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Abstract

In multi objective optimization problems several objective functions have to

be minimized simultaneously. In this work, we present a new computational

method for the numerical solution of the linearly constrained, convex multi ob-

jective optimization problem. We propose some technique to find joint decreasing

direction for unconstrained and linearly constrained case as well. Based on these

results we introduce a method using subdivision technique to approximate the

whole Pareto-optimal set of the linearly constrained, convex multi objective opti-

mization problem. Finally, we illustrate computations of our algorithm by solving

the Markowitz-model on real data.

1 Introduction

In the economics and financial literature the measure of risk was always a very in-

teresting topic, and now days it may be even more important than ever. One of the

first idea to take into consideration the risk in financial activities came from Harry

Markowitz [23] who developed his famous model where the investors make portfolios

from different securities, and try to maximize their profit and minimize their risk at the

same time. In this model the profit was linear and the risk was defined as the variance

of the securities. From mathematical programming point of view Markowitz-model can
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be formulated as linearly constrained optimization problem with two objective (linear

profit and quadratic risk) functions.

In general case, the least risky portfolio won’t be the most profitable one, which

means we could not optimize the two objectives at the same time. Therefore we need

to find portfolios, where one of the goal can not be improved without worsen the other.

This kind of solutions are called Pareto-optimal or Pareto-efficient solutions [27].

Standard way to find a Pareto-optimal solution [20], of the Markowitz-model to

make a convex combination of the objective functions, and solve the new problem

with quadratic objective function and linear constraints [22]. Weighted sum of the

objective functions, as a new objective function, simplifies the problem. The simplified

problem’s optimal solution is a Pareto-optimal solution of the original problem. The

effect of the weights of objective functions, determine the computed Pareto-efficient

solution of the original problem, but we have no control over this. The weights, have

unpredictable effects on the computed Pareto-efficient solution in general. Weakness

of this approach is that restrict the Pareto-efficient solution set to an element and it’s

local neighborhood. In this way we loose some information, like how much extra profit

can be gained by accepting larger risk. Finding, or at least approximating, the whole

Pareto-efficient solution set of the original, multi-objective problem, may lead to better

understanding of the modeled practical problem [24].

For some unconstrained multi-objective optimization problems there are research

papers [10],[11],[30],[12] discussing algorithms applicable for approximating Pareto-

effecient solution set. However, many multi-objective optimization problems, naturally,

have constraints [12],[13]. A simple example for constrained multi-objective optimiza-

tion problem is the earlier mentioned Markowitz-model. In this paper we extend and

generalize the algorithm of O. Schütze at. all. [10] for approximating Pareto-efficient

set of linearly constrained convex multi-objective problem. J. Flige [12] had some the-

oretical results which are similar to our approach of finding joint decreasing direction.

In the next section the most important definitions and results of vector optimization

problem, useful to our approach, has been summarized. In the third section we discuss

some results about the unconstrained vector optimization problem. The method called

subdivision technique [10], [11] was developed to approximate Pareto-efficient solution

set of unconstrained vector optimization problems. The subdivision method use some

results described in [30]. An important ingredient of all methods that can approximate

the Pareto-optimal set of a convex vector optimization problem is the computation
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of a joint decreasing direction for all the objective functions. We show that using

linear optimization results, a joint decreasing direction for an unconstrained vector

optimization problem can be computed. In the fourth section, computation of a feasible

joint decreasing direction for linearly constrained convex vector optimization problem

is discussed. Section 5 contain an algorithm that is a generalization of subdivision

method for linearly constrained convex vector optimization problem. In section 6 we

show some numerical results obtained on a real data set (securities from Budapest Stock

Exchange) for Markowitz-model. Finally, we summarize our results and list some idea

for future research.

2 Basic definitions and results in vector optimization

In this section we discuss some notations, define vector (or multi objective) optimization

problem and the concept of Pareto-optimal solutions. Furthermore, we state two well

known results of vector optimization, that are playing important role in our approach.

We use the following notations throughout the paper: scalars and indices are de-

noted by lowercase Latin letters, column vectors by lowercase boldface Latin letters,

matrices by capital Latin letters, and finally sets by capital calligraphic letters.

The vector of all one coordinates is denoted by

eT = (1, 1, . . . , 1, . . . , 1),

where T stands for the transpose of a (column) vector (or a matrix). Vector ei is the

ith unit vector.

We define the simplex set, as,

Definition 2.1 Let Sk denote the simplex in the k dimensional vector space, and define

it as follows:

Sk = {w ∈ R
k : eTw = 1, w ≥ 0}.

Let F ⊆ R
n be a set and F : F → R

k is a function defined as F (x) = [f1(x), f2(x), . . . , fk(x)]
T ,

where fi : F → R is a coordinate function for all i. General vector optimization prob-

lem can be formulated as

MIN F (x)

x ∈ F

}

(GV OP ),
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the MIN means that we try to minimize all the coordinates of the function F , simul-

taneously.

If the set F and the function F are convex then (GV OP ) is a convex vector op-

timization problem. Similarly to many cases of (GV OP ) models in the literature we

assume that F is a differentiable function.

Usually, different objective functions of (GV OP ) describe conflicting goals, there-

fore such x ∈ F that minimizes all objective functions at the same time is unlikely to

exist. For this reason the following definitions naturally extends the concept of optimal

solution for (GV OP ) settings.

Definition 2.2 Let a (GV OP ) problem be given. We say that x∗ ∈ F is a

1. weakly Pareto-optimal solution if does not exist feasible solution x ∈ F which

satisfies the F (x) < F (x∗) vector inequality;

2. Pareto-optimal solution if does not exist feasible solution x ∈ F which satisfies

the F (x) ≤ F (x∗), vector inequality and F (x) 6= F (x∗).

Furthermore, we call the set F∗ ⊆ F , weakly Pareto-optimal set if every x∗ ∈ F∗ is a

weakly Pareto-optimal solution of the (GV OP ).

In vector optimization our goal is to compute Pareto-optimal or weakly Pareto-optimal

solutions. Literature contains several methods that finds one of the Pareto-optimal

solutions, but sometimes it is interesting to find all of them, or at least as much of

them as we can [25].

One of the frequently used method to compute a Pareto-optimal solution uses a

weighted sum of the objective function as a single objective optimization problem. Let

w ∈ Sk be a given vector of weights. From a vector optimization problem, using a

vector of weights, we can define the weighted optimization problem as follows

min wTF (x)

x ∈ F

}

(WOP ).

We state, without proof, two well-known theorems that describes the relationship be-

tween (GV OP ) and (WOP ). The first theorem shows, that the (WOP ) can be used

to find a Pareto-optimal solutions [25].

Theorem 2.3 Let a (GV OP ) and the corresponding (WOP ) for a w ∈ Sk be given.

Assume that the x∗ ∈ F be an optimal solution of the (WOP ) problem, then x∗ is a

weak Pareto-optimal solution for the (GV OP ).
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This statement has an elementary, indirect proof. The next theorem needs a bit

more complicated reasoning, but for convex case every Pareto-optimal solution of the

(GV OP ) can be found with a (WOP ) using the proper weights.

Theorem 2.4 Let (GV OP ) be a convex vector optimization problem, and assume that

x∗ ∈ F is a Pareto-optimal solution of the (GV OP ), then there is a w ∈ Sk weight

vector, and a (WOP ) problem, for which x∗ is an optimal solution.

The method that will be described in the fifth section, decreases every coordinate

function of F at the same time and always move form a feasible solution to another

feasible solution, hence we introduce the following, useful definition.

Definition 2.5 Let a (GV OP ), a feasible point x ∈ F and a vector v ∈ R
n, v 6= 0 be

given. Vector v is called

1. joint decreasing direction at point x if there exists h0 > 0, for every h ∈ (0, h0]

satisfying that F (x+ hv) < F (x);

2. feasible joint decreasing direction if it is a joint decreasing direction and there

exists h1 > 0, for every h ∈ (0, h1] satisfying that x+ hv ∈ F .

Let the following unconstrained vector optimization problem

MIN F (x1, x2) =

(

f1(x1, x2)

f2(x1, x2)

)

=

(

x2
1 + x2

2

(x1 − 1)2 + (x2 − 1)2

)

(GV OP1),

be given. Let a point and a direction have been chosen as xT = (x1, x2) = (0, 1) and

vT = (1,−1). Now we show that v is a joint decreasing direction for the objective

function F at point x.

It is easy to show that

f1(x+ hv) = f2(x+ hv) = h2 + (1− h)2 = 2

(

h−
1

2

)2

+
1

2

From the last form of the coordinate functions, it is easy to see that the coordinate

functions are decreasing in the [0; 1
2
] interval, therefore v is a joint decreasing direction

with h0 =
1

2
.

If we add a single constraint to our example we obtain a new problem

MIN F (x1, x2) =

(

f1(x1, x2)

f2(x1, x2)

)

=

(

x2
1 + x2

2

(x1 − 1)2 + (x2 − 1)2

)

x1 ≤
1

3



















(GV OP2).
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It is easy to see that, v is a feasible joint decreasing direction for problem (GV OP2),

too, with h1 =
1

3
.

Let us consider (GV OP ) with convex, differentiable objective function F and let us

denote the Jacobian-matrix of F at point x by J(x). Then v ∈ R
n is a joint decreasing

direction of function F at point x if and only if [J(x)]v < 0.

3 Results for unconstrained vector optimization

In this section we review some results of unconstrained vector optimization, namely

for F = R
n. We assume that F is a differentiable function. The unconstrained vector

optimization problem is denoted by (UV OP ) .

Before we show how can we found joint decreasing direction we need a criterion, to

decide wether an x is a Pareto-optimal solution or not.

Definition 3.1 Let J(x) ∈ R
k×n be the Jacobian-matrix of differentiable function F :

R
n → R

k at x ∈ R
n point. An x∗ is called substationery point of F if there exist a

w ∈ Sk which fulfill the following equation:

[J(x∗)]Tw = 0.

We are ready to discuss two models to find joint decreasing direction. The first

model has been discussed in [30], as well and uses a quadratic programming problem

formulation for computing joint decreasing direction. Later we show that joint decreas-

ing direction can be computed in a simpler way using a special linear programming

problem, too.

Let us define the following quadratic programming problem for every x ∈ R
n, with

variable w

min
w∈Sk

wT
(

J(x) [J(x)]T
)

w

}

(QOP (x)).

From the well known Weierstarss-theorem follows that this problem always has an

optimal solution, since the feasible set is compact and the function

g : Sk → R, g(w) = wT
(

J(x) [J(x)]T
)

w

is convex, quadratic, continuous function for any given x ∈ R
n.

Next theorem is an already known statement (see [30], Theorem 2.1) for which we

give a new and shorter proof. This shows that using the (QOP (x)) problem we can
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find a joint decreasing direction of F or a certificate that x is a Pareto-optimal solution

of the (UV OP ) problem.

Theorem 3.2 Let an (UV OP ), a point x ∈ R
n and the associated (QOP (x)) be given.

Let w∗ ∈ R
k denote the optimal solution of (QOP (x)). We define vector q ∈ R

n as

q = [J(x)]Tw∗. If q = 0, then x is a substationery point, otherwise −q is a joint

decreasing direction for F at point x.

Proof. When q = 0 then Definition 3.1 shows that x is substationery point. When

q 6= 0, we indirectly assume that −q is not a decreasing direction for i-th coordinate

function, fi of F . It means that [∇fi(x)]
Tq < 0. Since [∇fi(x)]

T = eTi J(x), so our

indirect assumption means

[∇fi(x)]
Tq = eTi [J(x)][J(x)]

Tw∗ < 0.

We show that ei −w∗ 6= 0 is a feasible decreasing direction of g(w∗) which contradict

the optimality of w∗. The ei = w∗ can not be fulfilled because it contradicts the

indirect assumption, and it is easy to see, that ei is a feasible solution of (QOP (x)) so

ei −w∗ is a feasible direction at w∗.

Since

∇g(w) = 2[J(x)][J(x)]Tw

thus

[∇g(w∗)]T (ei −w∗) = 2w∗T [J(x)][J(x)]T (ei −w∗) =

2w∗T [J(x)][J(x)]Tei − 2w∗T [J(x)][J(x)]Tw∗ < 0,

where the first term of the sum is negative, because of the indirect assumption, and

the second term is not positive, because [J(x)][J(x)]T is a positive semidefinite matrix.

�

Previous result underline the importance of solving (QOP (x)) problem efficiently.

For solving smaller size linearly constrained convex quadratic problems pivot algorithms

[1, 4, 5, 6, 7, 19] can be used. In case of larger size linearly constrained, convex quadratic

problems, interior point algorithms can be used to solve the problem (see for instance

[14, 18]).

Theorem 3.2 shows that joint decreasing direction can be computed as the convex

combination of the gradient vectors of coordinate functions of F . Following the idea
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discussed above, we can formulate a linear programming problem such that any optimal

solution of the linear program defines a joint decreasing direction. Some similar result

can be found [12].

Let we define the linear optimization problem: in the following way:

max q0

[J(x)]q+ q0e ≤ 0

0 ≤ q0 ≤ 1















(LP (x))

Now we are ready to state and prove a theorem that discuss a connection between

(UV OP ) and (LP (x)).

Theorem 3.3 Let a point x ∈ R
n, a (UV OP ) and an associated (LP (x)) be given.

Then the (LP (x)) always has an optimal solution (q∗, q∗0). There are two cases for the

optimal value of the (LP (x)), either q0 = 0 thus x is a Pareto-optimal solution of the

(UV OP ), or q0 = 1 thus q∗ is a joint decreasing direction for the function F at x.

Proof. It is easy to see that q = 0, q0 = 0 is a feasible solution of the (LP (x)) and

1 is an upper bound of the objective function, which means (LP (x)) should have an

optimal solution.

Let we examine the case

[J(x)]q+ q0e ≤ 0,

q0 > 0.
(1)

If system (1) has a solution, than
(

1

q0
q, 1
)

is a solution of the system, so the optimal

value of the objective function is 1. This mean that

[J(x)]q ≤ −e

so the q is a joint decreasing direction of function F .

If the system (1) has no solution then the optimal value of the objective function is 0,

and from the Farkas-lemma [8, 9, 15, 19, 26, 29] we know that there exists a w which

satisfies the following:

[J(x)]Tw = 0

eTw = 1

w ≥ 0.

(2)

It means, that if the optimal value of the (LP (x)) is 0, than x is a substationery point.
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�

Linear programming problem (LP (x)) (and later on (LPS(x))) can be solved by

either pivot or interior point algorithms [16]. In case of applying pivot methods to

solve linear programming problem, simplex algorithm is a natural choice [21, 26, 29].

A recent study on anti-cycling pivot rules for linear programming problem, contains

a numerical study on different pivot algorithms [6]. Sometimes, if the problem is well

structured and small, criss-cross algorithm of T. Terlaky can be used for solving linear

programming problem, as well [15, 31]. More about interior point algorithms for linear

programming problems can be learnt from [17, 21, 28].

4 Vector optimization with linear constraints

In this section we show how can we find feasible joint decreasing direction for a linearly

constrained vector optimization problem. First we find the joint decreasing direction

for a special problem, where we only have sign constraints on the variables. After this

we generalize our results to general linearly constrained vector optimization problems.

Our method can be considered as the generalization of the well known reduced gradient

method to vector optimization problems. Some similar result can be found in [12], for

feasible direction method of Zountendijk.

First we define vector optimization problem with sign constraints.

MIN F (x)

x ≥ 0

}

(SV OP ),

where F is a convex function. From Theorem 2.3 we know that x∗ ≥ 0 is a Pareto-

optimal solution if there exists a w ∈ Sk vector such that x∗ is an optimal solution

of
min wTF (x)

x ≥ 0

}

(SWOP ).

From KKT-theorem [21] we know that x∗ ≥ 0 is an optimal solution of (SWOP ) if it

satisfies the following system:

[J(x∗)]Tw ≥ 0,

wT [J(x∗)]x∗ = 0.
(3)

9



Let the vector x ≥ 0 be given and we would like to decide wether it is an optimal

solution of the (SWOP) problem or not. Let us define

I+ = {i : xi > 0},

I0 = {i : xi = 0}.

index sets that depends on the selected vector x. Using the index set I0, I+ we partition

the column vectors of matrix J(x) into two parts. The two parts are denoted J(x)I0

and J(x)I+ . Taking into consideration the partition, KKT conditions can be written

in equivalent form as,

[J(x)]TI+w = 0,

[J(x)]TI0w ≥ 0,

w ∈ Sk.

(4)

The inequality system (4) plays the same role for (SV OP ), as (2) for (UV OP ), namely

x is a Pareto-optimal solution if (4) has a solution.

Now we can define a linear programming problem corresponding to (SV OP ) such

that optimal solution of the linear programming problem either defines a joint decreas-

ing direction or gives a certificate that the solution x is a Pareto-optimal solution of

(SV OP ).

max z

[J(x)]I+u+ [J(x)]I0v + ze ≤ 0

v ≥ 0

0 ≤ z ≤ 1



























(LPS(x))

Now we are ready to prove the following theorem.

Theorem 4.1 Let a (SV OP ), and an associated (LPS(x)) be given where x ∈ F is a

feasible point. Then the (LPS(x)) always has an optimal solution (u∗,v∗, z∗). There

are two cases for the optimal value of the (LPS(x)), z∗ = 0 which means that x is a

Pareto-optimal solution of the (SV OP ), or z∗ = 1 which means that qT = (u∗,v∗) is

a feasible joint decreasing direction of function F .

Proof. It is easy to see that u = 0, v = 0, z = 0 is a feasible solution of the (LPS(x))

and 1 is an upper bound of the objective function, therefore (LPS(x)) has an optimal

10



solution.

Let we examine the following system

[J(x)]I+u+ [J(x)]I0v + ze ≤ 0,

v ≥ 0

z > 0.

(5)

If system (5) has a solution, then
(

1

z
u, 1

z
v, 1
)

is an optimal solution of the (LPS(x))

with optimal value 1. Thus the vector qT = (u,v) satisfies

[J(x)]q ≤ −e < 0,

so the q is a joint decreasing direction for function F at x ∈ F . Vector q is a feasible

because qI0 = v ≥ 0.

If the system (5) has no solution then the optimal value of the objective function is 0,

and from a variant of the Farkas-lemma [8, 9, 15, 19, 29] we know that there exists a

w which satisfies the following system of inequalities:

[J(x)]TI+w = 0

[J(x)]TI0w ≥ 0

eTw = 1

w ≥ 0.

(6)

It means, that if the optimal value of the (LPS(x)) is 0, than x is a Pareto-optimal

solution of the (SVOP).

�

We are ready to find feasible joint decreasing direction to a generalized linearly

constrained vector optimization problem at a feasible solution x̃. Let the matrix A ∈

R
m×n and vector b ∈ R

m be given, where rank(A) = m. Furthermore let us assume

the following non degeneracy assumption (for details see [2]): any m columns of A

are linearly independent and every basic solution is non degenerate. We have a vector

optimization problem, with linear constraint, in the following form

MIN F (x)

Ax = b

x ≥ 0















(LV OP ).
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Like in the reduced gradient method [2] we can partition the matrix A into two parts

A = [B,N ], where B is a basic and N the non-basic part of the matrix. Similarly

every v ∈ R
n vector can be partitioned as, v = [vB,vN ]. We call vB basic and vN a

nonbasic vector. We can chose the matrix B, so that the x̃B > 0 fulfill. While Ax = b

holds, we know that

BxB +NxN = b

xB = B−1(b−NxN)

We can redefine function F in a reduced form as

FN(xN) = F (xB,xN) = F (B−1 (b−NxN) ,xN).

Let we define at point x̃ the following sign constraint optimization problem

MIN FN(xN)

xN ≥ 0

}

(SV OP (x̃))

Let qN denote a feasible joint decreasing direction for (SV OP (x̃)) at point x̃N , which

can be found by applying Theorem 4.1. Let qB = −B−1NqN , then we show that

q = [qB,qN ] is feasible joint decreasing direction for (LV OP ) at point x̃. Let we

notice that

A(x̃+ hq) = Ax̃+ h(BqB +NqN) = b+
(

−B(B−1NqN) +NqN

)

= b,

for every h ∈ R. So FN(x̃+hqN) = F (x̃+hq) and while qN is a feasible joint decreasing

direction with an h1 > 0 stepsize for (SV OP (x̃)), then q is a joint decreasing direction

for (LV OP ) and with h1 > 0 step size the Ax = b and xN ≥ 0 conditions are satisfied.

While x̃B > 0 there exists h2 > 0, x̃B+h2qB, so q is a feasible joint decreasing direction

for (LV OP ) with a step-size

h3 = min(h1, h2) > 0. (7)

5 The subdivision algorithm for constrained vector

optimization problem

In this section we show, how can we build a subdivision method to approximate the

Pareto-optimal set of a vector optimization problem with linear constraints. Our
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method is a generalization of the algorithm discussed in [10], where you can find some

result about convergence of the subdivision technique. The original method can not

handle linear constraints.

Our algorithm approximate F∗ with small sets which contain Pareto-optimal solu-

tion. The smaller the sets, the better approximation of the F∗, therefore we define the

following measure of sets involved in approximation of F∗.

Definition 5.1 Let an H ⊆ R
n set be given, the diameter of H define as

diam(H) = sup
x,y∈H

||x− y||.

Let H be a family of set which contain finite number of sets from R
n, then the diameter

of H is

diam(H) = max
H∈H

diam(H).

Let we assume, that the feasible set of our problem is bounded. Then there exists

H0 = {x ∈ R
n|l ≤ x ≤ u},

where l,u ∈ R
n are given vectors and

F ⊆ H0 ∩ {x ∈ R
n : Ax = b}.

The input of our method is a matrix A ∈ R
m×n, a vector b ∈ R

m, a function F :

R
n → R

k, set H0 and a constant ε > 0. The matrix A and the vector b define our

feasible set F of (LV OP ), function F is our objective function. The output of our

algorithm is a family of sets H, such that diam(H) < ε and ∀H ∈ H contains Pareto-

optimal solution. The algorithm uses some other variables and subroutines. The SP ,

FP are finite-element sets of points from R
n, H,G ⊆ F , H′,K,K′ and A are family of

sets like H.

vector_optimization_solver(A,b, F,H0, ε)

1. H = {H0}

2. While diam(H) ≥ ε do

(a) H
′=Newsets(H)

(b) SP = ∅

13



(c) While H 6= ∅ do

i. H ∈ H

ii. SP = SP ∪ Startpoint(H)

iii. H = H \ {H}

End While

(d) FP =Points(SP , A,b, F )

(e) While H
′ 6= ∅ do

i. H ∈ H
′

ii. If H ∩ FP 6= ∅ then H = H ∪ {H} End If

iii. H
′ = H

′ \ {H}

End While

End While

3. Output(H)

Our algorithm in the first step defines the family of sets H, which contains only

H0 set. The cycle in step 2 runs while the diameter of H is not small enough. The

algorithm reach this goal in finite number of iteration, because as you will see in

subroutine Newset(H) the diameter of H tends to zero. Nevertheless we show that

after every execution of the cycle the family of sets H contains sets H which has

Pareto-optimal solutions. At the beginning it is trivial, because H contain the whole

feasible set.

In step 2(a) we define a family of sets H′ using the subroutine Newset(H). The sets

from H
′ are smaller than sets form H and cover the same set. Therefore the result of

this subroutine has two important properties:

1. ∪H∈H′ (H ∩ F) = ∪H∈H (H ∩ F),

2. diam(H′) = 1

K
diam(H),

where K > 1 is a constant.

The steps in cycle 2, from step 2(b), deletes the sets from H
′ which does not contain

Pareto-optimal point. Step 2(b) makes set SP empty. The cycle in step 2(c) produces

finite number of random starting points in set H∩{x ∈ R
n : Ax = b} for every H ∈ H

using subroutine Startpoint(H), and put the generated point into the set SP .
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The main step of our algorithm 2(d) is the subroutine Points(SP , A,b, F ) that

produce a set FP which contain Pareto-optimal points. This subroutine use our results

from section 4.

In cycle 2(e) we keep every set form H
′ which contains Pareto-optimal solution, and

add those to H. Finally, we check the length of the diameter of H and repeat the cycle

until the diameter is larger than the accuracy parameter ǫ.

Subroutine Points uses a version of reduced gradient method for computing Pareto-

optimal solutions or joint decreasing directions, discussed in section 4.

Points(SP , A, b, F )

1. While SP 6= ∅ do

(a) s ∈ SP

(b) x = s, z = 1

(c) While z = 1 do

i. (B,N) = A

ii. (xB,xN) = x

iii. (q, z)=Solve(LPS(xN))

iv. If z = 1 then

A. h3=stepsize(F , B, N , b, xN , q)

B. xN = xN + h3q

C. xB = b− B−1NxN

D. x = (xB,xN)

End If

End While

(d) SP = SP \ {s}

(e) FP = FP ∪ {x}

End While

2. Output(FP)

This subroutine works until it does not find a Pareto-optimal point from every starting

points. The cycle 1(c) runs until it finds a Pareto-optimal point. As we see in section
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4 it happens when z = 0. In line 1(c)i the matrix A is partitioned into a basis B and a

non basic part N . The same partition is made with x according to 1(c)ii, and we choose

the basis such that xB > 0 is satisfied. The LCP (xN) is solved in step 1(c)iii. If the

variable z = 0 than x is a Pareto-optimal solution and we select a new starting point

from SP , unless SP is empty. Otherwise q is a feasible joint decreasing direction for

the reduced function FN . In step 1(c)ivB we compute step-size h3 which was defined

in (7), and a new feasible solution x is computed.

6 Markowitz-model and computational results

Let us illustrate our method by solving the Markowitz-model to find the most prof-

itable and less risky portfolio. The standard way of solving the model is to find one

of the Pareto-optimal solution with an associated (WOP ) [23], [25]. The question is

whether such single Pareto-optimal solution is what we need for practical purposes.

Naturally, if we would like to make extra profit, we should accept larger risk. There-

fore, a single Pareto-optimal solution does not contain enough information for making

practical decision. If we produce or approximate Pareto-optimal solution set then we

can make our decision based on more valuable information.

The analytical description of the whole Pareto-optimal set for the Markowitz-model

is known [32]. Thus as a test problem, Markowitz-model has the following advantage:

it is possible to derive its Pareto-optimal solution set in analytical way (for further

details see, Vörös J. [32]), therefore the result of our subdivision algorithm can be

compared with the analytical description of the Pareto-optimal solution set.

Now we are ready to formulate the original Markowitz-model. Let we assume, that

we have to select from n different securities. Let xi denote how much percentage we

spend from our budget on security i (i = 1, 2, . . . , n). Therefore, our decision space is

the n-dimensional unit simplex, Sn.

Let a ∈ R
n denote the expected return of the securities, C ∈ R

n×n, denote the

covariant matrix of the securities return. It is known, that the expected return of our

Portfolio is equal to aTx. One of our goal is to maximize the expected return.

Much harder to measure risk of the portfolio, but in this model it is equal to the

variance of the securities return, namely by xTCx. Our second goal is to minimize this
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value. Now we are ready to formulate our model

MIN

(

−aTx

xTCx

)

x ∈ Sn















(MM).

For computational purposes we used data from Budapest Stock Exchange [3], from

spot market, A category shares, daily prices from 01. 09. 2010. to 01. 09. 2011 has

been collected. Let Pi,d denote the daily price of the i-th share on date d, then the i-th

coordinate of the vector a is equal to (Pi,01.09.2011. − Pi,01.09.2010.)/Pi,01.09.2010.. Thus we

only work with the relative return from the price change and do not deal with shares

dividend. We compute the daily return of the shares for every day (d) from 01. 09.

2010. to 31. 08. 2011. as (Pi,d−Pi,d+1)/Pi,d, and C is the covariant matrix of this daily

return. To illustrate our method we use three shares (i = MOL, MTELEKOM, OTP)

that are usually selected into portfolios because these shares correspond to large and

stable Hungarian companies. We used the following data:

a =







−0, 1906

−0, 2556

−0, 1665







C = 10−5







27, 1024 7, 5655 17, 1768

7, 5655 16, 4816 8, 1816

17, 1768 8, 1816 34, 2139







The input data of the vector_optimization_solver are: matrix A = e ∈ R
3, b = 1

since we have a single constraint in our model, and the objective function F (x) =
(

−aTx

xTCx

)

. Let H0 = {0 ≤ x ≤ e}, ǫ = 1

26
and K = 2.

At the beginning of the algorithm in step 1 the family of set H has been defined

(see Fig. 1).

At the first iteration of step 2 the method Newset define H
′ in two steps. First, it

cuts the set H0 into eight equal pieces as you can see on Fig. 2:

After that we delete all those sets from H
′ that does not contain any point from

the feasible set of the problem. Thus the H
′ is shown on Fig. 3. The main part of

the algorithm starts at step 2(c). Two hundred random points are generated from the

unit simplex (set SP). For each generated point either a joint decreasing direction is

computed and after that a corresponding Pareto-optimal solution has been identified
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Figure 1

Figure 2

Figure 3
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Figure 4

Figure 5

through some iteration or it has been shown that the generated point itself is a Parteo-

optimal solution of the problem. After we obtained 200 Pareto optimal solutions in

set FP at step 2(d) we delete those boxes that does not contain any point from FP

at step 2(e). The result of the first iteration can be seen on Fig. 4. From the original

eight boxes remained three. For these three boxes the procedure has been repeated in

the second iteration. The results of iteration 3, 5 and 7 are illustrated on Fig. 5, Fig.

6, and Fig. 7, respectively.

These figures illustrate the flow of our computations. Finally to illustrate the

convergence of our method the whole Pareto-optimal set was determined [32], and

compared of the result of the fifth iteration on Fig. 8.

Summarizing our computations on the table 1 where I stands for the iteration

number; Bin and Bout denotes the number of boxes at the beginning and at the end

of iteration, respectively. Furthermore, T (s) is the time of the I th iteration, while d is

the diameter of the set H.
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Figure 6

Figure 7

Figure 8
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I Bin T (s) Bout d

1 1 8 3 2−3

2 24 29 7 2−6

3 56 70 15 2−9

4 120 166 29 2−12

5 232 312 56 2−15

6 448 696 110 2−18

7 880 1429 228 2−21

Table 1: Computational results for Markowitz-model using subdivision method.

The total computational time, for our MATLAB implementation using a laptop

with the following characteristics (processor: Intel(r) Core(TM) i3 [3.3 GHZ], RAM

Memory: 4096 MB), took 2710 seconds for the subdivision algorithm for the given

Markovitz-model to approximate the whole Pareto-optimal solution set with the accu-

racy ε = 2.4 10−8.

Analyzing our approximation of the Pareto-optimal solution set, we can conclude

that our option is to buy OTP shares only. From data, it can be understood, that

this share has the biggest return (smallest loss in the financial crisis), so this solution

represent the strategy, when someone does not care the risk only the return. From that

point a line start which represents strategies related to portfolios based on OTP and

MOL shares. Clearly, there exists a breaking point where new line starts. From the

braking point the line lies in the interior of the simplex suggesting a portfolio based on

all three selected shares.

7 Final remarks

In this paper we introduced the feasible joint decreasing direction for constrained vec-

tor optimization problems. We gave a new and elementary proof of a theorem from

Schultz at al. [30] for finding joint decreasing direction for unconstrained multi ob-

jective problems. Based on our proof we developed a new method for finding joint

decreasing direction for linearly constrained, convex vector optimization problems and

defined a new, generalized subdivision algorithm, which outputs a numerical approx-

imation of the whole Pareto-optimal set. Computational behavior of our method has
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been illustrated by numerical solving the Markowitz-model for a given data set.

The original subdivision technique [10] could not handle constraints and works only

for convex functions. Some more general results for joint decreasing direction can be

found in [12]. Based on our approach and ideas described by Flieg in [12, 13] further

generalization of the subdivision method is possible for (GV OP ) with convex, compact

set F .

Acknowledgements. This research has been supported by the TÁMOP-4.2.2./B-

10/1-2010-0009, Hungarian National Office of Research and Technology with the finan-

cial support of the European Union from the European Social Fund.

Tibor Illés acknowledges the research support obtained from Strathclyde University,

Glasgow under the John Anderson Research Leadership Program.

References

[1] A.A. Akkeleş, L.Balogh, and T.Illés, New variants of the criss-cross method for lin-

early constrained convex quadratic programming, European Journal of Operational

Research, Vol. 157, pp. 74–86, 2004.

[2] Bazaraa, M. S., Sherali, H. D., Shetty, C. M., Nonlinear Programing Theory and

Algorithms, 3-rd edition, Jhon Wiley & Son Inc., New Jersey, 2006.

[3] Budapest Stock Exchange, 10. 06. 2012.

http://client.bse.hu/topmenu/trading_data/stat_hist_download/trading_summ_pages_dir.html

[4] Z. Csizmadia, New pivot based methods in linear optimization, and an application in

petroleum industry, www.cs.elte.hu/∼csiszaPhD Thesis, Eötvös Loránd University of Sci-

ences, 2007.

[5] Z. Csizmadia and T. Illés, New criss-cross type algorithms for linear complementarity

problems with sufficient matrices, Optimization Methods & Software, Vol. 21, pp. 247–

266, 2006.

[6] Z. Csizmadia, T. Illés, and A. Nagy, The s-monotone index selection rules for pivot al-

gorithms of linear programming, European Journal of Operation Research, Vol. 221, pp.

491–500, 2012.

22



[7] D. den Hertog, C. Roos, and T. Terlaky, The linear complementarity problem, sufficient

matrices, and the criss-cross method, Linear Algebra and its Applications, Vol. 187, pp.

1–14, 1993.

[8] Gy. Farkas, A Fourier-féle mechanikai elv alkalmazásai (The applications of the mechanical

principle of Fourier [in Hungarian]), Mathematikai és Természettudományi Értesítő, Vol.

12, pp. 457–472, 1894.

[9] Gy. Farkas, Theorie der einfachen ungleichungen, Journal für die Reine und Angewandte

Mathematik, Vol. 124, pp. 1–27, 1901.

[10] Dellnitz, M., Schütze, O., Hestermeyer, T., Covering Pareto Sets by Multilevel Subdivi-

sion Techniques, Journal of Optimization Theory and Applications, Vol. 124, pp. 113–136,

2005.

[11] Dellnitz, M., Schütze, O., Zheng, Q., Locating all the zeros of an analytic function in

one complex variable, Journal of Computational and Applied Mathematics, Vol. 138, pp.

1–32, 2002.

[12] Flieg J., Steepest Descent Methods for Multicriteria Optimization, Mathematical Methods

of Operations Research, Vol. 51, pp. 479–494, 2000.

[13] Flieg J., An Efficient Interior-Point Method for Convex Multicriteria Optimization Prob-

lems, Mathematics of Operations Research, Vol. 31, pp. 825–845, 2006.

[14] T. Illés, C. Roos and T. Terlaky, Polynomial Affine-Scaling Algorithms for P ∗ (κ) Linear

Complementarity Problems, Lecture Notes in Economics and Mathematical Systems, Vol.

452, pp. 119–137, 1997.

[15] T. Illés and K. Mészáros, A New and Constructive Proof of Two Basic Results of Linear

Programming, Yugoslav Journal of Operations Research, Vol. 11, pp. 15–30, 2001.

[16] T. Illés and T. Terlaky, Pivot versus interior point methods: Pros and cons, European

Journal of Operational Research, Vol. 140, pp. 170–190, 2002.

[17] Illés T., Nagy M., and Terlaky T., Interior point methods for linear optimization [In

Hungarian]. In: A. Iványi (editor), Informatikai algoritmusok 2. 2005. pp. 1230–1297,

Eötvös Kiadó, Budapest.

[18] T. Illés and M. Nagy, A MizunoToddYe type predictorcorrector algorithm for sufficient

linear complementarity problems, European Journal of Operational Research, Vol. 181,

pp. 1097–1111, 2007.

23



[19] E. Klafszky and T. Terlaky, The role of pivoting in proving some fundamental theorems

of linear algebra, Linear Algebra and its Applications, Vol. 151, pp. 97–118, 1991.

[20] Luc, D., T., Theory of Vector Optimization, Lecture Notes in Ec. and Mathem. Systems,

No. 319, Springer Verlag, Berlin, 1989.

[21] Luenberger, D. G., Ye, Y., Linerar and Nonlinear progrmaing, 3-rd edition, Springer

Science+Business Media LLC, New York, 2008.

[22] Markowitz, H., The Optimalization of Quadratic Function Subject to Linear Constarint,

Naval Reserch Logistic Quartely, Vol. 1, pp. 111–133, 1952.

[23] Markowitz, H., Portfolio Selection, The Journal of Finance, Vol. 8, pp. 77–91, 1952.

[24] Markowitz, H., Portfolio Selection Efficient Diversification of investment, Jhon Wiley &

Son Inc., New York, Chapman and Hall Ltd., London, 1959.

[25] Miettinen, K., Review of Nonlinear MCDM Methods, Operation Research Managment

Science, Kluwer Acadamic Publisher, Boston, London, Dordrecht, 1997.

[26] Murty, K. G., Yu, F., Linear Complementarity, Linear and Nonlinear Programming,

intrenet edition 1997.

http://ioe.engin.umich.edu/people/fac/books/murty/linear_complementarity_webbook/

[27] Pareto, V., Cours D’économie Politique, Pichon, Libraire, Paris, Duncker & Humbolt,

Leipzig, 1896.

[28] C. Roos, T. Terlaky, and J.-Ph. Vial, Theory and Algorithms for Linear Optimization: An

Interior Point Approach, Wiley-Interscience Series in Discrete Mathematics and Optimiza-

tion, John Wiley & Sons, New York, USA, 1997. Second edition: Interior PointMethods

for Linear Optimization, Springer, New York, 2006.

[29] Schrijver A., Theory of Linear and Intiger Programing, John Wiley and Sons, New York,

1998.

[30] Schäffler, S., Schultz, R., Weinzierl, K., A Stohastic Method for the Solution of Uncon-

starined Vector Optimization Problems, Journal of Optimalization Theory and Applica-

tion, Vol. 114. pp. 112–128, 2002.

[31] T. Terlaky, A convergent criss-cross method, Optimization, Vol. 16, pp. 683–690, 1985.

[32] Vörös J., Portfolio analysis – An analytic derivation of the efficient portfolio frontier,

European Journal of Operational Reserch, Vol. 23, pp. 294–300, 1986.

24


