section 8.1, the spectral problem
associated with the VPE is of third order [43, 61–63]. At irst
reading, the present section can be omitted. Nevertheless,
methods stated here may be useful in the investigation of a
new equation for which the spectral problem is unknown.

6.1. One-Soliton Solutions as Relectionless Potentials. As was
noted previously, the VE (11)(�� + ���)� + � = 0 (117)

and the KdV equation�� + 6��� + ���� = 0 (118)

have the same hydrodynamic nonlinearity and do not contain
dissipative terms; only the dispersive terms are diferent. he
similarity between these equations indicates that, in studying
the VE and the VPE (50), the application of the IST method
should be possible. he IST method is the most appropriate
way of tackling initial value problems.he results of applying
the IST method would be useful in solving the Cauchy
problem for both the VE and the VPE. he study of the
VPE is of scientiic interest from the viewpoint of the general
problem of integrability of nonlinear equations.

he method of the IST is a powerful method as a means
for solving the nonlinear diferential equations. Let us recall
that KdV equation (118) is associated with the system of the
equations ��� + �� = ��, (119)�� + 3��� + ���� + 3��� = 0. (120)

Equation system (119) and (120) is a case of the IST method
presented in the classic paper [1]. Since system (119) and (120)
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contains Schrödinger equation (119), we will use the elements
of the IST method as applied to the KdV equation in order
to analyze the VPE. he known one-soliton solution of KdV
equation (118) has the form (without the time-dependence)� = 2�2sech2��. (121)

Here, as an example, we will consider the case � = 1.
he results in this paper are based on the assumption that

the system of equations associated with VPE (50), which are
analogous to (119) and (120), is unknown.

Now let us focus on the fact that (48) is the Schrödinger
equation �2���2 − �� = �� (122)

with the eigenvalue (energy) � = 0 and potential � = −�.
Equation (48) determines the dependence on the coordinate�, and time � appears here as a parameter. However, the
time-dependence is determined by (47).

he known one-soliton solution of (50), which we
obtained in Section 5.5, has the form� = 3V2 sech2 (V� − �2√V

) . (123)

If it is not otherwise noted, for convenience here we will
consider V = 4 and � = 0, and then (123) reduces to� = 6 sech2�. (124)

heprincipal fact is that both� = 2 sech2� from (121) and� =6 sech2� from (124) relate to relectionless potentials. he
general formof the relectionless potentials is (see Section 2.4
in [8]) � = � (� + 1) sech2�. (125)

We have � = 1 for the potential (121) and � = 2 for
the potential (124). It is known [8, 13] that, for integrable
nonlinear equations, relectionless potentials generate soliton
solutions (in the general case, �-soliton solutions).

6.2. Two-Level Relectionless Potential. Let us consider the
one-soliton solution of system (119) and (120) in the frame-
work of the IST method for the KdV equation. For this
purpose let us analyze the Schrödinger equation with the

potential � ≡ −� = −6 sech2� (� is a parameter)�2���2 − �� = −�2�, �2 = −�. (126)

For the scattering problem, the solution of (126) should
satisfy the boundary conditions

� (�, �) = {{{�−���, � �→ −∞� (�) ���� + � (�) �−���, � �→ +∞, (127)

where �(�) and �(�) are the coeicients of relection and
transmission, respectively.

In Section 2.4 in [8], the original method for inding
the wave-functions � and eigenvalues for the relectionless

potential�� = −�(�+1) sech2�was described.he general
solution �� of (126) for the potential �� connects with the
general solution �0 for �0 = 0 by the relationship�� (�, �) = �∏

��=1
(�� tanh� − ���) �0 (�, �) , (128)

and then � (�) = �∏
��=1

�� + ���� − �� ,� (�) = 0. (129)

In our case (� = 2) (126) has two bound states−��1 ≡ �1 = 1,�1 = √ 32 tanh� sech�,−��2 ≡ �2 = 2,�2 = √32 sech2�.
(130)

hewave-functions�� are normalized; that is, ∫+∞−∞ |��|2�� =1, and this conforms to the requirement used in the IST
method.

Here themain diference between theVPE and the known
integrable nonlinear equations appears. It is connected with
the existence of only one bound state for the known equations
associated with the isospectral Schrödinger equation, while
for the VPE two bound states occur. Indeed, for the known
integrable equations, the potential corresponding to the one-
soliton solution has the following dependence on the space
coordinate (see Equation (4.3.9) in [8])� (�) = 2�2sech2��. (131)

It is easy to see that this is related to the case � = 1 in (125);
that is, there is only the one bound state� = √ �2 sech ��,� �→ �√� exp (−��) , � = √2, as � �→ +∞. (132)

6.3. Reconstruction of the One-Soliton Solution for the VPE.
Keeping in mind that there is an incomplete analogy of our
problem to the known integrable equations, we will try to
reconstruct the potential (the solution of the VPE) from the
scattering data and to ind aterwards the time-dependence
for the scattering data and for the one-soliton solution.

As is well known [8, 13], in order to reconstruct the
potential for the Schrödinger equation (126), we have to know
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the scattering data. From relationships (130) we obtain, as� → ∞, �1 �→ �1�−�1�, �1 = √6, �1 = 1,�2 �→ �2�−�2�, �2 = √12, �2 = 2. (133)

Clearly, �1 = (1/2)�2 = 1 is in agreement with (123), (124),
and (121). However, we will abandon this condition, that is,
V = 4, in (131) and in the inal formulas.

For convenience we reproduce the well-known procedure
for the reconstruction of the potential. he function �(�; �)
is constructed from the scattering data (� is the parameter)� (�; �) = �∑

�=1
�2� (�) �−���

+ 12� ∫+∞

−∞
� (�, �) ������. (134)

In the next step the Marchenko-Gelfand-Levitan equation is
to be solved [64] for the unknown �(�, �; �)� (�, �; �) + � (� + �; �)+ ∫+∞

�
� (� + �; �) � (�, �; �) �� = 0. (135)

he potential is then obtained by means of the relationship−� = � = −2 ���� (�, �; �) . (136)

In particular, for the relectionless potential (125), �(�) = 0 in
(127), and the solution can be found in the form� (�, �; �) = − �∑

�=1
�� (�) �� (�; �) �−���. (137)

his procedure, as is well known, leads to the equation system
in ��

AΨ = C, (138)

where the matrix A = [���] has elements��� = ��� + �� (�) �� (�) �−�(��+��)�� + �� , (139)

andΨ = [��] and C = [��(�)�−���] are column-vectors.
In (135)–(138), � is a parameter. Although we took � = 0

earlier, we preserve the variable � in these relationships in
order to use them later to ind the time-dependence of the
scattering data.

It is known [8, 13] that for a relectionless potential the
value of the determinant Δ = det[���] is suicient for
reconstructing the potential. hen (136) is reduced to� (�, �; �) = � ln |Δ|�� ,

−� = −2�2 ln |Δ|��2 . (140)

We use (138) and (140) to obtain the one-soliton solution
of the VPE. he scattering data (133) and �(�) = 0 enable us
to deine the determinant

Δ = ����������������1 + �212 �−2� �1�23 �−3��1�23 �−3� 1 + �224 �−4�
���������������� = (1 + �−2�)3 (141)

and then the potential−� = 12 ��� ( �−2�1 + �−2�) = −6 sech2�. (142)

hus we have repeated the standard method for reproducing
the potential bymeans of scattering data (as yet without time-
dependence). It is clear from � = �� and (140) that� = 2� (�, �; �) . (143)

It is noted that the determinant for the one-soliton solution
of KdV equation (118) has the formΔ = 1 + �−2�,� = 2 sech2�. (144)

he interpretation of (141) is important. In the matrix,
two states (133) are involved. Clearly, the time-dependence
for an individual state is its own characteristic.However, since
these two states relate to the common soliton, there must be
a connection between them; that is, �1(�) and �2(�) must be
connected. Relation (141) determines this connection.

In the irst instance we considered the dependence of
the potential on the space coordinate, and the time was
a parameter. Let us now ind the time-dependence of the
scattering data �1(�) and �2(�) that enables us to ind the
functional dependence of the potential (124) on �, that is, the
time-dependence of the one-soliton solution. We start from
the relation (see Equation (22), Chapter 1, Section 2 in [13]):� (�, �; �) = �−��� + ∫+∞

�
� (�, �; �) �−�����. (145)

Hence, there is a linear operator that reduces the solution�−��� of the Schrödinger equation with null potential � =0 to the solution of this equation with the potential �(�).
he function �(�, �; �) is the kernel of the transformation
operator.

We write (145) for � = 0; this procedure is correct and an
appropriate theorem has been proved (see Section 3.3 in [8]):� (�, � = 0; �) = 1 + ∫+∞

�
� (�, �; �) ��. (146)

Clearly, �(�, � = 0; �) = �(�, �), where �(�, �) satisies the
equation system (47) and (48). Taking into account (136) and
(146), we obtain from the relationship (47):1 + ∫+∞

�
� (�, �; �) �� = 2�� (�, �, �)�� + �. (147)
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Since this equation must be valid at arbitrary �, and taking
into account that the function �(�, �; �) → 0 at |�| →∞, we deine the constant of integration � = 1. We write,
once again, �(�, �; �) as (137), because the potential is
relectionless, and we obtain from (147)

2∑
�=1

�� (�)�� �� (�; �) �−���
= 2 2∑

�=1

��� (�) �� (�; �)�� �−���. (148)

In this equation we must substitute the values �� that are
the solution of system (138). Here we consider the values ��
already as functions of �; that is, �� = ��(�). For example �1
is given by

�1 = Δ−1 (�1�−�1� + �1�222�2 �−(�1+2�2)�
− �1�22�1 + �2 �−(�1+2�2)�) . (149)

Here Δ is the determinant (141) with time-dependence of�� = ��(�). We can calculate the following terms which are
required for (148) (�1 = 1, �2 = 2):

2∑
�=1

�� (�)�� �� (�; �) �−���
= Δ−1 (�21 �−2� + 12�22 �−4�) ,

2∑
�=1

�� (�) �� (�; �) �−���
= Δ−1 (�21 �−2� + �22 �−4� + 112�21 �22 �−6�) .

(150)

hen, substituting (150) into (148) and equating to zero the

coeicients of �−2��, (� = 1, . . . , 6), we obtain the system of
diferential equations for ��(�)(� = 1, 2)

�−2�: (�21 )� = 12�21 ,�−4�: (�22 )� = 14 (�22 + �41 ) ,�−6�: 13 (�21 �22 )� + �21 (�22 )� − �22 (�21 )� = �21 �22 ,�−8�: �21 (�21 �22 )� − �21 �22 (�21 )� = 14 (�41 �22 + 9�42 ) ,

�−10�: �22 (�21 �22 )� − �21 �22 (�22 )� = 12�21 �42 ,�−12�: �21 �22 (�21 �22 )� = �21 �22 (�21 �22 )� ,
(151)

where the prime denotes the derivative with respect to time�.
Equation system (151) is an overdetermined one; only irst

two equations are independent. Consequently, we solve them

with initial conditions �21 (0) = 6, �22 (0) = 12. At irst, we write
the general solution of system (151):�21 (�) = �1��/2,�22 (�) = �2��/4 + 13�21��, (152)

where �1, �2 are arbitrary constants.Hence, in the general case,
the time-dependence of the irst and second states is diferent.
Nevertheless, we have �2 ≡ 0 due to the relationship between�1(0) and �2(0) and then�21 (�) = �21 (0) ��/2 = 6��/2,�22 (�) = 13�41 (0) �� = 12��. (153)

hus, the time-dependences satisfy the condition �21 (�)/�2(�) = const. Indeed, if the time-dependence is as in (153),
the determinant (141) can be rewritten as a perfect cube;
namely, Δ = (1 + �−2(�−�/4))3 . (154)

For convenience, up to this point we have used �1 = 1, �2 = 2.
Now we return one arbitrary parameter �1 (with �2 = 2�1)
and rename it as � ≡ �1, and then we obtain

Δ = {1 + exp [−2� (� − �4�2 )]}3 . (155)

he potential for the one-soliton solution can easily be found
by (140):

� = 2�2 ln |Δ|��2 = 6�2sech2Θ,
Θ = � (� − �0 − �4�2 ) . (156)

his is one-soliton solution for the VPE.
For reference we give the complete equations for inding

the solution of VE (11) in terms of the initial variables �, �
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(for convenience � is renamed as � ≡ � because here � is a
parameter):��� ( ��� + � ���) � + � = 0, (157)

� = (���� )
�

,� = �0 + � + �,� = 2 (� ln |Δ|�� )
�

, (158)

Δ = (1 + �2)3 ,� = exp (−Θ) ,Θ = � (� − � − �04�2 ) , (159)

� = const.,�0 = const.
(160)

hus we have obtained the one-soliton solution of the VE
as well as the VPE using elements of the IST method for the
KdV equation. he proposed method is also applicable for
inding the two-soliton solution. It is likely that this procedure
will shed light upon the formulation of the IST problem that
enables one to make progress in the study of the Cauchy
problem for the VE (11).

6.4. Two-Soliton Solution. Let us consider the two-soliton
solution for VE (11). he key for constructing this solution is
the value which is assigned to determinant (158) in the one-
soliton solution. For information we rewrite the values (159)
once again

Δ = (1 + �2)3 ,� = exp [−� (� − � − �04�2 )] . (161)

It can be seen that there is some analogy to the one-soliton
solution of KdV equation (144); namely,Δ = 1 + �2,� = exp (�� − 4�3�) . (162)

Moreover, as we noted, the potentials corresponding to the
one-soliton solution,

(a) for the VPE (� = 0, � = 1)� = 6 sech2�, (163)

(b) for the KdV equation (� = 0, � = 1)� = 2 sech2�, (164)

difer from each other by their coeicients. Bearing in mind
(136) and that � = � ln |Δ|/�� (see (140)), one can see that
coeicient 6 in (163), in contrast to coeicient 2 in (164), is
generated by exponent 3 in relationship (161).

Now, if it is recalled that the two-soliton solution for the
KdV has the form [15]�̃ = Δ = 1 + �21 + �22 + �̃12�21�22,�̃12 = (�1 − �2)2(�1 + �2)2 ,�� = exp [�� (� − �0�) − 4�3� �] , (165)

we can expect that the two-soliton solution for VE can be
found in form (158) with the following value of � instead ofΔ in relation (140):� = (1 + �21 + �22 + �12�21�22)3 ,�� = exp[−�� (� − � − ��4�2� )] . (166)

he value�12 is to be determined. It should be noted that� is
not equal to the determinant Δ of the matrix in (138) which is
constructed from four states with �1, �21, �2, �22, (each soliton
has two bound states (130))

Δ =
���������������������������������������������������

1 + 3�21 2√2�31 6√�1�2�1 + �2 �1�2 6√2�1�2�1 + 2�2 �1�22
2√2�31 1 + 3�41 6√2�1�22�1 + �2 �21�2 6√�1�2�1 + �2 �21�226√�1�2�1 + �2 �1�2 6√2�1�22�1 + �2 �21�2 1 + 3�22 2√2�326√2�1�2�1 + 2�2 �1�22 6√�1�2�1 + �2 �21�22 2√2�32 1 + 3�42

���������������������������������������������������
. (167)
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If the relation � = Δ were true, we would have �12 = �̃12.
Moreover, these conditions would lead us to the statement
that the problem for scattering data for VE (11) should
connect with the isospectral Schrödinger equation. his
statement was made in the paper by Hirota and Satsuma [49]
as well as in the monograph by Newell (see Chapters 3 and 4

in [16]). However, because � ̸= Δ and �12 ̸= �̃12, we can state
that the equation system for the IST problem associated with
the VPE (50) does not contain the isospectral Schrödinger
equation.

he value �12 for (166) can be determined in the fol-
lowing way. he functional relation (166), with �12 regarded
as unknown, is substituted into (158) and then into (50).
Equating to zero the coeicients of exp[−2(��1+��2)�], (�, � =0, . . . , 4, � + � ̸= 0), we obtain a system of equations in one
unknown �12. It turns out that the equations are dependent.
As a result we obtain�12 = (�1 − �2)2(�1 + �2)2 ⋅ �21 + �22 − �1�2�21 + �22 + �1�2 . (168)

hus the relationships (158), (166), and (168) are the exact
two-soliton solution of the VE (11). In terms of � and �, we
have ��� ( ��� + � ���) � + � = 0,

� = (���� )
�

,� = �0 + � + �,� = 2 (� ln |�|�� )
�

,� = (1 + �21 + �22 + �12�21�22)3 ,�� = exp (−Θ�) ,�12 = (�1 − �2)2(�1 + �2)2 ⋅ �21 + �22 − �1�2�21 + �22 + �1�2 ,
Θ� = ��� − � − ��4�� ,�� = const.,�� = const.

(169)

Function �(�, �) in space (�, �) is two-soliton solution for
the VPE.

An equivalent result has been obtained, independently of
themethod presented here, in Section 5.6 by themeans of the
Hirota method [14, 15, 49] in terms of other variables.

6.5. Remarks abouthis Section. hemain result of Section 6
is that we have obtained a way of applying the IST method to
theVPE.Keeping inmind that the IST is themost appropriate
way of tackling the initial value problem, one has to formulate

the associated eigenvalue problem. We have proved that the
equation system for the IST problem associated with the
VPE does not contain the isospectral Schrödinger equation.
Nevertheless, the analysis of the VPE in the context of the
isospectral Schrödinger equation allowed us to obtain the
two-soliton solution. hus the results stated here may be
useful in the investigation of a new equation for which the
spectral problem is unknown.

Historically, once this investigation was completed, we
were able to make some progress in the formulation of the
IST for the VPE. In Section 8.1 we will prove that the spectral
problem associated with the VPE is of third order.

7. Bäcklund Transformation and Conservation
Laws for the VPE

In Section 5.1 we wrote the VPE (50)���� + (1 + ��) �� = 0 (170)

in Hirota bilinear form (72)(���3
� + �2

�) � ⋅ � = 0. (171)

his enabled us to obtain the �-soliton solution of the VPE.
Moreover, it turns out that a Bäcklund transformation follows
from the bilinear form of the nonlinear evolution equation
[43].

he deinition of a Bäcklund transformation which was
given by Rund in [65] is now the generally accepted one.
Let �(�, �) and �̃(�, �) satisfy the partial diferential equations�(�) = 0 and �(�̃) = 0, respectively. hen the set of relations��((�), (�̃), (�)) = 0 (� = 1, . . . , �), where (�) and (�̃) denote
strings, not necessarily of equal length, consisting of �, �̃
and their various partial derivatives, is called a Bäcklund
transformation if these relations ensure that �̃ satisies�(�̃) =0 whenever � satisies �(�) = 0 and vice versa. If � and �̃
satisfy the same equation, the adjective “auto” is inserted in
front of Bäcklund transformation.

hemain signiicance of Bäcklund transformations is that
they have typically associated nonlinear superposition prin-
ciples whereby ininite sequences of solutions to nonlinear
equations may be generated by purely algebraic procedures.
A Bäcklund transformation achieves the passage between
diferent solution types, whether it is a one-soliton, two-
soliton, bound state, and so forth. Multisoliton solutions of
many important nonlinear evolution equations can thereby
be constructed. We will show that a special form of the
Bäcklund transformation suggested by Hirota [66] is a key
for inding an ininite number of conservation laws as well as
allowing one to formulate the inverse scattering problem.

hus, the next step in the investigation of nonlinear evo-
lution equations should be directed to obtaining the bilinear
form of the Bäcklund transformation from the bilinear form
of the nonlinear equation.

7.1. Bäcklund Transformation in Bilinear Form. Now we
present a Bäcklund transformation for VPE (50) written in
the bilinear form (72). his type of Bäcklund transformation
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was irst introduced byHirota [66] and has the advantage that
the transformation equations are linear with respect to each
dependent variable. his Bäcklund transformation is easily
transformed to the ordinary one.

We follow the method developed in [66]. First we deine� as follows: � fl 2 {[(���3
� + �2

�) �� ⋅ ��] ��− ���� [(���3
� + �2

�) � ⋅ �]} , (172)

where � ̸= ��. We aim to ind a pair of equations such that
each equation is linear in each of the dependent variables �
and �� and such that together � and �� satisfy � = 0. (It
then follows that if � is a solution of (72) then so is �� and
vice versa.) he pair of equations is the required Bäcklund
transformation.

We show that the Bäcklund transformation is given by
pair of the equations (�3

� − �) �� ⋅ � = 0, (173)(3���� + 1 + ���) �� ⋅ � = 0, (174)

where � = �(�) is an arbitrary function of � and � = �(�) is
an arbitrary function of �.

We prove that together � and ��, as determined by (173)
and (174), satisfy � = 0 as follows. By using the identities
(VII.3) and (VII.4) and Equation (5.86) from [14] we may
express � in the following form:� = �� [(�3

��� ⋅ �) ⋅ (���) − 3 (�2
��� ⋅ �)⋅ (���� ⋅ �)] + �� [3 (���2

��� ⋅ �) ⋅ (���)− 6 (������ ⋅ �) ⋅ (���� ⋅ �) − 3 (�2
��� ⋅ �)⋅ (���� ⋅ �) + 4 (���� ⋅ �) ⋅ (���)] .

(175)

We can rewrite � in the following form� = 4�� ({�3
� − � (�)} �� ⋅ �) ⋅ (���)− 4�� ({3���� + 1 + � (�) ��} �� ⋅ �)⋅ (���� ⋅ �) , (176)

if we use the following identities�3
� [(���� ⋅ �) ⋅ (���)] = �� [(�3

��� ⋅ �) ⋅ (���)− 3 (�2
��� ⋅ �) ⋅ (���� ⋅ �)] , (177)

4�� (�2
��� ⋅ �) ⋅ (���� ⋅ �) = �� [(���2

��� ⋅ �)⋅ (���) + 2 (������ ⋅ �) ⋅ (���� ⋅ �)− (�2
��� ⋅ �) ⋅ (���� ⋅ �)] − �3

� (���� ⋅ �)⋅ (���) .
(178)

Identities (177) and (178) come from

exp (�1) [exp (�2) �� ⋅ �] ⋅ [exp (�3) �� ⋅ �]= exp (12 {�2 − �3})
⋅ [exp {12 (�2 + �3) + �1} �� ⋅ �]
⋅ [exp {12 (�2 + �3) − �1} �� ⋅ �]

(179)

which is Equation (5.83) in [14], where �� fl ���� + ����.
In the order �31�3, (179) yields (177), and in the order �1�22�3,
(179) yields (178). From (176) it follows that if (173) and (174)
hold then � = 0 as required.

hus we have proved that the pair of (173) and (174) con-
stitute a Bäcklund transformation in bilinear form for (72).
Separately these equations appear as part of the Bäcklund
transformation for other nonlinear evolution equations. For
example, (173) is the same as one of the equations that is
part of the Bäcklund transformation for a higher order KdV
equation (see Equation (5.139) in [14]), and (175) is similar
to Equation (5.132) in [14] that is part of the Bäcklund
transformation for amodel equation for shallowwater waves.

he inclusion of � in the operator 3�� + � which appears
in (177) corresponds to a multiplication of � and �� by terms

of the form ��(�) and ���(�), respectively; however, this has no
efect on � or �� because, from (70), � = 6(ln�)�. Hence,
without loss of generality, we may take � = 0 in (174) if we
wish.

7.2. Bäcklund Transformation in Ordinary Form. Following
the procedure given in [14, 67], we can rewrite the Bäcklund
transformation in ordinary form in terms of the potential� = ∫�−∞ � ��� given by (49). In new variables deined by

� = ln
��� , � = ln���, (180)

(173) and (174) have the form���� + 3����� + �3� − � = 0, (181)3 (��� + ����) + 1 + ��� = 0, (182)

respectively, where we have used results similar to (XI.1)–
(XI.3) in [14]. From the deinitions (70) and (180), diferent
solutions �, �� of VPE (50) are related to � and � by�� − � = 6��,�� + � = 6��. (183)



Advances in Mathematical Physics 21

Substitution of (183) into (181) and (182) with � = 0 leads to(�� − �)�� + 12 (�� − �) (�� + �)� + 136 (��

− �)3 − 6� = 0, (184)

3� (�� − �)�+ [(1 − ��) ((�� − �)� + 16 (�� − �)2)− ��� (�� − �)]
�

= 0, (185)

respectively. he required Bäcklund transformation in ordi-
nary form is given by (184) and (185).

hus, by usingVPE as an example, we have traced how the
bilinear and ordinary forms of the Bäcklund transformation
can be found from the bilinear form of an evolution equation.

7.3. he Ininite Sequence of Conservation Laws. An impor-
tant property of a soliton equation is that it has conservation
laws. he existence of an ininite number of conserved
quantities is associated with the integrability of an equation
[16].

A systematic way to derive higher conservation laws via
the Bäcklund transformation has been developed by Satsuma;
he applied it to the KdV equation [68]. Later Satsuma
and Kaup [67] applied the method to a higher order KdV
equation. Following [68], from the Bäcklund transformation
we now construct the recurrence formula which gives the
ininite sequence of conserved quantities for the VPE. An
ininite sequence of conservation laws having the form����� + ����� = 0 (186)

provides, inmost cases, a corresponding sequence of integrals

of motion given by the functionals ∫ ����. Let us rewrite
(184) (one of the Bäcklund transformation equations) in the
form�� − �= 6� 3√1 − 16�3 ((�� − �)�� + 12 (�� − �) (�� + �)�),�3 = �. (187)
Assuming 1/|�| is small, we may consider (187) to be an
ininitesimal transformation from � to ��. Indeed, in the
irst approximation�� ≃ �+6� and the next approximation
with respect to |�|−1�� = � + 6� + 16��1. (188)

hus, we put � in the form�� = � + 6� + ∞∑
�=1

16��� �� (�, ��, ���, . . .) . (189)

Substituting (189) into (184), and equating the coeicients for
the higher powers of 1/|�|, we have� (�1) : �1 = −2��,� (�0) : �2 = 2���,� (�−1) : �3 = −43����,� (�−2) : �4 = 23�����,� (�−3) : �5 = −29������ + 19 (�2

�)�� − 29�2
��+ 227�3

�.
(190)

he general recursion relations for � ≥ 5 are as follows:�� = −13��−2,�� − ��−1,� − 16 �−3∑
�=1

����−�−2,� − 13����−2
− 16 �−2∑

�=1
����−�−1 − 1108 ∑

�+�+�=�−2
������. (191)

he fact that these quantities are the conserved densities can
be shown as follows. Let us calculate the integral ∫(�� −� − 6�)��� with suitable boundary conditions. Taking into
account (189), we have(∫ (�� − � − 6�) ��)

�
= [ 16��� ∞∑

�=1
(∫ ����)]

�= 0. (192)

hus we deduce that the VPE has an ininite sequence of
conservation laws.

8. The Inverse Scattering Method for the VPE

he inverse scattering transform (IST) method is arguably
the most important discovery in the theory of solitons. he
method enables one to solve the initial value problem for a
nonlinear evolution equation. Moreover, it provides a proof
of the complete integrability of the equation.

he idea of the inverse scattering method was irst intro-
duced for the KdV equation [1] and subsequently developed
for the nonlinear Schrödinger equation [13], the mKdV
equation [69, 70], the sine-Gordon equation [12, 71], and
the equation of motion for a one-dimensional exponential
lattice (Toda lattice) [72]. It is to be remarked that the inverse
method is a unique theory whereby the initial value problem
for the nonlinear diferential equations can be solved exactly.
For the KdV equation this method was expressed in general
form by Lax [73].

he essence of the application of the IST is as follows.he
equation of interest for study (in our case VPE (50)) is written
as the compatibility condition for two linear equations.hese
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equations, (194) and (195), will be derived below. hen�(�, 0) is mapped into the scattering data �(0) for (194).
It is important that since the variable �(�, �) contained in
the spectral equation (194) evolves according to (50), the
spectrum� always retains constant values.he time evolution
of �(�) is simple and linear. From a knowledge of �(�), we
reconstruct �(�, �).
8.1. Formulation of the Inverse Scattering Eigenvalue Problem.
Since we have obtained the �-loop soliton solution to VPE
(50) by use of the Hirota method (see Sections 5.4–5.8), we
can state that VPE (50) is integrable. he use of the IST is the
most appropriate way of tackling the initial value problem.
In order to apply the IST method, one irst has to formulate
the associated eigenvalue problem. his can be achieved
by inding a Bäcklund transformation associated with the
VPE. We have already shown in Section 7 that the Bäcklund
transformation is one of the analytical tools for dealing with
soliton problems. he main aim of Section 8 is to give the
details of the IST method for solving the VPE, so irst we will
formulate the scattering problem.

Now we will show that the IST problem for the VPE in
form (50) has a third-order eigenvalue problem that is similar
to the one associated with a higher order KdV equation [67,
74], a Boussinesq equation [74–78], and a model equation for
shallow water waves [14, 49].

Introducing the function� = ��� , (193)

and taking into account (70), we ind that (173) and (174)
reduce to ���� + ���� − �� = 0, (194)3��� + (1 + ��) � + ��� = 0, (195)

respectively, where we have used results similar to (X.1)–(X.3)
in [14].

From (194) and (195) it can be shown that3��� + (1 + ��) ��� − �����+ [���� + (1 + ��) �� + ��] � = 0, (196)

[���� + (1 + ��) ��]� � + (3�� + ��) �� = 0. (197)

In view of (50), (196) becomes3��� + (1 + ��) ��� − ����� + ��� = 0, (198)

and (197) implies that �� = 0 so the spectrum � of (194)
remains constant. Constant � is what is required in the IST
problem. Equation (197) yields the equation ���� + (1 +��)�� = ℎ(�), where ℎ(�) is an arbitrary function of �.
Now, according to (209) and (221), the inverse scattering
method restricts the solutions to those that vanish as |�| →∞, so ℎ(�) is to be identically zero.hus the pair of (194) and

(195) or (194) and (197) can be considered as the Lax pair for
VPE (50).

Since (194) and (195) are alternative forms of (173) and
(174), respectively, it follows that the pair of (194) and (195)
is associated with VPE (50) considered here. hus the IST
problem is directly related to a spectral equation of third
order, namely, (194). he inverse problem for certain third-
order spectral equations has been considered by Kaup [74]
and Caudrey [75, 76]. As expected, (194) and (195) are similar
to, but cannot be transformed into, the corresponding equa-
tions for the Hirota-Satsuma equation (HSE) (see Equations(A8a) and (A8b) in [79]). Clarkson and Mansield [80]
note that the scattering problem for the HSE is similar to
that for the Boussinesq equation which has been studied
comprehensively by Deit et al. [78].

Ater the Lax pair for the VPE was derived in [43], in
[81] the Lax pair was written in its original variables as a zero
curvature condition. Moreover, in [81] Hone and Wang have
shown that there is a subtle connection between the Sawada-
Kotera hierarchy and theVE, between theDegasperis-Procesi
equation (DPE) and the VE (see also [82, 83]), and between
the Lax pairs of the DPE and the VE. For the Cauchy
problem at long-time, the IST approach presents throughout
a Riemann-Hilbert problem [84, 85] in original (physical)
independent variables for the VE in [85].

8.2. Example of the Use of the IST Method to Find the One-
Soliton Solution. Consider the one-soliton solution of the
VPE obtained in Section 5.5, but by application of the IST
method. Let the initial perturbation be� (�, 0) = 6� (1 + tanh (�)) , � = �� + �. (199)

For convenience we introduce new notations �1 and �1
instead of parameters � and � by

� = √32 �1,
� = 12 ln( �12√3�1 ) ; (200)

then� (�, 0)
= 6√3�1 ��� ln[1 + �12√3�1 exp (√3�1�)] (201)

is the initial condition for the VPE.
he irst step in the IST method is to solve spectral

equation (194) with spectral parameter � for the given initial
condition �(�, 0). In our example it is (201). he solution
is studied over the complex �-plane, where �3 = �. One
can verify by direct substitution of (202) in (194) that the
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solution�(�, 0; �) of the linearODE (194), normalized so that�(�, 0; �)exp(−��) → 1 at � → −∞, is given by� (�, 0; �) exp (−��) = 1− �1 exp (√3�1�)1 + �1 (exp (√3�1�) /2√3�1) [ �2��2�1 − �+ �3−��3�1 − �] , (202)

where �� = ��2�(�−1)/3 are the cube of roots of 1 (� = 1, 2, 3).
he constants �1 and �1, as we will show, are associated with
the local spectral data.

he second step in the IST method is to obtain the
evolution of �1 and �1. he time-dependence of the solution�(�, �) is described by (195). Analyzing (195), wemay assume
that �1 (�) = �1 (0) = const.,�1 (�) = �1 (0) exp(− 1√3�1 �) . (203)

Below, the assumption of these relationships will be justiied.
Indeed, we know that the spectrum � in (194) remains
constant if �(�, �) evolves according to (50). herefore,
as will be proved, the spectrum data evolve as in (219). In
notations (226) and (227), from (219) we obtain relations
(203).

he inal step in IST method is to select the solution�(�, �) from (202) with �1(�) and �1(�) as in (203).
According to Equation (2.7) in [74] we expand �(�, �; �) as
an asymptotic series in �−1 to obtain� (�, 0; �) exp (−��)= 1 − 13� [� (�) − � (−∞)] + � (�−2) , (204)

that is, �(�) − �(−∞) = lim�→∞[3�(1 − � exp(−��))].
Taking into account the functional dependence (203), we ind
the required one-soliton solution of the VPE in form� (�, �) = 6√3�1 ���⋅ ln[1 + �12√3 exp(√3�1� − 1√3�1 �)]+ const.

(205)

hus, for the example of the one-soliton solution, we have
demonstrated the IST method.

8.3.heDirect Spectral Problem. Let us consider the principal
aspects of the inverse scattering transform problem for a
third-order equation. he inverse problem for certain third-
order spectral equations has been considered by Kaup [74]
and Caudrey [75, 76]. he time evolution of � is determined
from (195) or (198).

Following the method described by Caudrey [75], spec-
tral equation (194) can be rewritten���� = [A (�) + B (�, �)] ⋅ � (206)

with

� = ( ������

) ,
A = (0 1 00 0 1� 0 0) ,
B = (0 0 00 0 00 −�� 0) .

(207)

he matrix A has eigenvalues ��(�) and let- and right-

eigenvectors k̃�(�) and k�(�), respectively.hese quantities are
deined through a spectral parameter � as�� (�) = ���,�3� (�) = �,

k� (�) = ( 1�� (�)�2� (�)) ,
k̃� (�) = (�2� (�) �� (�) 1) ,

(208)

where, as previously, �� = �2��(�−1)/3 are the cube roots of 1
(� = 1, 2, 3). Obviously ��(�) are distinct and they and k̃�(�)
and k�(�) are analytic throughout the complex �-plane.

he solution of linear equation (194) (or equivalently
(206)) has been obtained by Caudrey [75] in terms of Jost
functions ��(�, �) which have the asymptotic behaviour

Φ� (�, �) fl exp {−�� (�) �} �� (�, �) �→ k� (�)
as � �→ −∞. (209)

Caudrey [75] showed how (206) can be solved by expressing
it as a Fredholm integral equation.

he complex �-plane is to be divided into regions such
that, in the interior of each region, the order of the numbers
Re(��(�)) is ixed. As we pass from one region to another
this order changes and hence, on a boundary between two
regions, Re(��(�)) = Re(��(�)) for at least one pair � ̸= �. he

Jost function �� is regular throughout the complex �-plane
apart from poles and inite singularities on the boundaries
between the regions. At any point in the interior of any region
of the complex �-plane, the solution of (206) is obtained by
the relation (2.12) from [75]. It is the direct spectral problem.
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8.4. he Spectral Data. he information about the singulari-
ties of the Jost functions ��(�, �) resides in the spectral data.

First let us consider the poles. It is assumed that a pole �(�)� in��(�, �) is simple, does not coincide with a pole of ��(�, �),� ̸= �, and does not lie on a boundary between two regions.
hen, as proven in [75], the residue is

Res�� (�, �(�)� ) = �∑
�=1
� ̸=�

�(�)�� �� (�, �(�)� )
(210)

and it can be found because we know solution (194) in
any regular regions from solving the direct problem (see

Section 8.3). Note that, for ��(�, �(�)� ), the point �(�)� lies in

the interior of a regular region. he quantities �(�)� and �(�)��
constitute the discrete part of the spectral data.

Now we consider the singularities on the boundaries
between regions. However, in order to simplify matters, we
irst make some observations. he solution of the spectral
problem can be facilitated by using various symmetry prop-
erties. In view of (194), we need only to consider the irst
elements of

�� (�, �) = ( �� (�, �)�� (�, �)��� (�, �)��) , (211)

while the symmetry�1 (�, ��1
) = �2 (�, ��2

) = �3 (�, ��3
) (212)

means we need only to consider �1(�, �). In our case, for�1(�, �), the complex �-plane is divided into four regions by
two lines (see Figure 8) given by(i) �� = �2�, where Re (�1 (�)) = Re (�2 (�)) ,(ii) �� = −�3�, where Re (�1 (�)) = Re (�3 (�)) , (213)

where � is real (see Figure 8). he singularity of �1(�, �) can
appear only on these boundaries between the regular regions
on the �-plane and it is characterized by functions �1�(��) at
each ixed � ̸= 1. We denote the limit of a quantity, as the
boundary is approached, by the superix ± according to the
sign of Re(�1(�) − ��(�)) (see Figure 8).

In [75] (see Equation (3.14) there) the jump of �1(�, �) on
the boundaries is calculated as�+1 (�, �) − �−1 (�, �) = 3∑

�=2
�1� (�) �−� (�, �) , (214)

where, from (213), the sum is over the lines �� = �2� and�� = −�3� given by(i) �� = �2�, with �(1)
12 (��) ̸= 0, �(1)

13 (��) ≡ 0,(ii) �� = −�3�, with �(2)
12 (��) ≡ 0, �(2)

13 (��) ̸= 0. (215)

Re(�1 − �3) < 0Re(�1 − �2) > 0

Re(�1 − �2) < 0 Re(�1 − �3) > 0

Re(�)

Line � = �2�
Re(�1 − �2) = 0

≠ 0

Line � = −�3�

Re(�1 − �3) = 0

Pole 1

Pole 2

�(2)1 = −i�3�1

�(2)13 = �3�1

�(1)1 = i�2�1

�(1)12 = �2�1

Line � = −i�3�Line � = i�2�

Q(1)
13 (�

�) = 0, Q(1)
12 (�

�)≠ 0Q(2)
12 (�

�) = 0, Q(2)
13 (�

�)

Im(�)

Figure 8:he regular regions for Jost functions �1(�, �) in the com-
plex �-plane. he dashed lines determine the boundaries between
regular regions.hese lines are lines where the singularity functions�1�(��) are given. he dotted lines are the lines where the poles
appear.

he singularity functions �1�(��) are determined by�(�, 0) through the matrix B(�, �) (207) (see Equation(3.13) in [75])

�1� (�) = 1
k̃� (�) ⋅ k� (�) k̃� (�)

⋅ ∫∞

−∞
exp [(�1 (�) − �� (�)) �]B (�, �)

⋅ �−1 (�, �) ��.
(216)

he quantities �1�(��) along all the boundaries constitute the
continuum part of the spectral data.

hus, the spectral data are

� = {�(�)1 , �(�)1� , �1� (��) ; � = 2, 3, � = 1, 2, . . . , �} . (217)

One of the important features which is to be noted for the
IST method is as follows. Ater the spectral data have been
found from B(�, 0; �), that is, at initial time, we need to seek
the time evolution of the spectral data from (195). Analyzing
(195) at � → ∞ together with (209)

�� (�, �, �) = exp [− (3�� (�))−1 �] �� (�, 0, �) , (218)
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the �-dependence is revealed as�(�)� (�) = �(�)� (0) ,�(�)1� (�) = �(�)1� (0)⋅ exp {[− (3�� (�(�)1 ))−1 + (3�1 (�(�)1 ))−1] �} ,�1� (�; ��) = �1� (0; ��)⋅ exp {[− (3�� (��))−1 + (3�1 (��))−1] �} .
(219)

he inal step in the application of the IST method is to
reconstructB(�, �; �) from the evaluated spectral data. In the
next section, we show how to do this.

8.5. he Inverse Spectral Problem. he inal procedure in IST
method is that of the reconstruction of the matrix B(�, �; �)
and �(�, �) from the spectral data �.

he spectral data deine Φ1(�, �) uniquely in the form
(see Equation (6.20) in [75])Φ1 (�, �; �) = 1 − �∑

�=1

3∑
�=2

�(�)1� (�)
⋅ exp {[�� (�(�)1 ) − �1 (�(�)1 )] �}�1 (�(�)1 ) − �1 (�) Φ1 (�, �; ���(�)1 )
+ 12�� ∫ 3∑

�=2
�1� (�; ��)

⋅ exp {[�� (��) − �1 (��)] �}�� − � Φ−
1 (�, �;����) ���.

(220)

Equation (220) contains the spectral data, namely, � poles

with the quantities �(�)1� for the bound state spectrum aswell as

the functions�1�(��) given along all the boundaries of regular
regions for the continuous spectrum. he integral in (220) is
along all the boundaries (see the dashed lines in Figure 8).
he direction of integration is taken so that the side chosen
to be Re(�1(�)−��(�)) < 0 is shown by the arrows in Figure 8
(for the lines (213), � sweeps from −∞ to +∞).

It is necessary to note that we should carry out the
integration along the lines �2(� + ��) and −�3(� + ��) with� > 0. In this case condition (209) is satisied. Passing to
the limit � → 0 we can obtain the solution which does not
satisfy condition (209) (see Section 11.1.1). However, for any
inite � > 0, the restricted region on � can be determined
where the solution associated with a inite � > 0 (for which
condition (209) is valid) and the solution associated with� = 0 are suiciently close to each other. In this sense,
taking the integration at � = 0, we remain within the inverse
scattering theory [75], and so condition (209) can be omitted.
he solution obtained at � = 0 can be extended to suiciently

large inite �. hus, we will interpret the solution obtained at� = 0 as the solution of VPE (50) which is valid for arbitrary
but inite �.

By choosing appropriate values for �, the let-hand

side in (220) can be Φ1(�, �; ���(�)1 ), or by allowing �
to approach the boundaries from the appropriate sides,
the let-hand side can be Φ−

1 (�, �; ����). We acquire a
set of linear matrix/Fredholm equations in the unknownsΦ1(�, �; ���(�)1 ) and Φ−

1 (�, �; ����). he solution of this

equation system enables one to deineΦ1(�, �; �) from (220).
By knowing Φ1(�, �; �), we can take extra information

into account, namely, that the expansion of Φ1(�, �; �) as an
asymptotic series in �−11 (�) connects with �(�, �) as follows
(cf. Equation (2.7) in [74]):Φ1 (�, �; �) = 1 − 13�1 (�) [� (�, �) − � (−∞)]+ � (�−21 (�)) . (221)

Consequently, the solution�(�, �) and thematrixB(�, �; �)
can be reconstructed from the spectral data.

Sections 9–11 show how the ISTmethod can be applied to
the VPE.

9. The �-Soliton Solution

In this section the procedure for inding the exact �-soliton
solution of the VPE via the inverse scattering method will
be described [43, 61–63]. To do this we consider (220) with�1�(�) ≡ 0. hen there is only the bound state spectrum
which is associated with the soliton solutions.

Let the bound state spectrum be deined by � poles.
Relation (220) is reduced to the formΦ1 (�, �; �) = 1 − �∑

�=1

3∑
�=2

�(�)1� (�)
⋅ exp {[�� (�(�)1 ) − �1 (�(�)1 )] �}�1 (�(�)1 ) − �1 (�) Φ1 (�, �;
���(�)1 ) .

(222)

Equation (222) involves the spectral data, namely, the poles�(�)1 and the quantities �(�)1� . First we will prove that Re � = 0
for compact support. From (194) we have(��)��� + (���)� − ��� = 0, (223)

and together with (194) this enables us to write��� ( �2��2 ���∗ − 3����∗
� + ����∗)− 2Re ����∗ = 0. (224)

Integrating (224) over all values of �, we obtain that, for
compact support, Re � = 0 since, in the general case,∫∞−∞ ���∗�� ̸= 0.
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As follows from (2.12), (2.13), (2.36), and (2.37) of [74],��(�) is related to the adjoint states ��
�(−�). In the usual

manner, using the adjoint states and Equation (14) from [76]
and Equation (2.37) from [74], one can obtain�1� (�, �) = �√3 [�1� (�, −�2�) �1 (�, −�3�)− �1� (�, −�3�) �1 (�, −�2�)] . (225)

It is easily seen that if �(1)1 is a pole of �1(�, �), then
there is a pole either at �(2)1 = −�2�(1)1 (if �1(�, −�2�) has

a pole) or at �(2)1 = −�3�(1)1 (if �1(�, −�3�) has a pole). For
deiniteness let �(2)1 = −�2�(1)1 . hen, as follows from (225),−�3�(2)1 should be a pole. However, this pole coincides with

the pole �(1)1 , since −�3�(2)1 = −�3(−�2)�(1)1 = �(1)1 . Hence the

poles appear in pairs, �(2�−1)1 and �(2�)1 , under the condition�(2�)1 /�(2�−1)1 = −�2, where � is the pair number.
Let us consider � pairs of poles; that is, in all there are� = 2� poles over which the sum is taken in (225). For the

pair � (� = 1, 2, . . . , �) we have the properties(i) �(2�−1)1 = ��2��,(ii) �(2�)1 = −��3��. (226)

Since � is real and � is imaginary, �� is real. Relationships
(226) are in line with condition (2.33) from [74]. hese
relationships are also similar to Equations (6.24) and (6.25)
in [75], while �(�)1� turns out to be diferent from �̃(�)1� for the

Boussinesq equation (see Equations (6.24) and (6.25) in [75]).
Indeed, by considering (225) in the vicinity of the irst pole�(2�−1)1 of the pair � and using relation (222), one can obtain

a relation between �(�)12 and �(�)13 . In this case the functions�1,�(�, �), �1(�, −�2�), and �1,�(�, −�2�) also have poles

here, while the functions �1(�, −�3�) and �1,�(�, −�3�) do
not have poles here. Substituting �1(�, �) in form (222) into

(225) and letting � → −∞, we have the ratio �(2�)13 /�(2�−1)12 =�2 and �(2�)12 = �(2�−1)13 = 0. herefore the properties of �(�)��
should be deined by the relationships(i) �(2�−1)12 = �2��, �(2�−1)13 = 0,(ii) �(2�)12 = 0, �(2�)13 = �3��, (227)

where, as it will be proved below, �� is real when � = �� is
real.

By deiningΨ� (�, �)= 3∑
�=2

�(�)1� (�) exp {�� (�(�)1 ) �} Φ1 (�, �; ���(�)1 ) , (228)

we may rewrite relationship (222) as (see, for instance,
Equations (6.33) and (6.34) in [75])

Φ1 (�, �; �) = 1 − 2�∑
�=1

exp {−�1 (�(�)1 ) �}�1 (�(�)1 ) − �1 (�) Ψ� (�, �) . (229)

From (221) and (229) it may be shown that (cf. Equation(6.38) in [75])� (�, �) − � (−∞)= −32�∑
�=1

exp {−�1 (�(�)1 ) �} Ψ� (�, �)
= 3 ��� ln (det� (�, �)) . (230)

he 2� × 2� matrix �(�, �) is deined as in relationship(6.36) in [75] by

��� (�, �) = ��� − 3∑
�=2

�(�)1� (0) exp {[− (3�� (�(�)1 ))−1 + (3�1 (�(�)1 ))−1] � + (�� (�(�)1 ) − �1 (�(�)1 )) �}�� (�(�)1 ) − �1 (�(�)1 ) , (231)

and � = 1, 2, . . . , �,�1 (�(2�−1)1 ) = ��2��,�2 (�(2�−1)1 ) = ��3��,�(2�−1)12 = �2��,�(2�−1)13 = 0,�1 (�(2�)1 ) = −��3��,�3 (�(2�)1 ) = −��2��,

�(2�)12 = 0,�(2�)13 = �3��.
(232)

For the �-soliton solution there are � arbitrary constants ��
and � arbitrary constants ��.

he inal result for the �-soliton solution of the VPE is
deined by relationship (230) with (231).

9.1. Examples of One- and Two-Soliton Solutions. In order to
obtain the one-soliton solution of VPE (50)���� + (1 + ��) �� = 0, (233)
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we need irst to calculate the 2 × 2 matrix �(�, �) according
to (231) with � = 1. We ind that the matrix is

( 1 − �2�1√3�1 exp [√3�1� − (√3�1)−1 �] ��3�12�1 exp [2��3�1� − (√3�1)−1 �]
−��2�12�1 exp [−2��2�1� − (√3�1)−1 �] 1 − �3�1√3�1 exp [√3�1� − (√3�1)−1 �]) (234)

and its determinant is

det� (�, �)= {1 + �12√3�1 exp[√3�1 (� − �3�21 )]}2 . (235)

Consequently, from (230) we have the one-soliton solution of
the VPE:� (�, �) = �� (�, �)= 92�21sech2 [√32 �1 (� − �3�21 ) + �1] , (236)

where �1 = (1/2) ln(�1/2√3�1) is an arbitrary constant. Since� is real, it follows from (236) that �1 is real. By writing√3�1/2 = � in (236), with the condition �1/�1 > 0 we recover
the one-soliton solution as we found previously by Hirota’s
method (see Equation (3.4) in [36] and/or (89)).

Note that with �1/�1 < 0 we have the real solution in the
form of the singular soliton (93) [58]. Analysis of the singular
soliton solution is presented in Section 11.2 and Appendix B.

It is of interest to compare (236) with the solution of
the ith-order KdV-like equation discussed in [74]. Spectral
equation (195) is the same as that given by (1.1) (with� = 0) in
[74], whereas the equation that governs the time-dependence
of �, that is, (195), is diferent from (1.2) in [74]. hus the �
dependence of (235) should agree with the � dependence of
the solution given by (3.30) in [74]. With the identiication� = 5�, �1 = �, this is indeed the case.

Let us now consider the two-soliton solution of the VPE.
In this case �(�, �) is a 4 × 4 matrix. We will not give the
explicit form here, but we ind that

det� (�, �) = (1 + �21 + �22 + �2�21�22)2 , (237)

where �� = exp[√32 �� (� − �3�2� ) + ��] ,
�2 = (�2 − �1�2 + �1 )2 �21 + �22 − �1�2�21 + �22 + �1�2 , (238)

and �� = (1/2) ln(��/2√3��) are arbitrary constants. he two-
soliton solution to the VPE as found by the IST method is
given by (230) together with (237). With the identiication√3��/2 = �� (� = 1, 2) we recover the two-soliton solution
as given by Hirotas method (see Equations (4.1)–(4.5) in [36]
and/or (98)).

Finally we note that comparison of (230) with � =6(ln�)� from (70) shows that

ln (det� (�, �)) = 2 ln (�) (239)

so that det�(�, �) is a perfect square for arbitrary �.

10. Accounting for the Continuum Part of
Spectral Data

Now, in addition to the bound state spectrum,we consider the
continuous spectrum of the associated eigenvalue problem
[44–46, 86]; that is, assume that at least some of the functions�1�(��) are nonzero. At each ixed � ̸= 1 the functions �1�(��)
characterize the singularity of Φ1(�, �). As we have shown,
this singularity can appear only on boundaries between
the regular regions on the �-plane, where the condition
Re(�1(��)−��(��)) = 0 constitutes these boundaries [75]. For
VPE (50)

���� + (1 + ��) �� = 0, (240)

as we know, the complex �-plane is divided into four regions
by two lines (215)

(i) �� = �2�, with �(1)
12 (��) ̸= 0, �(1)

13 (��) ≡ 0,(ii) �� = −�3�, with �(2)
12 (��) ≡ 0, �(2)

13 (��) ̸= 0, (241)

where � is real (see Figure 8) and sweeps from −∞ to +∞.
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Let us consider the singularity functions �1�(��) on the

boundaries, on which the Jost function �1(�, �) is singular,
in the form (� = 1, 2, . . . , �):

�(1)
12 (��) = −2�� �∑

�=1
�(2�−1)12 � (�� − ��2�−1) ,

�(1)
13 (��) = −2�� �∑

�=1
�(2�−1)13 � (�� − ��2�−1) ≡ 0,

on the line �� = �2�,
�(2)
12 (��) = −2�� �∑

�=1
�(2�)12 � (�� − ��2�) ≡ 0,

�(2)
13 (��) = −2�� �∑

�=1
�(2�)13 � (�� − ��2�) ,

on the line �� = −�3�.

(242)

For the singularity functions (242) and for � pairs of poles,
relationship (220) is reduced to the form (provisionally the
time-dependence is not written)

Φ1 (�, �) = 1 − 2�∑
�=1

3∑
�=2

�(�)1�

⋅ exp {[�� (�(�)1 ) − �1 (�(�)1 )] �}�1 (�(�)1 ) − �1 (�) Φ1 (�, ���(�)1 )
− 2�∑

�=1

3∑
�=2

�(�)1�
⋅ exp {[�� (��� ) − �1 (��� )] �}��� − � Φ1 (�, ����� ) .

(243)

In Section 9 (see [43] too) it is proved that the poles appear

in pairs only �(2�−1)1 = ��2�� and �(2�)1 = −��3��, under the
conditions �(2�−1)12 = �2��, �(2�−1)13 = 0, �(2�)12 = 0, �(2�)13 =�3�� (� = 1, 2, . . . , �). If we consider both the bound state
spectrum and the continuous spectrum, the constants �� are
complex values in the general case. he restrictions on �� for
real solutions � = �� follow from a separate problem which
will be analyzed in Section 11.

As follows from relationships (225) and (243), the sin-
gularities in form (242) appear in pairs ��2�−1 = �2�� and��2� = −�3��. From (225), on considering the limits � → ���
and � → −∞, it immediately follows that�(2�−1)12 �2 = �(2�)13 for � = 1, 2, . . . , �. (244)

Insofar as we have 2� poles and 2� coeicients �(2�−1)12
and �(2�)13 in adopted speciications (242) of the singularity

functions �1�(��), it is convenient to introduce the notation
��� = {{{�� (�(�)1 )�� (��(�−�)) ,
�(�)
1� = {{{�(�)1� at � = 1, . . . , ��(�−�)1� at � = � + 1, . . . , � + �, (245)

where � = 2� and � = 2�. hen relationship (243) is
rewritten as follows:Φ1 (�, �)= 1 − �+�∑

�=1

3∑
�=2

�(�)
1�
exp [(��� − �1�) �]�1� − � Φ1 (�, ���) . (246)

By deiningΨ� (�) = 3∑
�=2

�(�)
1� exp (����) Φ1 (�, ���) , (247)

we may rewrite relationship (246) asΦ1 (�, �) = 1 − �+�∑
�=1

exp (−�1��)�1� − � Ψ� (�) . (248)

Taking into account (221), namely,Φ1 (�, �) = 1 − 13�1 (�) [� (�) − � (−∞)]+ � (�−21 (�)) , (249)

and (247) and (248), the following key relationship may be
found (see also (230)):� (�) − � (−∞) = −3�+�∑

�=1
exp (−����) Ψ� (�)

= 3 ��� ln (det� (�)) . (250)

Here the matrix �(�) is deined as follows:��� (�) = ��� − 3∑
�=2

�(�)
1�
exp [(��� − �1�) �]��� − �1� . (251)

Restoring the�-evolution in the relationships, the inal result
for the solution of the VPE, when we consider the spectral
data from both the bound state spectrum and the continuous
spectrum, is as follows:� (�, �) = �� (�, �) = 3 �2��2 ln (det� (�, �)) . (252)
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Here �(�, �) is the (� + �) × (� + �) matrix given by��� (�, �) = ��� − 3∑
�=2

�(�)
1�

⋅ exp {(��� − �1�) � + [− (3���)−1 + (3�1�)−1] �}��� − �1� , (253)
where, for � ≤ �,�1(2�−1) = �1 (�(2�−1)1 ) = ��2��,�2(2�−1) = �2 (�(2�−1)1 ) = ��3��,�(2�−1)

12 = �(2�−1)12 = �2��,�(2�−1)
13 = �(2�−1)13 = 0,�1(2�) = �1 (�(2�)1 ) = −��3��,�3(2�) = �3 (�(2�)1 ) = −��2��,�(2�)
12 = �(2�)12 = 0,�(2�)
13 = �(2�)13 = �3��,

(254)

and, for � < � ≤ � + �,�1(2�−1) = �1 (��2(�−�)−1) = �2��,�2(2�−1) = �2 (��2(�−�)−1) = �3��,�(2�−1)
12 = �(2(�−�)−1)

12 = �2��,�(2�−1)
13 = �(2(�−�)−1)

13 = 0,�1(2�) = �1 (��2(�−�)) = −�3��,�3(2�) = �3 (��2(�−�)) = −�2��,�(2�)
12 = �(2(�−�))

12 = 0,�(2�)
13 = �(2(�−�))

13 = �3��.

(255)

For solution (252) and (253) there are (� + �) arbitrary
constants �� and (�+�) arbitrary constants��.he constants�� are real, while the constants ��, in the general case, are
complex.

As will be clear from the examples in Section 11, solution
(252) and (253) includes � discrete frequencies from the
continuum part of the spectral data. For this reason, solution
(252) and (253) without solitons (i.e., with � = 0) will be
referred to as an �-mode solution of the VPE. Evidently
these discrete modes emanate from the special choice (242)
of the singularity functions �1�(��).

he solution obtained through matrix (253) is in general
a complex function. Consequently, there is a problem in
selecting the real solutions from the complex solutions. It
turns out that we can obtain the real solutions by means of
restriction of arbitrariness in the choice of the constants ��.
We have succeeded in inding these restrictions.

11. Real Solutions for the VPE

Now we select the real solutions � = �� from (252) and
(253).We analyze a number of examples, as well as the general
case, for the interaction of the solitons and multimode waves
[44–46, 86]. To obtain the solutions of the VPE, one has to
calculate the determinant of matrix (253). Firstly, we present
four results of such a calculation for � + � ≤ 4. For
convenience we will use the auxiliary function �(�, �) given
by the deinition�(�, �) = √det�(�, �). In particular, from
(253),

(1) for � + � = 1 we have� = 1 + �1�1; (256)

(2) for � + � = 2 we have� = 1 + �1�1 + �2�2 + �12�1�2�1�2; (257)

(3) for � + � = 3 we have� = 1 + �1�1 + �2�2 + �3�3 + �12�1�2�1�2+ �13�1�3�1�3 + �23�2�3�2�3+ �12�13�23�1�2�3�1�2�3; (258)

(4) for � + � = 4 we have� = 1 + �1�1 + �2�2 + �3�3 + �4�4 + �12�1�2�1�2+ �13�1�3�1�3 + �14�1�4�1�4 + �23�2�3�2�3+ �24�2�4�2�4 + �34�3�4�3�4+ �12�13�23�1�2�3�1�2�3 + �12�14�24�1�2�4�1�2�4+ �13�14�34�1�3�4�1�3�4 + �23�24�34�2�3�4�2�3�4+ �12�13�14�23�24�34�1�2�3�4�1�2�3�4.
(259)

For � + � > 4, the explicit expression for the function�(�, �) can be obtained in a similar manner. It is helpful
to present the quantities ��, ��, and ��� involved in formulas
(256)–(259) separately for three distinct cases:

(1) he purely solitonic case (�, �) ≤ � has�� = exp (2��)2�� = √3��� − (√3��)−1 �, �� = ��2√3�� ,��� = (�� − ���� + �� )2 �2� + �2� − �����2� + �2� + ���� , ��� ≥ 0. (260)
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(2) he case of purely multimode waves � < (�, �) ≤ � +� has�� = exp (2��)2�� = −�√3��� + (�√3��)−1 �, �� = ���2√3�� ,��� = (�� − ���� + �� )2 �2� + �2� − �����2� + �2� + ���� , ��� ≥ 0. (261)

(3) he case of a combination of solitons (�, ��) ≤ � and
multimode waves � < (�, ��) ≤ � + � has�� = exp (2��)2�� = √3��� − (√3��)−1 �, �� = ��2√3�� ,�� = exp (2��)2�� = −�√3��� + (�√3��)−1 �, �� = ���2√3�� ,

���� = (�� − ����� + ��� )2 �2� + �2�� − ������2� + �2�� + ����� , 0 ≤ ���� ≤ 1,
���� = (�� − ����� + ��� )2 �2� + �2�� − ������2� + �2�� + ����� , 0 ≤ ���� ≤ 1,
��� = (�� + ����� − ��� )2 �2� − �2� + ������2� − �2� − ����� , ������������� ≡ 1.

(262)

With the above found representation of the auxiliary function�(�, �) and taking into account key relationship (252), we
can write the explicit solution to basic nonlinear evolution
equation (50) in the following concise form:� (�, �) = 6 ��� ln (� (�, �)) + const. (263)

he function � is complex-valued in the general case because
the values of �� (and hence of ��) are complex constants.

Since we are interested only in the real solution �� with
real constants ��, we need restrictions on the constants �� in
(256)–(259).

11.1. he Solutions Associated with the Continuous Spectrum.
We study the multimode solutions for � = 0 and � =1, 2, 3, 4, while for � ≥ 5 all formulas can easily be obtained
by means of a generalization of these examples.

11.1.1. he One-Mode Solution. In order to obtain the one-
mode solution of VPE (50) we need irst to calculate the 2 × 2

matrix �(�, �) according to (253) with � = 0 and � = 1.
For the matrix elements ���(�, �) we have�11 (�, �)= 1 − ��2�1√3�1 exp [−�√3�1� + (�√3�1)−1 �] ,

�12 (�, �) = −�3�12�1 exp [2�3�1� + (�√3�1)−1 �] ,
�21 (�, �) = �2�12�1 exp [−2�2�1� + (�√3�1)−1 �] ,�22 (�, �)= 1 − ��3�1√3�1 exp [−�√3�1� + (�√3�1)−1 �] ,

(264)

so that the respective determinant is

det� (�, �)= [1 + �1 exp (−�√3�1� + (�√3�1)−1�)]2 ,�1 = ��12√3�1 . (265)

As has been noted already, the singularity functions in form
(242) with � = 1 give rise to a single frequency for the
continuous part of the spectral data. Hence, expression (265),
having been substituted into concise formula (263), must
provide us with the one-mode solution.

he condition that �� is real requires a restriction on the
constant �1 (if the constant �1 is arbitrary but real). We have
succeeded in obtaining this restriction (see Appendix A),
namely, that the constant �1, which in general is complex-
valued one with �1 = |�1| exp(��1), should possess unit
modulus |�1| = 1, while the arbitrary real constant �1 deines
an initial shit of solution �1 = �1/(√3�1) so that

det� (�, �)= [1 + exp(−�√3�1 (� − �1) + ��√3�1 )]2 . (266)

he inal result for one mode of the continuous spectrum is
solution (263) with (266); namely,� (�, �)= −3√3�1 tan(√32 �1 (� − �1) + �2√3�1 )+ const. (267)

he corresponding solution for � = �� was obtained
recently by other methods, for example, by the sine-cosine
method [87], the (��/�)-expansion method [40], and the
extended tanh-function method [87, 88]. However, only the
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approach developed here and the solution in form (252)
and (253) enable us to study the interaction of solitons and
periodic waves.

We obtain periodic solutions even for � = 1. Let us
call attention once again to condition (209) which in the
inal result is shown below to restrict the region of � for
periodic solutions. At irst glance it would seem that there
is a contradiction between condition (209) and the periodic
solution. Indeed, on the one hand, condition (209) demands
that the solution �(�, �) should vanish as � → −∞; on
the other hand, the periodic solution obtained here does not
satisfy condition (209). Nevertheless, consideration of the
details enables us to ind a reasonable explanation. So, in [75]
at the derivation of relation (220) (see also (4.5) in [75]),
the integral in (220) appears as a result of the integration on
two sides of the boundaries between regular regions. For an
understanding of this fact, relationship (252) from [75] plays
an important role. Hence, the integration in (220) (also as in(4.5) in [75]) should be carried out over the lines �2(� + ��)
and −�3(� + ��) as � sweeps from −∞ to ∞, where � > 0. As a
result, in relationship (266) we should exchange �1 for (�1+��)
and that enables us to deine the solution in the form� (�, �) = −�6√3 (�1 + ��)⋅ exp (√3��) exp (−�√3�1 (� − �1) + �/�√3�1)1 + exp (√3��) exp (−�√3�1 (� − �1) + �/�√3�1) , (268)
which tends to constants as |�| → ∞ at arbitrary � >0. hus, on one hand, condition (209) is satisied, and, on
the other hand, at small � > 0 we have a suiciently large
region over � where the solution associated with a inite� > 0 and the periodic solution associated with � = 0 are
suiciently close to each other.he region of � with periodic
solutions can be extended to suiciently large, but inite, |�|.
For any sequence �� → 0 we remain within the inverse
scattering theory [75] where condition (209) is not violated.
Consequently, the periodic solution obtained at � = 0 is to
be interpreted as the solution of the VPE which is valid on
arbitrary but inite |�|.
11.1.2. he Two-Mode Solution. Let us consider a two-mode
solution of the VPE. In this case �(�, �) is a 4 × 4 matrix.
For its determinant, according to (257) we ind√det� (�, �) = � (�, �)= 1 + �1�1 + �2�2 + �12�1�2�1�2, (269)

where ��, ��, and �12 are deined by (261).
Since the solution �� should be real and the constants ��

are arbitrary, but real, there are restrictions on the constants�� = |��| exp(���). he real constants �� deine the initial shits
of solutions �� = ��/(√3��). he analysis in considerable
detail shows (see Appendix A) that the relations |�1| = |�2| =1/√�12 are the suicient conditions in order that �� be real.
hus, the interaction of two periodic waves for the VPE is
described by relationship (263) with� (�, �) = 1 + 1√�12 �1 + 1√�12 �2 + �1�2, (270)

where �12 is as in (261), and the dependencies in �� now
contain the phase shits �� = ��/(√3��) as follows:

�� = exp (−�√3�� (� − ��) + (�√3��)−1 �) . (271)

11.1.3.hehree-Mode Solution. For� = 0 and� = 3, in the
relationship� (�, �) = 1 + �1�1 + �2�2 + �3�3 + �1�2�12�1�2+ �1�3�13�1�3 + �2�3�23�2�3+ �1�2�3�12�13�23�1�2�3 (272)

obtained from (253) (see also (258)) with ��, ��, and ��� as
in (261), we write �� = |��| exp(���). hen the arguments ��
determine the initial phase shits of modes �� = ��/(√3��).
As is proved in Appendix A, the conditions on the constants�� are �����1���� = 1√�12�13 ,

�����2���� = 1√�12�23 ,
�����3���� = 1√�13�23 .

(273)

Hence the three-mode solution is relation (263) with

� (�, �) = 1 + 1√�12�13 (�1 + �2�3)
+ 1√�12�23 (�2 + �1�3)
+ 1√�13�23 (�3 + �1�2) + �1�2�3.

(274)

Here the phase shits �� are taken into account in �� by way
of (271).

11.1.4. he Four-Mode Solution. For � = 0 and � = 4, the
restrictions have the form (see Appendix A)

���������� = 4∏
�=1
� ̸=�

�−1/2�� , 0 ≤ ��� = ��� ≤ 1, � = 1, 2, 3, 4. (275)
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he function � for real solution (263) is� (�, �) = 1 + 1√�12�13�14 (�1 + �2�3�4)+ 1√�12�23�24 (�2 + �1�3�4)+ 1√�13�23�34 (�3 + �1�2�4)+ 1√�14�24�34 (�4 + �1�2�3)+ 1√�13�14�23�24 (�1�2 + �3�4)+ 1√�12�14�23�34 (�1�3 + �2�4)+ 1√�12�13�24�34 (�1�4 + �2�3)+ �1�2�3�4.

(276)

As before, ��� and �� are deined by (261) and (271), respec-
tively.

11.2. he Solutions Associated with Bound State Spectrum.
he features of the solutions associated with the bound
state spectrum can be shown by considering the two-soliton
solution for which � = 2 and � = 0. Solution (263) can be
obtained through (257) with (260), that is,� (�, �) = 1 + �1�1 + �2�2 + �12�1�2�1�2 (277)

with�� = exp (2��)2�� = √3��� − (√3��)−1 �, �� = ��2√3�� ,��� = (�� − ���� + �� )2 �2� + �2� − �����2� + �2� + ���� , ��� ≥ 0. (278)

In Appendix B it is proved that the constants �� have to be real.
Moreover, the signs of �� = ��/|��| can independently take the
values ±1; that is, we have four variants, namely, �1 = �2 = 1,�1 = �2 = −1, �1 = −�2 = 1, and �1 = −�2 = −1. Note that in
[58] only the irst two variants are discussed. he standard
soliton solution for which �1 = �2 = 1 and the singular
soliton solutions for which �1 = �2 = −1, �1 = −�2 = 1,
and �1 = −�2 = −1 are obtained by means of relation (263)� (�, �) = � (�, �)�= 6 �2��2 ln (�) + 6 �2��2 ln (��) , (279)

where �� are deined by (B.7)–(B.10).

Forms (B.3) and (B.7)–(B.10) for � are more preferable,
since we see that the solution is dependent on two combina-
tions of the spectral parameters �1 + �2 and �1 − �2, but not
three values �1, �2, and �1 + �2 as it may appear from relation
(279).

For � ≥ 3 we give the conditions without proof. All the
constants �� are to be real and the signs of �� = ��/|��| can be
equal to ±1 independently of each other.

11.3. Real Soliton and Multimode Solutions of the VPE. In this
subsection we will consider the general case, when both the
bound state spectrum and the continuous spectrum are taken
into account in the associated spectral problem. We will ind
the conditions on �� for real solutions of the VPE. To obtain
the solution, we need to know the function � (see (256)–
(259)).

Let the indexes � and �� be related to the values involved
in the bound state spectrum for which (�, ��) ≤ �, while
the indexes � and �� are related to the values involved in the
continuous part of the spectral data for which � < (�, ��) ≤� + �.

11.3.1. he Interaction of a Soliton with One-Mode Wave. he
interaction of a standard soliton with periodic one-mode
wave can be described bymeans of relations (257) with� = 1
and � = 1� (�, �) = 1 + �1�1 + �2�2 + �12�1�2�1�2 (280)

with �� and �12 as in (262); namely,�1 = exp (√3�1� − (√3�1)−1 �) , �1 = �12√3�1 ,�2 = exp (−�√3�2� + (�√3�2)−1 �) , �2 = ��22√3�2 ,
�12 = (�1 + ��2�1 − ��2 )2 �21 − �22 + ��1�2�21 − �22 − ��1�2 , �����12���� ≡ 1.

(281)

First, we emphasize that the soliton one-mode wave (267)
propagates in opposite directions. he soliton propagates in
the positive direction of the �-axis, while one-mode wave
(267) propagates in the negative direction of the �-axis.

Here we restrict ourselves to the simplest case �12�1�2 =1 that describes the interaction of a standard soliton with a
one-mode wave. As follows immediately from Appendix C,
for real solutions (263),� (�, �) = 6 ��� ln (� (�, �)) + const., (282)

where �(�, �) is� (�, �) = 1 + 1√�12 �1 + 1√�12 �2 + �1�2. (283)
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here is an exceptional case at �1 = �2.henwe have �12 =1, and � = (1 + �1)(1 + �2). Consequently, solution (263) is
reduced to the relation� = �1 + �2= 3√3�1 tanh(√32 �1 (� − �1) − �2√3�1 )

− 3√3�1 tan(√32 �1 (� − �0) + �2√3�1 )+ const.
(284)

Here �1 is the one-soliton solution and �2 is solution (267)
associated with one mode in the continuous part of the
spectral data. he relationship � = �1 + �2 is easily veriied
also by direct substitution into VPE (50). he two waves�1 and �2 propagate in diferent directions with the same
speed without change of wave proile and phase shit. In other
words, only in the case �1 = �2 is there a simple superposition
of the solutions �1 and �2. It is obvious that interactions
of two solitons with a one-mode wave and/or of the two-
mode solution with one soliton do not satisfy this form of the
interaction.

11.3.2. Real Solutions for � Solitons and the �-Mode Wave.
he interaction of� solitons and�-mode wave (267) can be
obtained by means of the function �(�, �) with restrictions
(C.8) given in Appendix C, namely,�� = ±1√∏�+�

�=1,� ̸=���� , ��� = ���, � = 1, . . . , � + �, (285)

and with the retention of the phase shits �� in the quantities�� (C.2).he signs for �� in (285) can be chosen independently
of each other. If the index � in (285) is connected with the
continuous part of the spectral data (� < � ≤ � + �), then
the solutions generated by plus and minus signs in (285) are
diferent only in the phase shits. However, for the index �
from the bound state spectrum (� ≤ �), the solutions have
diferent forms of function dependence. Here it is relevant
to remember that there are standard soliton solutions and
singular soliton solutions generated by diferent signs in the
constants �� (285).

he solution will contain (� + �) real constants �� for
determining the values ��� and (� + �) real constants �� to
deine the phase shits.

In Sections 8–11 we have described the procedure for
inding the solutions of the Vakhnenko-Parkes equation by
means of the inverse scattering method. Both the bound
state spectrum and the continuous spectrum are taken into
account in the associated eigenvalue problem. he special
form of the singularity functions enables us to obtain the
multimode solutions. Suicient conditions have been proved
in order that the solutions become real functions. Finally we
studied the interaction of solitons and the multimode wave.

In [89, 90] the Vakhnenko-Parkes equation has been
generalized to an equation that is known as the generalized

Vakhnenko equation. It turns out that this new evolution
equation possesses a wider variety of solutions, is integrable,
and has been solved by both the Hirota method [89, 90] and
the IST method [47, 91]. Now this equation is investigated
very actively in the scientiic literature.

Appendices

A. The Conditions on Constants �� for
Multimode Waves

In this appendixwewill prove the conditions on the constants�� = |��|exp(���) for solutions associated with the continuous
part of the spectral data only. We use the case � = 4 as
an example to prove the restrictions on the constants, at
which the solution ��(�, �) is real. he auxiliary function�(�, �) = √det�(�, �) for inding the solution is (259);
namely,� (�, �) = 1 + �1�1 + �2�2 + �3�3 + �4�4+ �1�2�12�1�2 + �1�3�13�1�3 + �1�4�14�1�4+ �2�3�23�2�3 + �2�4�24�2�4 + �3�4�34�3�4+ �1�2�3�12�13�23�1�2�3+ �1�2�4�12�14�24�1�2�4+ �1�3�4�13�14�34�1�3�4+ �2�3�4�23�24�34�2�3�4+ �1�2�3�4�12�13�14�23�24�34�1�2�3�4.

(A.1)

Here we redeine the values �� in such a way that �� = |��|, since
the arguments �� can always be introduced into the variables�� = exp(�2��) with 2�� = −√3��(� − ��) − (√3��)−1� and�� = ��/(√3��) serving as the shits of solutions.he solution
then has the form (263)� (�, �) = 6 ��� ln (� (�, �)) + const. (A.2)

he function � is complex-valued; that is,� = �Re + ��Im = |�| exp (���) ,
�Re = Re (�) , �Im = Im (�) , tan (��) = �Im�Re

; (A.3)

hence � (�, �)6 = ��� ln (|�|) + ������ + const. (A.4)
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If we succeed in making �2��/��2 ≡ 0 by the choice of
the constants ��, then the solution ��(�, �) will be a real
function.

Let us write �Im and �Re in explicit forms; namely,�Im = �1 sin (2�1) + �2 sin (2�2) + �3 sin (2�3) + �4⋅ sin (2�4) + �1�2�12 sin [2 (�1 + �2)] + �1�3�13⋅ sin [2 (�1 + �3)] + �1�4�14 sin [2 (�1 + �4)]+ �2�3�23 sin [2 (�2 + �3)] + �2�4�24⋅ sin [2 (�2 + �4)] + �3�4�34 sin [2 (�3 + �4)]+ �1�2�3�12�13�23 sin [2 (�1 + �2 + �3)]+ �1�2�4�12�14�24 sin [2 (�1 + �2 + �4)]+ �1�3�4�13�14�34 sin [2 (�1 + �3 + �4)]+ �2�3�4�23�24�34 sin [2 (�2 + �3 + �4)]+ �1�2�3�4�12�13�14�23�24�34⋅ sin [2 (�1 + �2 + �3 + �4)] ,�Re = 1 + �1 cos (2�1) + �2 cos (2�2) + �3 cos (2�3)+ �4 cos (2�4) + �1�2�12 cos [2 (�1 + �2)] + �1�3�13⋅ cos [2 (�1 + �3)] + �1�4�14 cos [2 (�1 + �4)]+ �2�3�23 cos [2 (�2 + �3)] + �2�4�24⋅ cos [2 (�2 + �4)] + �3�4�34 cos [2 (�3 + �4)]+ �1�2�3�12�13�23 cos [2 (�1 + �2 + �3)]+ �1�2�4�12�14�24 cos [2 (�1 + �2 + �4)]+ �1�3�4�13�14�34 cos [2 (�1 + �3 + �4)]+ �2�3�4�23�24�34 cos [2 (�2 + �3 + �4)]+ �1�2�3�4�12�13�14�23�24�34⋅ cos [2 (�1 + �2 + �3 + �4)] .

(A.5)

Let us try to present �Im and �Re in the forms�Im = 2� sin (�1 + �2 + �3 + �4) ,�Re = 2� cos (�1 + �2 + �3 + �4) , (A.6)

where � is the same in both formulas (A.6).his can be done
if the following conditions are satisied:�1 = �2�3�4�23�24�34,�2 = �1�3�4�13�14�34,�3 = �1�2�4�12�14�24,�4 = �1�2�3�12�13�23,�1�2�12 = �3�4�34,�1�3�13 = �2�4�24,�1�4�14 = �2�3�23,�1�2�3�4�12�13�14�23�24�34 = 1.

(A.7)

It turns out that all these relations are valid when�1 = 1√�12�13�14 ,
�2 = 1√�12�23�24 ,
�3 = 1√�13�23�34 ,
�4 = 1√�14�24�34 .

(A.8)

With conditions (A.8), the expression for � reads as follows:� = cos (�1 + �2 + �3 + �4)+ 1√�12�13�14 cos (�1 − �2 − �3 − �4)+ 1√�12�23�24 cos (�2 − �1 − �3 − �4)+ 1√�13�23�34 cos (�3 − �1 − �2 − �4)+ 1√�14�24�34 cos (�4 − �1 − �2 − �3)+ 1√�13�14�23�24 cos (�1 + �2 − �3 − �4)+ 1√�12�14�23�34 cos (�1 + �3 − �2 − �4)+ 1√�12�13�24�34 cos (�1 + �4 − �2 − �3) .

(A.9)

Now it is readily seen from (A.3) that�� = �1 + �2 + �3 + �4 (A.10)

and as consequence we have�2����2 = �2������ = 0. (A.11)
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Hence, as follows from (A.4), the four-mode solution of the
VPE can be reduced to real form with four real constants ��
and four real constants �� (see (276)).

Without proof here we give the following conditions on
the constants �� that ensure the real �-mode solution of the
VPE: ���������� = �∏

�=1
� ̸=�

�−1/2�� , ��� = ���, � = 1, . . . , �, (A.12)

where the � constants �� determine the values ��� and the �
constants �� deine the phase shits for each mode. Note that
relations (A.12) are suicient conditions, but not necessary
ones.

B. The Conditions on Constants �� under
the Interaction of Two Solitons

Here we consider the conditions on signs for the constants ��
under the interaction of two solitons (� = 2, � = 0). We
start with the relationship (257) and (260):� = 1 + �1�1 + �2�2 + �12�1�2�1�2. (B.1)

Let us present the constants �� in the form�� = �� ���������� exp (���) = �−1/212 exp (−√3���� + ���) ,
�� = �� + � (1 − ��)2 . (B.2)

All new constants �� and �� = − ln(|��√�12|)/(√3��) are real.
We assume that −�/2 < �� ≤ �/2; then the values �� retain
the signs of the constants Re(��); that is, �� = Re(��)/|Re(��)|. It
is convenient for analyzing to rewrite (B.1) (the same as (257))
in the form � = 2 exp (�1 + �2 + �2 (�1 + �2)) � (B.3)

with � = cosh (�1 + �2 + �2 (�1 + �2))
+ �−1/212 cosh (�1 − �2 + �2 (�1 − �2)) , (B.4)

2�� = √3�� (� − ��) − (√3��)−1 �. (B.5)

It is easily seen that only � deines the solution, since(�2/��2)ln(�) = (�2/��2) ln(�), while the conditions that
the function � is real are as follows:�� = 0,�� + �2 = 2��1,�� − �2 = 2��2 (B.6)

with �� = 0, 1. Restrictions (B.6) lead to the requirements�1 =±1 and �2 = ±1, independently of each other, and �� = 0.
hen the function � has the following forms:

(1) For �1 = �2 = 1� = 2 exp (�1 + �2) �1,�1 = cosh (�1 + �2) + �−1/212 cosh (�1 − �2) . (B.7)

(2) For �1 = �2 = −1� = 2 exp (�1 + �2) �2,�2 = cosh (�1 + �2) − �−1/212 cosh (�1 − �2) . (B.8)

(3) For �1 = −�2 = 1� = 2 exp (�1 + �2) �3,�3 = − sinh (�1 + �2) + �−1/212 sinh (�1 − �2) . (B.9)

(4) For �1 = −�2 = −1� = 2 exp (�1 + �2) �4,�4 = − sinh (�1 + �2) − �−1/212 sinh (�1 − �2) . (B.10)

Hence, the standard soliton solution that follows from (B.7)
and the singular soliton solutions that follow from (B.8)–
(B.10) are the real functions:� (�, �) = �� (�, �) = 6 �2��2 ln (��) . (B.11)

Now we rewrite the restrictions in a somewhat diferent
form. By retaining the values of the phase shits �� in the
quantities ��, we require �1 = ±1√�12 ,

�2 = ±1√�12 , (B.12)

where the signs are independent of each other. Note that for
this case there are two arbitrary real constants �� and two
arbitrary real constants �� (� = 1, 2).

he notation in (B.7)–(B.10) shows that the solution is
deined by two combinations of the spectral parameters,
namely, �1 + �2 and �1 − �2, but not three values �1, �2, and�1 + �2 as it may appear from (B.1).

he foregoing proof points to a way for inding the
restrictions for any � with � = 0. Here it should be
underlined that only at real �� with any sign of �� = ��/|��|, are
the soliton (or singular soliton) solutions determined by a real
function. he conditions on the constants �� are as follows:�� = ±1√∏�

�=1,� ̸=��12 � = 1, . . . , � (B.13)

with the retention of the phase shits �� in the quantities ��.
he signs for �� are independent of each other. he solution
will contain the� real constants �� for determining the values��� and the � real constants �� to deine the phase shits.
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C. The Restrictions on Constants �� in
the General Case

In this appendix we will obtain the restrictions on the
constants �� for real solutions, in the general case, taking into
account the spectral data fromboth the bound state spectrum
and the continuous spectrum. All features are inherent in the
case � + � = 4 considered here as an example. To ind the
solution bymeans of the inverse scatteringmethod, one needs
to know function (259):� = 1 + �1�1 + �2�2 + �3�3 + �4�4 + �12�1�2�1�2+ �13�1�3�1�3 + �14�1�4�1�4 + �23�2�3�2�3+ �24�2�4�2�4 + �34�3�4�3�4+ �12�13�23�1�2�3�1�2�3 + �12�14�24�1�2�4�1�2�4+ �13�14�34�1�3�4�1�3�4 + �23�24�34�2�3�4�2�3�4+ �12�13�14�23�24�34�1�2�3�4�1�2�3�4.

(C.1)

For convenience we rewrite the variables �� in the somewhat
diferent form:�� = exp (2��) ,�� = exp (�2��) ,2�� = √3�� (� − ��) − (√3��)−1 �,2�� = −√3�� (� − ��) − (√3��)−1 �.

(C.2)

he phase shits �� are arbitrary real constants. he values ���
in (C.1) are as in (262):���� = (�� − ����� + ��� )2 �2� + �2�� − ������2� + �2�� + ����� , 0 ≤ ���� ≤ 1,

���� = (�� − ����� + ��� )2 �2� + �2�� − ������2� + �2�� + ����� , 0 ≤ ���� ≤ 1,
��� = (�� + ����� − ��� )2 �2� − �2� + ������2� − �2� − ����� , ������������� ≡ 1,

(C.3)

where (�, ��) ≤ � and � < (�, ��) ≤ � + �. Note that ���� and���� are real values, and �∗�� = 1/���.
Without loss of generality, we will consider one set of

values � and �, for example, � = 1 and � = 3. Now we
will show that restrictions (A.8)�1 = ±1√�12�13�14 ,�2 = ±1√�12�23�24 ,�3 = ±1√�13�23�34 ,�4 = ±1√�14�24�34

(C.4)

(with ��� determined by (C.3)) are suicient in order to obtain
the real solutions.

For deiniteness, we assume that √��� is a root of the

equation �2 = ��� with −�/2 < arg√��� ≤ �/2. Let us rewrite
relations (C.4) in the form �� = ��/∏4

�=1,� ̸=�√���, where �� =±1. It is evident that we can always attain �2 = �3 = �4 = 1
by choosing the phase shits �2, �3, and �4, while we need
to consider the two cases �1 = ±1. By deining � = (1−�1)/2,
we can rewrite the auxiliary function� from (C.1) in the form� (�, �) = 2����� (�12�13�14)−1/4⋅ exp (�1 + ���2 + ��2 + ��3 + ��4) , (C.5)

����� = [(�12�13�14)1/4⋅ cos(−��1 + ��2 + �2 + �3 + �4)+ (�12�13�14)−1/4⋅ cos(−��1 + ��2 − �2 − �3 − �4)] + (�23�24)−1/2⋅ [(�13�14�12 )1/4
cos(��1 − ��2 + �2 − �3 − �4)

+ (�13�14�12 )−1/4
cos(−��1 + ��2 + �2 − �3 − �4)]

+ (�23�34)−1/2 [(�12�14�13 )1/4

⋅ cos(��1 − ��2 + �3 − �2 − �4) + (�12�14�13 )−1/4

⋅ cos(−��1 + ��2 + �3 − �2 − �4)] + (�24�34)−1/2
⋅ [(�12�13�14 )1/4

cos(��1 − ��2 + �4 − �2 − �3)
+ (�12�13�14 )−1/4

cos(−��1 + ��2 + �4 − �2 − �3)] .

(C.6)

Since �23, �24, and �34 are real, and �∗1� = 1/�1� for � = 2, 3, 4, it
is evident that �∗ = �; that is, the variable � in the solution
is a real-valued function. Hence the solution of the VPE,
namely, � (�, �) = �� (�, �) = 6 �2��2 ln (�)= 6 �2��2 ln (�) , (C.7)

is a real quantity.
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Using this example, one can prove without diiculty that
the procedure considered above can be extended to any �
and � with restrictions (see also (A.12), (B.13), and (C.4)):�� = ±1√∏�+�

�=1,� ̸=���� , ��� = ���, � = 1, . . . , � + �, (C.8)

while the quantities �� retain the phase shits �� (see (C.2)).
he signs in (C.8) can be chosen independently of each other.
For the interaction of� solitons and the�-mode wave there
are (� + �) real constants �� and (� + �) real constants ��.

Note that restrictions (C.8) are suicient conditions in
order that the solution of the VPE is real.
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associated with the sine Gordon and Korteweg-de Vries equa-
tions and their extensions,” in Bäcklund Transformations, R. M.
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