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What�s Wrong with the Murals 

at the Mogao Grottoes: A Near-

Infrared Hyperspectral Imaging 

Method
Meijun Sun1, Dong Zhang1, Zheng Wang2, Jinchang Ren3, Bolong Chai4 & Jizhou Sun1

Although a signiƤcant amount of work has been performed to preserve the ancient murals in the 
Mogao Grottoes by Dunhuang Cultural Researchǡ nonǦcontact methods need to be developed to 
eơectively evaluate the degree of ƪaking of the muralsǤ In this studyǡ we propose to evaluate the 
ƪaking by automatically analyzing hyperspectral images that were scanned at the siteǤ Murals with 
various degrees of ƪaking were scanned in the ͙͚͞th cave using a nearǦinfrared ȋNIRȌ hyperspectral 
camera with a spectral range of approximately ͘͘͡ to ͙͘͘͟ nmǤ The regions of interest ȋROIsȌ of the 
murals were manually labeled and grouped into four levelsǣ normalǡ slightǡ moderateǡ and severeǤ 
The average spectral data from each ROI and its group label were used to train our classiƤcation 
modelǤ To predict the degree of ƪakingǡ we adopted four algorithmsǣ deep belief networks ȋDBNsȌǡ 
partial least squares regression ȋPLSRȌǡ principal component analysis with a support vector machine 
ȋPCA + SVMȌ and principal component analysis with an artiƤcial neural network ȋPCA + ANNȌǤ The 
experimental results show the eơectiveness of our methodǤ In particularǡ better results are obtained 
using DBNs when the training data contain a signiƤcant amount of striping noiseǤ

he Mogao Grottoes in Dunhuang, Northwestern China, are famous for their ancient murals and statues 
and are considered to be one of the most valuable cultural heritage sites in the world. People began to 
carve the caves in 336 AD and continued until the Yuan Dynasty (1271–1368 AD). Currently, 735 caves 
have been identiied, which include approximately 45,000 square meters of frescoes and 2,415 painted 
clay sculptures. he murals are extensive and invaluable for the scale and richness of their content as well 
as their artistry. As shown in Fig.  1, the subjects of these murals are oten Buddhist, and many of the 
caves are completely painted on the walls and ceiling with a seated Buddha or Flying Chinese Apsaras.

In the Mogao Grottoes, murals are painted on the rock surface, which are conglomerates. he painting 
layer consists of three sub-layers: a plaster layer, a white lime layer and a pigment layer that includes 
a mixture of azurite, minium and malachite. To improve the adherence of the pigment, animal-based 
glue was adopted. However, these precious murals are sufering from diferent types of degradation due 
to exposure to air and light and to human factors over the long time period. More recent research has 
shown that mural damage is primarily caused by the sublorescence of soluble salts along with water inil-
tration and migration. he changing humidity in the grottoes makes the plaster layer repeatedly expand 
and contract, resulting in a looser plaster layer as well as cracking and warping in the pigment layer.

Typical signs of degradation include laking, net cracking, detachment, disruption and paint loss. In 
Fig. 2, we show an example of these degradations. Flaking refers to cracks in the pigment layer and results 
in warped fragments. Flaking occurs in more than 20% of the degraded area, and most of it is severe. 
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Flaking is also regarded as an early stage of peeling, exfoliation, and delamination. As described else-
where1–5, laking murals are salvaged by reattaching the lakes using a polyvinyl acetate emulsion (PVA). 
his method was irst put into practice in the 1950s to 1960s in the 94th and the 108th caves. A hybrid 
acrylic and silicone acrylic emulsion has been applied to laking murals in the 23rd and the 217th caves 
during the past decade. A gelatin solution has been used in the 85th and the 98th caves. However, there 
is still a need for a more efective method of monitoring and assessing the level of laking than human 
vision to evaluate these protection and reinforcement techniques. his will also help researchers deter-
mine if the protection is still working or is causing renewed damages. In this study, we analyze the laking 

Figure 1. Examples of murals at the Mogao Grottoes (We are grateful to Bolong Chai for taking these 

photographs). 

Figure 2. Some examples of diseases on the murals (We are grateful to Bolong Chai for taking these 

photographs). 
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on murals in the Mogao Grottoes using NIR hyperspectral images of the murals and machine learning 
algorithms. his non-destructive technique shows great potential for assessing the state of the murals.

Hyperspectral imaging was irst used to monitor cultural heritage in the mid-1990s, where the 
initial experiments were performed on the Parma Cathedral, Italy6. Later experiments exploited the 
imaging luorescence LIDAR technique for the acquisition of hyperspectral luorescence images of 
several monuments7–9. Some studies have focused on the detection and characterization of diferent 
lithotypes6,10 and protective treatments11–13. In addition, a few applications of imaging spectrometry 
in cultural heritage frameworks have been introduced in the literature. In particular, Buck et al.14 
presented the results of the sub-pixel capability of detecting obsidian and pottery artifacts scattered 
on the bare soil surface of a site in the western USA. Palombi et al. elucidated the past interventions 
to conserve the Colosseum in Rome using hyperspectral luorescence LIDAR imaging15. Hallstrom 
et al. used hyperspectral technology to document the restoration of soiled and biodeteriorated 
facades of the Colosseum in Rome16. hese multispectral and hyperspectral imaging techniques are 
ideally suited for the examination of historical murals because they are non-contact and generally 
non-destructive.

Results
Spectral proƤlesǤ here are diferent amounts of laking areas in the mural images. To build a mecha-
nism to detect laking, we deined four levels based on its external form as shown in Fig. 3. As observed, 
(a) shows a normal mural, (b) shows slight laking, (c) shows moderate laking and (d) shows severe lak-
ing. For the purpose of easy computation, values of these 4 levels were set to 0.0, 0.3, 0.6, and 1.0, which 
represent the four levels of damage from none (a normal mural) to severe, respectively. he reason that 
the four levels of laking are unequally “spaced” is suggested by domain experts from the researchers of 
Dunhuang Academy. his will enable us to provide more divisions for ine detailed condition assessment 
from the beginning of laking.

A hyperspectral image of the mural, shown in Fig. 4, was obtained using the NIR hyperspectral 
imaging system with wavelengths between 900 nm and 1700 nm. Normally, there are various levels 
of laking on a mural. If a region of an image with laking is selected, we can ind some regions that 
are normal, some that are severe and some with lakes that have fallen of of the wall. In this study, 
for the deined four levels of laking that varies from normal, slight, moderate to severe, their spec-
tral proiles were extracted from the corresponding regions of the mural. As shown in Fig.  4, the 
spectral proiles have a similar trend, yet they are diferent in terms of the relectance response in 
the spectral domain. he relectivity of the normal region is the highest and that of the severe region 
is the lowest; the slight and moderate regions are intermediate but closer to the severe region. he 
signiicant diference in the spectra for the various degrees of laking is important for predicting the 
degree of laking.

Prediction of the level of ƪakingǤ From each hyperspectral image, we manually selected 40 areas 
as ROIs according to their associated levels of laking. As a result, each level of laking is represented by 
ten diferent ROIs in each hyperspectral image. A total of 80 ROIs containing all four levels of laking 
were collected from two hyperspectral images. In each ROI, there are approximately 150–200 pixels, and 
each pixel contains a data vector that represents its spectral proile (curve). From each ROI, 150 pixels 
are used to determine the spectral features of the ROI for prediction of the associated level of laking. 
Eventually, we have 12,000 sample pixels for the four diferent degrees of laking.

Figure 3. Diferent levels of laking on the murals of Mogao Grotto No. 126. (a) A normal mural,  

(b) slight laking, (c) moderate laking, and (d) severe laking.
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In this study, we repeated the training and prediction process ten times for each model and used the 
average results to evaluate the algorithm’s performance. In each repetition, 80% of the pixels for each 
laking level were randomly selected from the 3000 sample points for the training data set, and the other 
20% pixels were regarded as test data. To evaluate the models, the R-squared coeicient of determination 
and the root mean square error (RMSE) are used to show how well the predictions it the observed data.
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where n is the total number of sample points for predicting, yact is the actual value, ypred is the predicted 
value of the degree of laking, as calculated using the model, and y

act
 is the average of the actual values. 

All of the computations and multivariate data analyses were performed using Matlab.
he data analysis methods used in this study are DBNs, PLSR, PCA +  SVM, and PCA +  ANN. All 

the four algorithms were applied to the hyperspectral dataset which including 12000 pixels with 216 
dimension data in wavebands space. First, the prediction method was used to create linear models that 
use the spectral data (X matrix) and the value of one of the laking parameters obtained from the pre-
deined values (Y matrix).

As shown in Table 1, the DBN-based model performed better than the others. In addition, compared 
to conventional machine learning algorithms such as SVM and PLSR, whose results rely very much on 
the signiicance of the selected features, the DBN-based method does not need a strict selection of fea-
tures. To further compare the performance of the four approaches in Table 1, the confusion matrix from 
them in identifying diferent levels of laking are given in Fig. 5. As can be seen, both ANN and DBNs 

Figure 4. A hyperspectral image of the mural and its spectral curves for diferent levels of laking (four 

levels are deined in this study as normal, slight, moderate and severe). 

R-square RMSE

DBNs 0.5409 0.2482

PLSR 0.5045 0.2605

PCA +  SVM 0.4918 0.2629

PCA +  ANN 0.4685 0.2698

Table 1.  he four models used to predict the degree of laking when the training and test data sets are 

equally large using the full spectral range (216 wavelengths).
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produce the best results in identifying normal and slight laking cases, though ANN seems slightly better 
than DBNs. For the moderate and severe levels of laking, the best results are generated by using SVM 
and PLSR, respectively. However, overall the DBNs outperform all three other approaches in this context.

To further improve on these results, a series of studies will be designed that include reducing the 
amount of striping noise in the hyperspectral data17, selecting the most discriminative band of the 
spectrum band, tuning the DBN parameters and considering larger sets of data. In addition, as these 
approaches perform diferently in identifying various laking levels, there is a potential to fuse them 
together for more improved data analysis. his will be further investigated in the future.

Visual representation of ƪakingǤ With the trained DBN-based models, the laking level can be vis-
ualized by predicting each pixel in the NIR hyperspectral image. he DBN-based model was selected as 
the predicting model because it outperformed all three of the other models. Figure 6 shows distribution 
maps of the degree of laking on the murals. he images in the irst column show the tested samples, the 
second column contains distribution maps of the predicted laking values, and the third column contains 
mean ilter-processed distribution maps that highlight the areas with the most damage. As expected, the 
level of laking is nearly consistent with the level determined using human vision. he areas with laking 
values between 0.05 and 0.3 are at risk of laking, which provides a useful suggestion for protecting the 
murals at the Mogao Grottoes.

Discussion
In general, the murals of the Dunhuang Mogao Grottoes contain pigment-based natural mineral pig-
ments. Diferent color pigments have diferent chemical compositions and diferent sources2,5,6. As a 
result, their spectral proiles vary and difer from each other. his has been clearly shown in Fig. 7, where 
the spectral proiles from 8 color pigments are compared to show their diferences.

he two images in our experiment are composed of several colors, including red, white, and cyan-blue. 
he main component of the red pigment is cinnabar, the white pigment is made from lime white, and 
the cyan-blue pigment is made from azurite. here are well-deined signatures with notable absorption 
bands that can be observed throughout the spectrum for all of the samples. he relectivity intensities 
above 1180 nm are clearly high in these particular ranges. However, at 1180 nm, the relectivity started 

Figure 5. Confusion matrix of the prediction results to show diferent performance of these approaches 

in identifying various levels of laking, where the DBNs method show better average performance than 

others. 
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to decrease sharply, a trend that continued to 1220 nm. Cinnabar, lime white and azurite’s main com-
ponents are mercuric sulide, calcium carbonate and azurite, respectively. he most prominent relec-
tivity bands occurring in the NIR region are related to overtones and combinations of the fundamental 
vibrations of O–H, C-O and C-H functional groups18. However, this is actually advantageous because 
the relectivity bands that have suicient intensity to be observed in the NIR region arise primarily from 
functional groups that have a hydrogen atom attached to an oxygen, carbon or nitrogen atom, which 
are common groups in the major constituents of compounds such as calcium carbonate and azurite. 
Additionally, bands in the 1400 nm region are ascribed to combinations of the bands for Ca, C-O and 
Cu vibrations6,10,11.

As a non-destructive technique for analyzing and assessing the components of materials, hyperspec-
tral imaging shows a great deal of potential in many applications19–22. We have presented a quantitative 

Figure 6. Distribution maps of the detected degree of laking on real murals. he irst column contains 

images of samples constructed by concatenating three spectral sub-images taken at 950 nm, 1200 nm and 

1300 nm; the second column contains distribution maps showing the levels of laking predicted using the 

DBN-based model; the third column shows the results of processing using a mean ilter to highlight the 

worst areas.

Figure 7. Diferent color pigments have diferent hyperspectral proiles due to the diferences between 

their chemical components. 
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approach to evaluating and visualizing the level of laking damage to murals at the Mogao Grottoes in 
Dunhuang. Our promising results indicate that a combination of the NIR hyperspectral technique and a 
deep belief network is valuable. In addition to assessing the overall degree of damage caused by laking 
on murals, hyperspectral imaging has the additional merit of allowing the distribution of the damage to 
be visualized.

In conclusion, the proposed hyperspectral method has been proven to capture the physical changes 
that will allow us to rank damage levels and predict mural damage prior to its occurrence. Further direc-
tions of this study include real-time monitoring, evaluating protection methods and early warnings of 
mural damage, which are considerably valuable for the protection of cultural heritage.

Methods
The Hyperspectral Imaging SystemǤ A near-infrared hyperspectral imaging acquisition system 
was set up on site and used to collect hyperspectral data from the murals at the Mogao Grottoes in 
Dunhuang. As shown in Fig. 8, the system consisted of hardware and sotware components. he hard-
ware consisted of a near-infrared spectral camera, a mobile platform, a computer, and two tungsten 
lamps that functioned as light sources for illumination. Computer sotware was used to control the plat-
form’s speed and the exposure time. he spectral camera was ixed to the mobile platform 1.6 m above 
the ground and 1.1 m from the mural.

he NIR hyperspectral imaging system used in this study was a line scanning coniguration that 
records each line of an image in one time step. he hyperspectral camera’s resolution was 320 ×  400 pixels 
and its spectral range was from 882 nm to 1719 nm, with a spectral increment of approximately 3.3 nm, 
producing a total of 256 bands.

Mural Data Acquisition and CalibrationǤ Two historical murals from Dunhuang Mogao Grottoes 
No. 65 and 126, which date to the Tang Dynasty (618–907 AD), were used in this study. he major dis-
ease of these murals was laking. Some sections of the murals were normal, but other sections exhibited 
laking, which can signiicantly harm the murals. he NIR hyperspectral imaging system was used to 
acquire hyperspectral images of the murals. Spatial information was obtained in two dimensions (x, y) 
and spectral information was obtained in a third dimension (z); therefore, a three-dimensional (x, y, 
spectral) hyperspectral image was recorded.

Once the two murals had been scanned, the hyperspectral images (R0) were stored in a band inter-
leaved by line (BIL) format. As a 3-dimensional image, the acquired hyperspectral image included both 
spatial and spectral information. To correct the efects of the light sources, R0 was corrected using a dark 
reference and a white reference as follows:

=
−

−
× %

( )
R

R D

W D
100

3
0

where D and W are respectively the dark current noise images obtained from the raw and white reference 
images, and R the calibrated image. he dark current noise image (approximately 0%) was acquired by 
recording a spectral image when the light was of and camera lens was completely covered with a black 
cap, and the standard white reference image was obtained by acquiring a spectral image from a high 
relectance white calibration tile (approximately 99.99%).

To reduce the efect of noise, only wavelengths between 948 and 1654 nm with 216 spectral wavebands 
were used. To improve the signal to noise ratio (SNR), the minimum noise fraction (MNF) was used in 
this 216 dimension spectrum.

The Solution FrameworkǤ Figure  9 illustrates the framework of the proposed solution. With the 
scanned hyperspectral image data and labeled dataset as input, the procedure was followed for four data 

Figure 8. he hyperspectral imaging system. 
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analysis methods. Finally, visualizations of the pixel-based degrees of laking were presented. First, the 
hyperspectral imaging system was used to acquire images of the two murals, and then, we manually 
labeled the ROIs. Second, four predictive models were used to analyze the data and to predict the degree 
of laking from the images of the murals. Finally, the amount of laking was predicted for each pixel to 
create a distribution map of laking in all of the test images.

Data Analysis MethodsǤ he data were analyzed to predict the degree of laking on the murals 
using the spectral proile18,23. In this study, we used four predictive models, which included deep belief 
networks (DBNs), partial least squares regression24 (PLSR), principal component analysis with a support 
vector machine25 (PCA +  SVM), and principal component analysis with an artiicial neural network 
(PCA +  ANN).

DBNs have been successfully applied to a number of tasks that have beneitted from the recent dis-
covery of this eicient learning technique26–29. DBNs learn a multi-layer generative model from data, and 
the features discovered by this model are then used to initialize a feed-forward neural network, which is 
ine-tuned using back propagation. In this study, we used a DBN-initialized neural network to predict the 
degree of laking. In our experiments, for the two hidden layers, the hidden units were conigured as 200 
and 150, respectively. We pre-trained the weights of the DBNs layer by layer, from the irst hidden layer 
to the outermost layer; the learning rate was set to 0.01 for 100 epochs, and the momentum was set to 0.4.

PLSR18,30–32 was used to create linear predictive models based on the spectral data (denoted as the X 
matrix) and the manually labeled degrees of laking (denoted as the Y matrix). PLSR is a quantitative 
spectral decomposition technique that is used to optimize the covariance between Y and linear combi-
nations of X by simultaneously decomposing the spectral and quality data.

PCA33,34 was performed on the entire spectral data set (the X matrix) to identify the spectral outliers. 
PCA is based on identifying the most important directions of variability in a multivariate data space 
(the X matrix) to identify the primary phenomena in the data set. he results of the PCA are then fed 
to an SVM35–38 and ANN19,39, in which the extracted principal components are used for modeling and 
prediction.
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