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Hyperspectral remote sensing is experiencing a dazzling proliferation of new sensors, platforms, systems, 

and applications with the introduction of novel, low cost, low weight sensors. Curiously, relatively little 

development is now occurring in the use of Fourier Transform (FT) systems, which have the potential to 

operate at extremely high throughput without use of a slit or reductions in both spatial and spectral 

resolution that thin film based mosaic sensors introduce. This study introduces a new physics-based 

analytical framework called Singular Spectrum Analysis (SSA) to process raw hyperspectral imagery 

collected with FT imagers that addresses some of the data processing issues associated with FT 

instruments including the need to remove low frequency variations in the interferogram that are 

introduced by the optical system, as well as high frequency variations that lay outside the detector band 

pass.  Synthetic interferogram data is analyzed using SSA, which adaptively decomposes the original 

synthetic interferogram into several independent components associated with the signal, photon and 

system noise, and the field illumination pattern. 
 

OCIS codes: (070.4790) Fourier optics and signal processing, spectrum analysis; (110.4234) Imaging 

systems, multispectral and hyperspectral imaging 

 

While hyperspectral remote sensing has rapidly emerged as a mature ĨŝĞůĚ ƐŝŶĐĞ ƚŚĞ ĞĂƌůǇ ϮϬϬϬ͛Ɛ [1], 

relatively little attention has been placed on data reduction techniques for imaging Fourier transform 

spectrometers.  Use of the inverse Fourier transform to reconstruct the spectrum from the 

interferogram uses a fixed basis of sine and cosine functions that less general than the use of other 

techniques which use an adaptive basis generated by the time series itself. 

 

This study reports on Singular Spectrum Analysis (SSA), a modern method for time series analysis and 

forecasting, which has recently been used to analyze meteorological, climatic and geophysical time 

series [2], with further application in diverse areas such as economics or financial mathematics, 

oceanology, market research or social science [3], among others. 

 

The SSA origins are normally associated with the publications [4-5] in 1986, attracting increasing interest 

from then on with remarkable progress reported in recent years [6-7], extending its use to varied fields 

such as image processing [8] or hyperspectral remote sensing [9-11]. 

 

The main purpose of the SSA method is the decomposition of an original series into several independent 

components or sub-series, interpretable as varying trend, oscillations or noise. According to [3], the SSA 

method has great potential in the extraction of components such as: 
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- Trends and smoothing 

- Periodic components 

- Complex trends and periodicities with varying amplitudes 

- Structures in short time series 

- Envelopes of oscillating signals  

 

The organization of the remainder of this paper is as follows: Section 2 introduces a general framework 

to link SSA to hyperspectral FT imagers.  Section 3 presents details for the hyperspectral imager model 

program (HIMP) used to provide a physics based simulation complete with arbitrary sources of signal 

and noise.  Section 4 presents our results, while section 5 discusses the results and concludes the study. 

 

One of the most serious difficulties in processing hyperspectral imagery from FT-based sensor systems 

relates to the use of the inverse FT, which uses a fixed basis of sine and cosines.  That approach not only  

restricts the recovery of frequency components to k/N, but also frequencies that lay outside the band 

pass of the sensor, such as the low frequency variation across the sensor by the optical system 

illumination function, are intertwined in the analysis unless arbitrary filtering is applied. 

 

Consider an interferogram N
Nxxxx  ],,,[)( 21 I  with N  points. Let )1( NLL  be some integer 

called the window length and 1 LNK , the 1-D interferogram signal is embedded into a trajectory 

matrix X  as 
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This trajectory matrix is Hankel type, since it presents the same values along each anti-diagonal. In 

addition it also holds a symmetry property [2] making the implementation symmetric in two intervals. 

This simply means that 2/1 NL  in practical terms, where the selection of a particular Lwill lead to a 

different performance from the SSA method. 

 

The next step consists of a Singular Value Decomposition (SVD) of the trajectory matrix X . An equivalent 

Eigen Value Decomposition (EVD) applied to the matrix T
XXS   can also achieve this step, obtaining 

Eigen Values  L  21  and corresponding Eigen Vectors  Luuu
2

,,,1  . From these it is possible to 

achieve individual components according to the definitions in 
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The addition of all the components results in the same original trajectory matrix as LXXXX  21 . 

Every matrix i
X  is an elementary matrix, related to the collection  

ii
vu ,,i , usually denoted as the i

th
 

Eigen Triple (ET). Even though these individual components can be grouped arising in multiple possible 

combinations, for the paper purpose, each component is individually extracted, where the contribution 

of each of them with relation to the original signal can be defined as in equation (3), measuring the 

significance of the particular components.  
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At this stage, however, the individual components are in a matrix form, and an inverse procedure to the 

initial embedding has to be applied to each component so they can be expressed in 1-D terms. To this 

end, SSA implements a diagonal averaging. Considering iz  as the 1-D signal from one component
i

X , 

expressed as 
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The diagonal averaging, also known as Hankelization, is implemented by equations in (5), where 1,  jnja  

denotes the elements of the matrix i
X . 
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So finally, SSA decomposes the original interferogram signal N
Nxxxx  ],,,[)( 21 I  into several 

independent components (6), to which a physical interpretation may be given. 
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In that sense, a reconstruction of the interferogram signal by some specific components iz  can lead to 

an enhanced signal with mitigated noisy content.  A first step in the use of SSA is to identify the physical 

meaning of each of the L components by applying SSA to simulated hyperspectral data from a FT imager. 

We utilize the Hyperspectral Imager Model Program (HIMP) to provide physics-based data for simulation 

and analysis [12].  HIMP is an interactive, spreadsheet-based computer model, which has modelled 

performance for several Fourier transform hyperspectral imagers, including the Kestrel VFTHSI [13] and 

MightySat II.1 [14, 15]. HIMP includes parameters that allow the specification of numerous target, 

atmospheric, instrumental, geometrical, and detector characteristics, as well as a variety of graphical 

outputs.  HIMP also models fringe visibility, the top hat function (fill factor was set to 50%), modulation 

transfer function, read noise, dark noise, and photon noise. 

 

HIMP was used to simulate a 512-element CCD using transmitted source illumination (LOWTRAN) for a 

US 1976 Standard Atmosphere. The band pass was chosen to lay between 330nm and 1100nm.  The 

major fore-optics, interferometer and detector parameters are in Table 1.  

 

Table 1:  HIMP parameters 

 

Fore-optics Parameters   

Telescope Diameter (D) [mm] 12 



Telescope focal length (f) [mm] 90.000 

Slit width (p{x}) [mm] 0.100 

Interferometer Parameters   

Fourier Element Focal Length (f') 

[mm] 

115.00 

Cylindrical Element Focal Length (f") 

[mm] 

66.00 

Sagnac Offset 1 (s) [mm] 2.00 

Sagnac Offset 2 (s) [mm] 1.00 

Aperture Function Width (W=D*(f'/f)) 

[mm] 

15.33 

Detector Parameters   

Pixel Size (p{y}) [mm] 0.028 

Pixel Spacing (PS=p  for 100% fill 

factor) [mm] 

0.014 

CCD # pixel columns (n{pix}) 512 

Integration time (sec) (t) 3.3E-

02 

  1.00 

Dark Electrons (n{d}) 

[electrons/pixel/s] 

10 

Dark Counts [electrons/pixel/frame] 0.33 

Read Electrons 

[electrons/pixel/frame] 

20 

Camera Gain [Volts/electron] 8.00E-

06 

Camera Bias 'black level' [Volts]  0.00 

Camera/Frame Grabber Bit Depth 

[bits] 

16 

 

 

Figure 1.  White light interferogram I(x) computed by HIMP.  Note the low frequency variation due to the 

illumination pattern of the CCD by the optics.  The centerburst was deliberately placed off center.  The x-

axis has units of pixels and the y-axis on this figure and others has units of total electrons plus noise 

adjusted for camera gain. 

 

The interferogram I(x) created by HIMP is shown in Figure 1 follows from equation (7), where S(k) is the 

spectral radiance, I(k) the instrument response function, E(k) the instrument and interferometer 

efficiency, V(k) the fringe visibility, s the optical path offset, and k wavenumber.  The summation is 

adjustable within HIMP, typically in 20 wavenumber steps, over the spectral range of choice. 

 

I;ǆͿ с єS(k)*E(k)*I(ŬͿΎ;ϭнV;ŬͿĐŽƐ ;ϮʋŬƐͿͿ (7) 

 

HIMP uses the Excel Data Analysis ToolPak Fourier Analysis and Excel IMABS function to retrieve the 

corresponding spectrum from the interoferogram, shown in Figure 2. 



 

 

Figure 2.  HIMP output spectrum from Figure 1 using FT and IMABS functions in Excel.  Note the power 

distribution at low frenquncies. 

 

Results for L=3 are shown in Figure 3, where the first component has an obvious physical meaning 

associated with the sensor illumination function of the optics, and where the second and third 

components correspond to the remainder of the original input signal and various sources of noise. 

 

We then explored L=5, L=7 and L=9 cases to see if the increased number of SSA components would 

suggest association with the various sources of noise and/or sensor attributes introduced by the 

simulation (e.g., read noise dark noise, top hat sampling--band pass independent, and photon noise--

band pass dependent). 

 

The individual components for L=5, 7, 9 cases are shown in the Figures below which are coplotted with a 

common scale. 

 

Figure 3.  L=3 case.  The 1
st

 component is associated with the illumination function of the optics (low 

frequency), the 2
nd

 and 3
rd

 components with the input signal and various sources of noise. 

Figure 4.  L=5 case.  The 1
st

 component (light blue, leftmost) is associated with the optics illumination 

function.  The 2
nd

 and 3
rd

 components (red and dark blue) contain information from the Lowtran input to 

HIMP.   

 

Figure 5.  L=7 case. 

 

Figure 6.  L=9 case.  Sucessive peaks correspond to higher frequency components. 

 

The general pattern for L= (3, 5, 7, 9) is that SSA reproduces the original HIMP signal with the 

components of each series L, with successive components corresponding to regimes of higher frequency, 

although for small values of L various spectral features are accommodated by multiple components.  In 

all cases, the low frequency variation contained in the HIMP output that was introduced by the optics 

illumination function is recovered by the 1
st

 component.  The remaining components then account for 

the remainder of the HIMP (signal+noise) as shown in Figure 2. 

 

To explore how to utilize SSA to remove sources of system or sensor noise, we compared several 

systematic combination of components for each L to the original spectral distribution used by HIMP to 

generate the output interferogram (and spectra).   

 

Figure 7.  Lowtran input provided to HIMP.  

 

Figure 8 below illustrates how well each L is able to reproduce the input shown in Fig. 7 via exclusion of 

the first (low frequency optics illumination function) and last (near-Nyquist noise) components.  For 

example, for the L=9 case the 2nd through 8
th

 components were utilized to recover the spectrum.  As is 

expected, larger values of L provide better correspondence to the input spectrum is shown in Figure 7.  



Figure 8. Use of SSA to recover the input spectrum shown in Fig 7 for various values of L with L=3 at the 

bottom and L=9 at the top, plotted with excluded components (e.g., L=5 (1, 4) is plotted using only the 

2
nd

, 3
rd

 and 4
th

 component of L=5).  

 

SSA provides a physics-based analytical framework for FT interferogram hyperspectral image data that 

utilizes an adaptive basis, allowing removal of low frequency variations introduced by its optical system 

and sensor as well as high frequency variations that lay outside the band pass of the detector. SSA 

extracts a variety of sources of noise or patterns where each of the L-components are associated with 

specific frequency-specific sources or physical process.  We plan future work into using SSA to analyze 2-

D hyperspectral data (the second dimension being the single spatial dimension found on each image 

frame), further investigation of how noise distribution among various components for different values of 

L, and how the top hat function influences the recovery of both spatial and spectral information. 
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Fig. 1. Figure 1. White light interferogram I(x) computed by HIMP. Note the low frequency variation due to the 

illumination pattern of the CCD by the optics. The centerburst was deliberately placed off center. The x-axis has units of pixels 

and the y-axis on this figure and others has units of total electrons plus noise adjusted for camera gain. 

 

 
Fig. 2. HIMP output spectrum from Figure 1 using FT and IMABS functions in Excel. Note the power 

distribution at low frequencies. 

 



 

 

 
Fig. 3. L=3 case. The 1st component is associated with the illumination function of the optics (low frequency), the 

2nd and 3rd components with the input signal and various sources of noise. 

 

 
Fig. 4. L=5 case. The 1st component (light blue, leftmost) is associated with the optics illumination 

function. The 2nd and 3rd components (red and dark blue) contain information from the Lowtran input to HIMP. 

 

 

 



 

 

 

 

 
Fig. 5. L=7 case. 

 

 

 

 

 
Fig. 6. L=9 case. Successive peaks correspond to higher frequency components. 

 

 

 



 
Fig. 7. Lowtran input provided to HIMP. 

 

 
 

Fig. 8. Use of SSA to recover the input spectrum shown in Fig 7 for various values of L with L=3 at the bottom and 

L=9 at the top, plotted with excluded components (e.g., L=5 (1, 4) is plotted using only the 2nd, 3rd and 4th
 component of L=5). 

 

 


