
Strathprints Institutional Repository

Illes, Tibor and Molnár-Szipai, Richárd (2015) Strongly polynomial primal 

monotonic build-up simplex algorithm for maximal flow problems. 

[Report] , 

This version is available at http://strathprints.strath.ac.uk/55707/

Strathprints is  designed  to  allow  users  to  access  the  research  output  of  the  University  of 

Strathclyde. Unless otherwise explicitly stated on the manuscript, Copyright © and Moral Rights 

for the papers on this site are retained by the individual authors and/or other copyright owners. 

Please check the manuscript for details of any other licences that may have been applied. You 

may  not  engage  in  further  distribution  of  the  material  for  any  profitmaking  activities  or  any 

commercial gain. You may freely distribute both the url (http://strathprints.strath.ac.uk/) and the 

content of this paper for research or private study, educational, or not-for-profit purposes without 

prior permission or charge. 

Any  correspondence  concerning  this  service  should  be  sent  to  Strathprints  administrator: 

strathprints@strath.ac.uk

http://strathprints.strath.ac.uk/
mailto:strathprints@strath.ac.uk


Operations Research
Report 2015-02

Strongly polynomial primal monotonic
build-up simplex algorithm for maximal

flow problems

Tibor Illés, Richárd Molnár-Szipai

September 2015

Eötvös Loránd University of Sciences

Department of Operations Research

Copyright c© 2015 Department of Operations Research,

Eötvös Loránd University of Sciences,
Budapest, Hungary

http://www.cs.elte.hu/opres/orr/

ISSN 1215 - 5918



Operations Research Reports No. 2015-02 3

Strongly polynomial primal monotonic

build-up simplex algorithm for maximal

flow problems

Tibor Illés, Richárd Molnár-Szipai

Abstract

The maximum flow problem (MFP) is a fundamental model in op-
erations research. The network simplex algorithm is one of the most
efficient solution methods for MFP in practice. The theoretical proper-
ties of established pivot algorithms for MFP is less understood. Vari-
ants of the primal simplex and dual simplex methods for MFP have
been proven strongly polynomial, but no similar result exists for other
pivot algorithms like the monotonic build-up or the criss-cross simplex
algorithm.

The monotonic build-up simplex algorithm (MBU SA) starts with a
feasible solution, and fixes the dual feasibility one variable a time, tem-
porarily losing primal feasibility. In the case of maximum flow problems,
pivots in one such iteration are all dual degenerate, bar the last one.
Using a labelling technique to break these ties we show a variant that
solves the maximum flow problem in 2|V ||A|2 pivots.

1 Introduction

The maximal flow problem is one of the basic models in network optimization
that already has a wide range of applications from railway optimization [13],
[18] to corresponding minimum cut problems in computer vision [12]. It is not
surprising then, that it has been studied extensively, with numerous solution
methods developed.

The first substantial results are due to Ford and Fulkerson [8], including
the maximum flow – minimum cut theorem, and the idea of augmenting path

2015-06-01

4 Tibor Illés, Richárd Molnár-Szipai

algorithms. Later Edmonds and Karp [7], and independently Dinic [6] proved
that the shortest augmenting path algorithm is strongly polynomial.

Another family of algorithms use so-called preflows. A preflow is a flow
except that each intermediate node are allowed to have more inflow than
outflow (but not the other way around). The first such algorithm by Karzanov
[15] used preflows only to solve the subproblems in Dinic’s algorithm, so the
conservation equations are restored at the end of each phase. Later preflow
algorithms took a more holistic approach, where the preflow becomes a flow
only at the final step (see e.g. Goldberg and Tarjan [9]). This phenomenon
is similar to how primal feasibility is restored only at the last pivot of a dual
simplex algorithm, while the augmenting path algorithms are more like the
primal simplex algorithm in that they proceed through feasible solutions.

In fact, the maximum flow problem is a special linear programming prob-
lem, therefore it can be solved using pivot algorithms. Indeed, the description
of the network simplex algorithm appears as far back as Dantzig’s book on
linear programming [5]. The first published strongly polynomial pivot algo-
rithm for a network optimization problem is a dual simplex algorithm for the
minimum cost flow problem due to Orlin [16], while the first primal simplex
variant (specifically for the maximum flow problem) is by Goldfarb and Hao
[10, 11]. However, pivot algorithms that traverse bases that are neither primal
nor dual feasible received less attention, no such algorithm has been proven
strongly polynomial so far. We show that the primal monotonic build-up sim-
plex algorithm [2] has a strongly polynomial variant for the maximum flow
problem.

The structure of the article is as follows: in the next section we describe the
MBU SA for linear programming in general, and how it works on maximum
flow problems in particular. In the third section we describe our variant in
detail. In the fourth section we prove the polynomiality of this algorithm, and
then we conclude the article with some remarks and possible future research
directions.

2 Preliminaries

The reader is expected to have a basic understanding of the simplex method
of linear programming (e.g. basic solutions, primal and dual feasibility), and
of the maximum flow problem. For reference, see [1, 5, 8].

Consider a linear programming problem in the following form:

Operations Research Reports No. 2015-02



Strongly polynomial primal monotonic build-up simplex algorithm for maximal

flow problems 5

max cTx

Ax = b

x ≥ 0

Where A ∈ R
n×m, x, c ∈ R

m, b ∈ R
n. Without loss of generality we may

assume that A has full row rank. Let B be an n× n invertible submatrix of
A, IB the set of column indices of B, and IN the remaining column indices.
Then the solution xB = B−1

b, xN = 0 is a so-called basic solution, with the
corresponding simplex tableau:

A b

c
T −z0

:=
B−1A B−1

b

c
T − c

T
BB

−1A −cTBB
−1b

Using the notations ai,j , bi and cj for the elements of the current tableau,
the primal MBU SA is as follows:

1. Start with a primal feasible basic solution

2. Choose a dual infeasible variable xp∗ . We refer to xp∗ as the driving
variable [2]. If there are none, stop, we have an optimal solution.

3. Select the leaving variable using a minimum ratio test on feasible basic
variables:

q = argmin

{

bq
aq,p∗

: aq,p∗ > 0, bq ≥ 0

}

Let ϑ1 = |cp∗ |/aq,p∗ .

4. Choose the entering variable using a minimum ratio test on dual feasible
nonbasic variables:

p = argmin

{

cp
|aq,p|

: cp ≥ 0, aq,p < 0

}

Let ϑ2 = cp/|aq,p|.

5. Variable xq leaves the basis. If ϑ2 < ϑ1, then xp enters the basis and go
to step 3, otherwise xp∗ enters the basis, and go to step 2.

Operations Research Reports No. 2015-02

6 Tibor Illés, Richárd Molnár-Szipai

The name of the algorithm comes from the property that dual feasible
variables do not lose their feasibility (due to step 4), and thus the set of these
variables monotonically build up. The fact that we might select the variable
xp instead of xp∗ on whose column we took the minimum ratio test means
that we can lose primal feasibility. However, when xp∗ finally enters the basis,
primal feasibility is restored (see [2] for details).

Let G = (V,E) be a connected directed graph with two distinguished nodes
s and t, the source and the sink, respectively. Given lower and upper bounds
on the arcs and obeying conservation of flow at intermediate nodes, we wish
to maximize the amount of flow from s to t. Introducing an arc from t to s,
the maximum flow problem can be stated as the following linear program:

max xt,s

∀v ∈ V :
∑

(w,v)∈E

xw,v −
∑

(v,w)∈E

xv,w = 0

∀e ∈ E : le ≤ xe ≤ ue

Throughout the article we are using the following notations:

• v, w and z for nodes of a graph

• e for an arc of a graph

• p and q for the entering and leaving arc of a graph

• p∗ = (g, h) as the arc corresponding to the driving variable

Now let us break down how the primal monotonic build-up simplex algo-
rithm works on maximum flow problems step by step.

Step 1 : Start from a primal feasible basic solution. The basic variables
correspond to the arcs of a spanning tree T containing (t, s), with the non-
basic arcs having flow values of either the lower or the upper bound. The
basic variables are then uniquely determined by the conservation equations.
If the lower bounds are zero, then x = 0 is such a feasible basic solution with
an arbitrary spanning tree. Otherwise finding such a starting solution is not
trivial, one can do so by transforming the network and solving another (zero
lower bounds) maximum flow problem (see e.g. [1] section 6.2), which corre-
sponds to solving the first phase of a two phase linear programming problem.

Operations Research Reports No. 2015-02



Strongly polynomial primal monotonic build-up simplex algorithm for maximal

flow problems 7

Another way is to use the feasibility MBUSA [14] (which is a specialization
of [4]). Having zero or nonzero lower bounds do not affect the algorithm
otherwise.

Step 2 : Choose a dual infeasible variable. Let T i ⊂ E be the spanning tree
before the ith pivot. Dropping (t, s) from T i disconnects the spanning tree,
with one subset containing s, and the other one containing t. These vertex
sets are denoted by Si and Zi respectively. The reduced cost ce of a nonbasic
arc e is:

ce =







1 if e : Si → Zi and xe = ue or e : Zi → Si and xe = le
−1 if e : Si → Zi and xe = le or e : Zi → Si and xe = ue

0 otherwise: e : Si → Si or e : Zi → Zi

Without loss of generality we can assume that the driving variable p∗ =
(g, h) ∈ E is on its lower bound, i.e. g ∈ Si and h ∈ Zi.

Step 3 : Choose the leaving variable with a primal ratio test. T i ∪ (g, h)
contains a unique cycle Ci, consider it directed according to (g, h). Then the
leaving arc q ∈ Ci is an arc where

δ = min

{

uq − xq : q is forward, xq ≤ uq; or
xq − lq : q is backward, xq ≥ lq

}

takes its value. (We are examining how much we could augment along the
cycle Ci, not counting arcs that are already infeasible in the appropriate
direction.) Note that such an arc q is uniquely determined if the bounds are
sufficiently diverse, so we will choose arbitrarily, should a tie occur.

Step 4 : Choose the entering variable with a dual minimum ratio test. The
simplex tableau, along with the reduced costs is totally unimodular, so this
ratio test can result in either a 0, or a 1 quotient. As ϑ1 = 1 the only instance
when we do not let p∗ enter the basis is if we find an arc p with ratio 0, i.e.
with reduced cost 0, and aq,p = −1. As we’ve seen, cp = 0 means that p is
either Si → Si or Zi → Zi, and ϑ2 < ϑ1 means that performing the pivot
(g, h) for q would make p dual infeasible. In the case of q ∈ Si, dropping
q from the tree would disconnect s and g, suitable entering variables would
either be arcs from the subtree of s to the subtree of g on their lower bounds,
or arcs the other way around on their upper bounds.

3 Description of the algorithm

To describe the algorithm we will consider the subtrees Si and Zi to be rooted
at g and h respectively. Picturing the tree with the root at the top, and using

Operations Research Reports No. 2015-02

8 Tibor Illés, Richárd Molnár-Szipai

the usual notions of “parent” and “child” node, T i
v will denote the subtree in

T i spanning the node v and its descendants. Using this image, we will also
refer to the nodes of a basic arc as the “upper” and “lower” nodes. For a basic
arc q ∈ T i we will use the notation T i

q for the subtree “below” q, that is, T i
v,

where v is the lower node of q (we will use this notation only in the context
of the leaving variable q).

We will use the concept of a pseudo-augmenting path (PAP) as defined in
[11]: a pseudo-augmenting path from v to w with respect to a basic solution
x, and spanning tree T is a directed path from v to w that can use (v1, v2) if

• (v1, v2) ∈ E\T i and xv1,v2 = lv1,v2 ,

• or (v2, v1) ∈ E\T i and xv2,v1 = uv2,v1 ,

• or if either (v1, v2) ∈ T i or (v2, v1) ∈ T i.

Note that nonbasic arcs are used the same way as with classical augmenting
path algorithms, the addition of using basic arcs in any direction makes the
notion compatible with the basis structure.

The label di(v) of vertex v before pivot i with respect to the current driving
variable (g, h) and basis structure T i is the length of the shortest PAP from
h to v within T i

h if v ∈ T i
h, and the length of the shortest PAP from v to g

within T i
g if v ∈ T i

g.

Using these labels to choose the entering variable results in the following
variant of the primal monotonic build-up simplex algorithm:

0. Start with a primal feasible basic solution x.

1. Let (g, h) be an arbitrary dual infeasible arc. If no such arc exists, then
the current solution is optimal.

2. Let q be an arc limiting further augmentation along the cycle in T i ∪
(g, h).

3. If there is a possible entering arc between T i
q and the rest of T i

g or T i
h

(whichever q is in)

• then let p be such an arc with minimal label in E\T i
q , and perform

a pivot with p entering and q leaving the basis. Go to step 2.

• else let (g, h) enter the basis with q leaving. Go to step 1.

Operations Research Reports No. 2015-02



Strongly polynomial primal monotonic build-up simplex algorithm for maximal

flow problems 9

4 Proving Strong Polynomiality

First, we need to note that it is sufficient to establish the polynomiality of
making a single (g, h) dual infeasible arc feasible. This statement relies on
the primal MBU SA having the property that a dual feasible variable never
becomes infeasible during the algorithm, and so the number of outer cycles is
bound by the number of dual infeasible variables in the initial basic solution.

To bound the number of pivots needed to get the driving variable into
the basis, we use a few features of the labelling technique. First, we prove
that the label of every node is monotonically non-decreasing (“monotonicity
lemma”). This tells us that the algorithm is progressing in a certain sense.
The lemma’s appropriate version appears in both [11] and [3]. As the label of
a node represents the length of a shortest path, it is bounded by the number
of vertices. After this lemma we show that not only the labels do not decrease,
but strict increases must happen regularly. Therefore an upper bound on the
number of pivots can be derived.

LEMMA [. Monotonicity lemma] Assume that a MFP is solved by Algorithm
3. For any v ∈ V and iteration i during a single outer cycle di+1(v) ≥ di(v)
holds.

Proof: Assume indirectly that there exists z and i such that di+1(z) <
di(z). We can assume that z is a counterexample with minimal di+1(z) label.

As di+1(z) < di(z), the shortest PAP from z to g after the ith pivot must
use an arc in a direction that was not available before. Let us take a look at
how the arcs change with respect to labelling:

• arcs that are in the basis both before and after the pivot (T i
g ∩ T i+1

g )

can be used in both directions for calculating di(z) and di+1(z),

• arcs not in either basis (E\(T i
g ∪ T i+1

g )) didn’t have their flow value
changed, so they can be used in the same directions both before and
after the pivot,

• the entering arc p was usable in one direction before entering the basis,
and is usable in both directions after the pivot,

• conversely, the leaving arc q was usable in both directions before the
pivot, and in only one direction after it.

Let v ∈ T i
q and w 6∈ T i

q be the two vertices of p, the only new possibility for
labelling after the pivot is using p in the w → v direction, so the new shortest
PAP from z must use that.

Operations Research Reports No. 2015-02

10 Tibor Illés, Richárd Molnár-Szipai

As v ∈ T i
q , this PAP must leave T i

q after using p via some p′ arc, with

v′ ∈ T i
q and w′ 6∈ T i

q its two vertices. Note that p′ 6= q, because after leaving

the basis q can only be used from its vertex not in T i
q . Therefore p′ 6∈ T i, and

could have been used to leave T i
q , so it was a candidate for entering the basis

at the ith pivot. However, we chose p over p′, so di(w) ≤ di(w′) must hold.

Therefore the shortest PAP from z to g first uses the shortest PAP from z
to w, uses (w, v), uses the shortest PAP from v to v′, uses (v′, w′), and finally
the shortest PAP from w′ to z. Denoting the shortest PAP from v1 to v2
before pivot k by dk(v1, v2), d

i+1(z) can be written as:

di+1(z) = di+1(z, w) + 1 + di+1(v, v′) + 1 + di+1(w′)

≥ di(z, w) + di(w′) + 2 ≥ di(z, w) + di(w) + 2 ≥ di(z) + 2.

Where we used:

• di+1(z, w) ≥ di(w, z), as the shortest PAP from z to w can not use p in
the w → v direction.

• di+1(v′, v) ≥ 0.

• di+1(w′) ≥ di(w′), as otherwise w′ would be a counterexample to the
lemma, with di+1(w′) < di+1(z), contradicting the minimality of z.

• di(w′) ≥ di(w) from the choice of p as the entering variable (see above).

• di(w) + di(w, z) ≥ di(z) is a triangle inequality for PAPs.

We assumed indirectly that di+1(z) < di(z), but we concluded di+1(z) ≥
di(z) + 2, a contradiction. �

To proceed, we will show that for every arc p = (pv, pw) the sum of its
labels d(pv)+d(pw) must increase between subsequent enterings into the basis
(“Main lemma”). This approach is similar to that in [3], but due to not having
a dual feasible basis, the acquired inequalities are somewhat weaker.

The proof of this lemma is split into two cases according to whether p leaves
the basis having the same direction that it had when entering or not. First
we will prove an inequality that helps us in the first case.

LEMMA [. Subtree lemma] Assume that a MFP is solved by Algorithm 3. If
(v, w) entered the basis at the ith pivot, with w being the upper vertex, and
this remains true throughout, even after the jth pivot, then for all z ∈ T j+1

v :
dj+1(z) ≥ di(w) + 1.

Operations Research Reports No. 2015-02



Strongly polynomial primal monotonic build-up simplex algorithm for maximal

flow problems 11

Proof: Case j = i. Note that T i+1
v = T i

q . Take a shortest reverse pseudo-

augmenting path from g to z. As z ∈ T i+1
v , this path must contain an arc

leading into T i
q . This arc can not be q, as it left the basis on the wrong bound

for that.

If it is p, then di+1(z) ≥ di+1(w) + 1 ≥ di(w) + 1.

Otherwise that arc could have entered the basis at pivot i, but we chose p
instead, so di(w′) ≥ di(w) for its w′ 6∈ T i

q vertex. Then di+1(z) ≥ di+1(w′) +

1 ≥ di(w′) + 1 ≥ di(w) + 1.

This finishes the proof for j = i.

For j > i we use induction, so let us assume that the lemma is true for
j − 1, and let z ∈ T j+1

v .

If z ∈ T j
v as well, then monotonicity and the induction hypothesis gives

dj+1(z) ≥ dj(z) ≥ di(w) + 1.

Otherwise, z entered Tv during the jth pivot. Let the entering arc of that
pivot be p with pv ∈ T j

v and pw 6∈ T j
v vertices. Then dj+1(z) ≥ dj(pv) + 1

using the i = j case of this lemma for p, and dj(pv) ≥ di(w) + 1 by the
induction hypothesis, giving dj+1(z) ≥ di(w) + 2. This completes the proof.
�

The next lemma shows that if p changes direction since entering the basis,
then a strict increase in his labels must already have happened.

LEMMA [. Reversal lemma] Assume that a MFP is solved by Algorithm 3. If
(v, w) entered the basis at the ith pivot, with w being the upper vertex, this
remains true throughout, but changes to v being upside with the jth pivot,
then dj+1(w) ≥ di(w) + 1.

Proof: We claim that the following inequalities hold:

dj+1(w) ≥ dj(pw) + 1 ≥ dj(pv) ≥ di(w) + 1

Let the entering arc at pivot j be p with pw 6∈ T j
v and pv ∈ T j

v vertices.
The leaving arc q must be on the path in the spanning tree from w to g for
(v, w) to change directions. This also means that w ∈ T j+1

pw

, so by the subtree

lemma we have dj+1(w) ≥ dj(pw) + 1.

As p was a candidate for entering, it could be used for labelling from the
pw end, which means dj(pv) ≤ dj(pw) + 1.

Finally, pv ∈ T j
v , so using the subtree lemma we get dj(pv) ≥ di(w) + 1. �

Now we are ready to state our main lemma, describing the growth behavior
of the labels.

Operations Research Reports No. 2015-02

12 Tibor Illés, Richárd Molnár-Szipai

LEMMA [. Main lemma] Assume that a MFP is solved by Algorithm 3. If
(v, w) entered the basis at pivot i, left it at pivot j, and entered it again at
pivot j, then dk+1(v) + dk+1(w) ≥ di(v) + di(w) + 2 holds.

Proof: Without loss of generality we might assume that w is the upper
vertex of (v, w) in T i+1

g .

Case a: w is the upper vertex in T j
g as well. We claim that

dk+1(v) + dk+1(w) ≥ 2dk(v) + 1 ≥ 2di+1(v) + 1 ≥ di(v) + di(w) + 2

After leaving a base (v, w) can be used for labelling only from its v end,
therefore v will be the upper vertex after pivot k. According to the subtree
lemma dk+1(w) ≥ dk(v) + 1, and using dk+1(v) ≥ dk(v) we get the first
inequality.

The second inequality is the monotonicity lemma.

In the third inequality we bound one of the di+1(v) with the subtree lemma:
di+1(v) ≥ di(w) + 1, and the other one with monotonicity: di+1(v) ≥ di(v).

Case b: v is the upper vertex in T j
g . We explain

dk+1(v)+dk+1(w) ≥ 2dk(w)+1 ≥ 2dl+1(w)+1 ≥ 2di(w)+3 ≥ di(v)+dw +2

where l is the first pivot when the direction of (v, w) changes in the spanning
tree (i < l < j < k).

As v is the upper vertex when leaving the basis, w is the upper vertex
after pivot k, and we get the first inequality by using the subtree lemma and
monotonicity similar to the previous case.

The second inequality is the monotonicity lemma.

The third inequality is the reversal lemma: dl+1(w) ≥ di(w) + 1.

In the fourth inequality we use that before pivot i we could use (v, w) for
labelling from the side of w, therefore di(v) ≤ di(w) + 1. �

Finally, we deduce the strong polinomiality of the algorithm from the pre-
vious lemma.

Theorem 4.1. Algorithm 3 solves a MFP in at most 2nm2 pivots.

Proof: The number of dual infeasible arcs at the start of the algorithm
is less than m. As the primal MBU simplex algorithm does not create new
dual infeasible arcs, the inner cycle can happen at most m times. Let us then
examine the number of pivots it takes to “fix” an infeasible arc.

Operations Research Reports No. 2015-02



Strongly polynomial primal monotonic build-up simplex algorithm for maximal

flow problems 13

For any (v, w) arc we have 1 ≤ d(v) + d(w) ≤ 2n − 5 (we have 2 vertices
with label 0, so the maximum label is n − 2, and there can be at most one
such vertex). By the monotonicity lemma d(v) + d(w) is not decreasing, and
by the previous lemma it increases by at least 2 if it enters the basis twice.
Therefore (v, w) can enter the basis at most 2n− 5 times. As every pivot has
an entering arc, we can thus have at most 2nm pivots, even counting the final
pivot that lets the dual infeasible arc enter the basis. �

5 Conclusions and further directions

Building upon the techniques used for proving the polynomiality of certain
variants of the primal and dual simplex algorithms [11, 3] on the maximum
flow problem, we have shown that the primal MBU simplex algorithm also has
such a strongly polynomial variant. This variant has an interesting structure:
the algorithm makes at most m dual nondegenerate steps, each two separated
by at most 2nm dual degenerate steps. The corresponding flow becomes
primal feasible after every nondegenerate step, but this property may not
hold in between them.

It remains an open problem if similar results can be reached with other non-
primal, non-dual pivot algorithms, such as the dual MBU simplex algorithm,
exterior point simplex algorithms [17], or criss-cross type algorithms [19].

References

[1] R. K. Ahuja, T. L. Magnanti, and J. B. Orlin. Network Flows. Prentice
Hall, New Jersey, 1993.

[2] K. M. Anstreicher and T. Terlaky. A monotonic build-up simplex algo-
rithm for linear programming. Operations Research, 42:556–561, 1994.

[3] R. D. Armstrong, W. Chen, D. Goldfarb, and Z. Jin. Strongly polynomial
dual simplex methods for the maximum flow problem. Mathematical

Programming, 80:17–33, 1998.

[4] F. Bilen, Zs. Csizmadia, and T. Illés. Anstreicher–terlaky type monotonic
simplex algorithms for linear feasibility problems. Optimisation Methods

and Software, 22(4):679–695, 2007.

[5] G. B. Dantzig. Linear Programming and Extensions. Princeton Univer-
sity Press, Princeton, NJ., 1963.

Operations Research Reports No. 2015-02

14 Tibor Illés, Richárd Molnár-Szipai

[6] E. A. Dinic. Algorithm for solution of a problem of maximum flow in
networks with power estimation. Soviet Math. Doklady, (11):1277–1280,
1970.

[7] J. Edmonds and R. M. Karp. Theoretical improvements in algorithmic
efficiency for network flow problems. Journal of ACM, 19:248–264, 1972.

[8] L. R. Ford and D. R. Fulkerson. Flows in Networks. Princeton University
Press, Princeton, NJ., 1962.

[9] A. V. Goldberg and R. E. Tarjan. A new approach to the maximum flow
problem. In Proceedings of the 18th ACM Symposium on the Theory of

Computing, pages 136–146, 1986.

[10] D. Goldfarb and J. Hao. A primal simplex algorithm that solves the
maximum flow problem in at most nm pivots and O(n2m) time. Math-

ematical Programming, 47:353–365, 1990.

[11] D. Goldfarb and J. Hao. On strongly polynomial variants of the network
simplex algorithm for the maximum flow problem. Operations Research

Letters, 10:383–387, 1991.

[12] D. M. Greig, B. T. Porteous, and A. H. Seheult. Exact maximum a
posteriori estimation for binary images. Journal of the Royal Statistical

Society Series B, 51:271–279, 1989.

[13] T. Illés, M. Makai, and Zs. Vaik. Combinatorial optimization model for
railway engine assignment problem. In L. G. Kroon and R. H. Möhring,
editors, Proceedings of the 5th Workshop on Algorithmic Methods and

Models for Optimization of Railways, 2006.

[14] T. Illés and R. Molnár-Szipai. On strongly polynomial variants of the
MBU-simplex algorithm for a maximum flow problem with non-zero
lower bounds. Optimization, 63:39–47, 2014.

[15] A. V. Karzanov. Nakhozhdenie maksimal’nogo potoka v seti metodom
predpotokov (“determining the maximal flow in a network by the method
of preflows”). Doklady Akademii Nauk SSSR, 215(1):49–52, 1974.

[16] J. B. Orlin. Genuinely polynomial simplex and non-simplex algorithms
for the minimum cost flow problem. Technical report, Technical Report
1615-84, Sloan School of Management, MIT, Cambridge, MA., 1984.

Operations Research Reports No. 2015-02



Strongly polynomial primal monotonic build-up simplex algorithm for maximal

flow problems 15

[17] K. Paparizzos, N. Samaras, and A. Sifaleras. Exterior point simplex-
type algorithms for linear and network optimization problems. Annals of

Operations Research, 229(1):607–633, 2015.

[18] F. Piu and M. G. Speranza. The locomotive assignment problem: a sur-
vey on optimization models. International Transactions in Operational

Research, 21(3):327–352, 2014.

[19] T. Terlaky and S. Zhang. Pivot rules for linear programming: a sur-
vey on recent theoretical developments. Annals of Operations Research,
46(1):203–233, 1993.

Operations Research Reports No. 2015-02

Selected Operations Research Reports

2010-02 Tibor Illés, Zsolt Csizmadia: The s-Monotone Index Selection
Rules for Pivot Algorithms of Linear Programming

2011-01 Miklós Ujvári: Applications of the inverse theta number in stable
set problems

2011-02 Miklós Ujvári: Multiplically independent word systems

2012-01 Tibor Illés, Rihárd Molnár-Szípai: On Strongly Polynomial
Variants of the MBU-Simplex Algorithm for a Maximum Flow Problem
with Nonzero Lower Bounds

2012-02 Tibor Illés, Adrienn Nagy: Computational aspects of simplex
and MBU-simplex algorithms using different anti-cycling pivot rules

2013-01 Zsolt Csizmadia, Tibor Illés, Adrienn Nagy: The s-Monotone
Index Selection Rule for Criss-Cross Algorithms of Linear Complemen-
tarity Problems

2013-02 Tibor Illés, Gábor Lovics: Approximation of the Whole Pareto-
Optimal Set for the Vector Optimization Problem

2013-03 Illés Tibor: Lineáris optimalizálás elmélete és pivot algoritmusai

2014-01 Illés Tibor, Adrienn Nagy: Finiteness of the quadratic primal
simplex method when s-monotone index selection rules are applied

2014-02 Adrienn Nagy: Finiteness of the criss-cross method for the lin-
ear programming problem when s-monotone index selection rules are
applied

2014-03 Miklós Ujvári: Bounds on the stability number of a graph via
the inverse theta function

2014-04 Tibor Illés: Lineáris optimalizálás elmélete és belsopontos algo-
ritmusai

2015-01 Miklós Ujvári: Counterpart results in word spaces


