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Stereo-video scuba transects were conducted during daylight hours from June to September 2013

within a proposed marine protected area (MPA) in the Firth of Clyde, west of Scotland. More juvenile

Atlantic cod Gadus morhua of fork length (LF) range 6–11 cm were observed in substrata contain-

ing mixed gravel, including maerl, than in boulder-cobble substrata with high algal cover, or sand

with low density seagrass. Community composition was signiicantly different between substratum

types. A decrease in G. morhua abundance was observed over the period of data collection. Over

time, mean and variance in G. morhua LF increased, indicating multiple recruitment events. Protect-

ing mixed gravel substrata could be a beneicial management measure to support the survival and

recruitment of juvenile G. morhua; other substrata might be important at night given their diel migra-

tory behaviour. Stereo-video cameras provide a useful non-destructive isheries-independent method

to monitor species abundance and length measurements.
© 2016 The Authors. Journal of Fish Biology published by John Wiley & Sons Ltd

on behalf of The Fisheries Society of the British Isles.
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INTRODUCTION

With increasing concern over the state of the marine environment, much attention has
been paid to the development of marine protected areas (MPAs) as an ecosystem-based
approach to protect vulnerable substrata and restore species and their habitats (Roberts
et al., 2005; Seitz et al., 2014). In many cases, however, factors affecting the survival
of temperate marine ishes are not well understood (Langton et al., 1996). This is of
particular relevance within European waters where measures to restore ish stocks have
focused primarily on reducing ishing effort, ishing gear adaptations to reduce by-catch
and isheries closures (Fernandes & Cook, 2013; Hilborn, 2011). While improvements
in some stocks have been observed in the European Union [e.g. European anchovy
Engraulis encrasicolus (L. 1758) and whiting Merlangius merlangus (L. 1758)], West
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of Scotland Atlantic cod Gadus morhua L. 1758 stocks remain depleted (Fernandes &
Cook, 2013; ICES, 2014).

The Firth of Clyde was once a productive ishery. Commercially important G. morhua

stocks, however, declined sharply around the 1980s (Thurstan & Roberts, 2010; Heath
& Speirs, 2012). Since the irst phase of the G. morhua recovery plan was introduced
(early 2000s) (Anon, 2001; Kraak et al., 2013), measures have been implemented to try
and restore stocks, including the prohibition of targeted ishing and a seasonal spawning
area closure implemented in the outer Firth of Clyde (Anon, 2001, 2002; Clarke et al.,
2015). Today, the predominant ishery occurring in the Firth of Clyde is the Norway
lobster Nephrops norvegicus ishery, with smaller amounts of scallop dredging and
creel ishing occurring (Thurstan & Roberts, 2010; McIntyre et al., 2012). There are
various possible reasons for the lack of recovery in G. morhua stocks. In the U.K.,
little attention has been paid to key habitat requirements for juveniles in comparison to
Canada, the U.S.A. and Scandinavian countries (Bailey et al., 2011).

To avoid confusion, within the present paper, habitat refers to resources and condi-
tions required by a species to live in during a particular stage of its ontogeny (Hall
et al., 1997). Habitat therefore includes the types of substrata (e.g. sediment and algae
type), physiochemical parameters and biological characteristics required by a species
(Gaillard et al., 2010; Elliott et al., 2016). A substratum type is considered important
where a change in its conditions or availability has the ability to directly affect the sur-
vival of ishes (Langton et al., 1996; Able, 1999). All terminology used in this paper
is in line with Elliott et al. (2016).

Age-0 year G. morhua are known to migrate into and inhabit shallow (<20 m)
nearshore waters between June and October following pelagic larval stages (Magill &
Sayer, 2004; Gibb et al., 2007). It is particularly important to understand the habitats
of juveniles since cohort size of marine ishes may be determined during their irst
year (Campana et al., 1989; Myers & Cadigan, 1993; Able, 1999). Juvenile demersal
ishes are also thought to occupy a narrower range of substrata than adults (Gibson,
1994; Able, 1999). Higher densities of G. morhua have been observed around rocky
reefs and eelgrass substrata (Tupper & Boutilier, 1995; Bertelli & Unsworth, 2014),
as well as in more exposed areas (Lekve et al., 2006).

Monitoring of ishes in shallow coastal areas containing rocky reefs and boulders
is not possible using isheries-dependent mechanisms such as demersal trawling gear.
Fishing and gear restrictions may also inhibit access in managed areas. Scuba transect
methods can be advantageous, reducing damage and mortality to benthos and ishes,
and being able to provide greater detail about the association of individual ish with the
morphology of the seabed (Gregory & Anderson, 1997). To produce accurate compar-
ative surveys, undertaking standardized diver surveys and minimizing disturbance to
fauna can improve precision and reduce bias (Sayer & Poonian, 2007). Stereo-video
cameras are particularly advantageous as they enable accurate measurements to be
made (Harvey et al., 2002). Stereo-video systems have previously been used in trop-
ical and deep sea environments (Cappo et al., 2006; Fitzpatrick et al., 2012) but their
application to identify ish substratum association in the U.K. has only recently been
trialled through baited camera techniques (Unsworth et al., 2014). Such methods might
be a valuable means of collecting information for spatial planning and for monitoring
whether management is effective.

The aims of this study were two-fold: irst, to determine the effectiveness of
stereo-video scuba belt transects to assess species abundance and length in U.K.

© 2016 The Authors. Journal of Fish Biology published by John Wiley & Sons Ltd
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Fig. 1. South of Arran nature conservation marine protected area (NCMPA) with dive site locations and substra-

tum categories. , the boundaries of south Arran NCMPA; , the boundaries of Lamlash Bay no take

zone (NTZ); , algal-boulder-cobble; , algal-gravel-pebble; , sand.

waters and second, to assess abiotic and biotic variables inluencing the distribution
and abundance of juvenile G. morhua in shallow subtidal waters. Data were collected
between June and September 2013 around the south of the Isle of Arran, Firth of
Clyde. All study sites fell within the South Arran nature conservation MPA (NCMPA)
(SNH, 2014), but took place before designation and any new management measures
were implemented. By understanding abiotic and biotic variables affecting age-0 year
G. morhua abundance and distribution, targeted management measures within the
South Arran NCMPA could be implemented to support their survival and apply a more
ecosystem-based management.

MATERIALS AND METHODS

S T U DY L O C AT I O N

Data were collected at depths of 4·5–23·0 m around South Arran NCMPA (Fig. 1). South
Arran NCMPA encompasses an area of 250 km2 and was designated in 2014 for its internation-
ally important seagrass and maerl beds in addition to other substrata (burrowed mud, kelp and
seaweed communities) and epibenthic fauna (SNH, 2014). The MPA contains within its bound-
aries the Lamlash Bay no take zone (NTZ), designated in 2008 and prohibiting all ishing within
its boundaries under the Inshore Fishing (Scotland) Act of 1984 (Axelsson et al., 2009).

C A M E R A S E T- U P

A SeaGIS underwater stereo-video camera system (SeaGIS, 2013) which consisted of two
high-deinition (HF G25, Canon; www.canon.co.uk) video cameras in waterproof housings,
attached to a custom-made diver-portable steel frame (Fig. 2) was used. The system was set
up similar to the prototype described in Harvey & Shortis (1995, 1998); however, this system

© 2016 The Authors. Journal of Fish Biology published by John Wiley & Sons Ltd

on behalf of The Fisheries Society of the British Isles. 2016, doi:10.1111/jfb.12998
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(iii)

(iv)

(ii)

(i)

Fig. 2. Image of stereo-video camera and line set-up showing (i) loat for frame buoyancy, (ii) stereo-video cam-

eras in housing, (iii) custom-made bar to attach LED lights and (iv) leaded line.

was optimized for smaller bodied ishes. Distances between cameras were therefore conigured
with a base separation of 66 cm and an inward calculated angle of view of c. 10∘ in seawater with
a visibility of <6 m distance. Each camera was set to manual mode with the focal length set to
ininity (∞). Two underwater LED W38VR Archonlight (1400 lumen; www.archonlight.co.uk)
torches were mounted on the frame, facing at an angle to the middle of the stereo-camera
ield of view. Prior to in-ield data collection, the mounted cameras were calibrated within a
controlled environment using methods outlined within Harvey & Shortis (1998) and using the
programme and user guide CAL (SeaGIS, 2013). A calibration cube (1 m× 1 m× 0·5 m) con-
taining 85 targets was ilmed with the stereo-video camera system in 20 different orientations
(SeaGIS, 2013). Individual camera calibrations were produced using the CAL software and
physical camera parameters, camera separation and orientation parameters were computed to
allow accurate photographic measurements to be taken (SeaGIS, 2013).

DATA C O L L E C T I O N

Deployment locations were determined according to existing information collected on sub-
stratum types around the pre-designated MPA (COAST, 2012; SNH, 2014). Stratiied random
points were identiied within ive zones (Fig. 1). The zones were created according to prior
information on substratum type and wave fetch, using Generate Stratiied Random Points with
Geospatial Modelling Environment software (Spatial Ecology, 2013) in Arc geographic infor-
mation system (GIS) version 10.1. These zones were created to provide independent replicates
of each substratum type and collect data across a representative range of substrata, depths and
wave fetch values. Repeat transects within the same location were not undertaken. Survey work
was not conducted in strong tides (measured using tide timetables) and bad weather (heavy rain
and wind speed and gusts >15 km h−1), because of dificulties in equipment and rigid inlatable
boat handling. It has been previously observed that tidal conditions can cause variability in G.
morhua counts (Sayer & Poonian, 2007).

The abundance of G. morhua around south Arran NCMPA was recorded along 100 m strip
transects between 5 June and 20 September 2013 (Fig. 1). Since juvenile G. morhua had not yet
arrived during data collection days in June (5–13), data analysis used 31 transect videos, taken
after the irst observation of G. morhua. Strip transects were chosen as a standard and accurate
technique for assessing ish abundance (Kimmel, 1985; Hunter & Sayer, 2009). A leaded line

© 2016 The Authors. Journal of Fish Biology published by John Wiley & Sons Ltd
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Table I. Substratum type characterized according to dominant sediment type and macrophyte

type and density

Substratum type Sediment composition

Algae and seagrass type

and density

Algal-boulder-cobble

(ABC)

Sediments composed of mixed

boulders and cobbles

(particles> 6·4 cm)

Sediment covered in a mixture

of kelp and red algae (>60%

algae cover). Examples of

algae species include

Laminaria spp. and

Ceramium spp.

Algal-gravel-pebble

(AGP)

Mixed gravel (stone, shell and

maerl), Phymatolithon

calcareum and pebble

(particles 0·4–6·4 cm)

Between 20 and 50% of

sediment covered by algae

Sand Sandy sediments which may

contain some gravel

(consisting of broken shell)

(particles< 0·4 cm)

<25% algae or seagrass

Zostera marina cover

transect was laid perpendicular to the shore line to keep survey depth consistent within the tran-
sect. Following a 10 min wait for any disturbance to the seabed or fauna to dissipate (Dickens
et al., 2011), the divers descended and swam at a slow constant speed along the transect. Tran-
sects were carried out by scuba divers swimming c. 1 m above the seabed with cameras held at
a slight downward angle to capture fauna in front of the ield of view and the substratum. An
index of maximum horizontal visibility was measured using a Secchi disc attached to the end
of the leaded line. The maximum distance at which it could be distinguished was measured in
the stereo-video recordings. An LED diode was used to synchronize the video footage prior to
surveys and following transect completion (Harvey & Shortis, 1995). To reduce diel effects on
species, data collection took place between 0800 and 1500 hours (GMT), a minimum of 3 h after
sunrise and before sunset. As a result of logistical complications, night sampling did not take
place.

V I D E O A NA LY S I S

Each transect video was analysed twice by two observers using Event Measure software
(SeaGIS, 2013) to reduce observer bias. The irst analysis focused on substratum characteri-
zation, the second on fauna identiication, abundance and length measurements. In the absence
of acoustically mapped substrata around south Arran, substratum categories were visually clas-
siied according to the most abundant combination of sediment grain sizes and macrophyte
types observed together (Table I), similar to Gregory & Anderson (1997) and Cote et al. (2001,
2003). As transects had a uniform combination of sediment and algae type, transects were
assigned a single overall transect substratum type using the two most common divisions on
the Wentworth scale sediment (Wentworth, 1922; Connor et al., 2004) and broad algae type and
density (estimated by percentage cover; Table I). Seagrass was not treated separately to sand
because of the low density and spatial extent within the area, and the small sample size of the
dataset. Equally, maerl was not treated separately from gravel-pebble substratum type because
of its gravel-pebble sized form around south of Arran. In addition impacted maerl has been
demonstrated to be more similar to gravel than live maerl (Kamenos et al. 2003). As a result of
insuficient prior knowledge of the substratum types of the area, the experimental design was
unbalanced. Fourteen algal-boulder-cobble substratum type transects were carried out compared
with 12 algal-gravel-pebble transects and ive for the sand substratum category.

© 2016 The Authors. Journal of Fish Biology published by John Wiley & Sons Ltd

on behalf of The Fisheries Society of the British Isles. 2016, doi:10.1111/jfb.12998
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Sections of the video recordings where the camera angle was incorrect and the substratum was
not visible were removed and the transect length was adjusted in subsequent calculations. Any
further distance lost from transect length caused by large boulders or slack line was deducted
from the total length of the transect. One entire transect was removed from the analysis because
of inappropriate ield of view. For each transect, the width of the ield of view of the video camera
was measured by identifying recognizable points on the seabed on both cameras. Horizontal
visibility along the transect was measured in the video recordings as the greatest distance at
which the Secchi disc was visible.

Fauna were identiied to the lowest taxonomic level possible, usually to species. The ish fork
length (LF) measurements were taken (measuring from the nose to the fork). To undertake LF

measurements, each individual observed had to be visible in both cameras. LF measurements
of all G. morhua observed were therefore not possible. All LF measurements with a root mean
square (RMS) error above 2 cm and with a precision of LF measurement >0·5 cm were removed
from the analysis (SeaGIS, 2013).

DATA A NA LY S I S

To understand community composition differences between substratum types, permutation
analysis of variance (PERMANOVA) in PERMANOVA 6 software as described in Anderson
et al. (2008) was undertaken. PERMANOVA was used in order to overcome distributional and
homoscedasticity restrictions of ANOVA. The standardized abundance of species was square
root transformed to reduce the inluence of dominant species. A Bray–Curtis similarity coefi-
cient was used prior to applying PERMANOVA. Posterior pair-wise tests were used to compare
the difference between the groups of samples. The PERMANOVA was run with 9999 permuta-
tions to draw inferences at the P(perm) < 0·001 level. Visualization of the matrices was achieved
using non-metric multi-dimensional scaling (nMDS) plots which provide values of stress (stress
increases with reduced dimensionality or the ordination). Similarity percentages (SIMPER)
analysis was used to determine which species contributed most to the dissimilarity between
the different substratum types (Clarke & Warwick, 2001).

The effect of abiotic habitat variables on age-0 year G. morhua abundance included: substra-
tum type, depth (m), distance from coast (m), Julian date (JD, days) and wave fetch (km). Wave
fetch values for a 200 m coastline grid (downloaded from www.sams.ac.uk/michael-burrows)
were used as described in Burrows et al. (2008). For each transect location, wave fetch for the
closest grid was obtained. Distance from coast was calculated using Arc GIS version 10.1. Biotic
variables explored included: Hill diversity N2 (reciprocal of Simpson’s index) and N∞ (recipro-
cal of the proportional abundance of the commonest species) (Hill, 1973) for epibenthic fauna
(e.g. tunicates, echinoderms and crustaceans). Dificult to identify fauna, e.g. hydroid, bryozoan
and Majidae spp., could not always be identiied to species level. For continuity of analysis, such
fauna were quantiied in total visible hydroid and bryozoan or Majidae abundance (Unsworth
et al., 2014).

To condense multivariate variability into fewer dimensions and identify habitat variables
affecting the distribution of G. morhua, a principal component analysis (PCA) was performed
using R software (version 3.03; R Core Team; www.r-project.org). Explanatory variables
observed to have a stronger effect on G. morhua abundance from the PCA were used in a
generalized linear model (GLM) to understand G. morhua abundance, removing collinear
variables. An offset for transect area (m2) was incorporated into the GLM. A negative binomial
distribution was used to account for over dispersion. Explanatory variables included substratum
type (three levels), Hill diversity index for epibenthic fauna (continuous), wave fetch (contin-
uous) and JD (treated as a continuous variable to reduce the number of parameters used in the
model). The model of best it was log Y i = �0 + �1, Sij + �2, JDi + offset(transect area)i, where
Yi is G. morhua abundance, � the coeficient, , Sij substratum type and, JDi is the Julian date.
A random effect for zone using R package ‘glmmADMD’ (Skaug et al., 2014) was tested
for but was not signiicant. Tukey tests using R package ‘multcomp’ (Hothorn et al., 2008)
were used to test the difference between categorical variables. Backwards stepwise model
selection was implemented (Bolker et al., 2009; Zuur et al., 2009) and a log likelihood ratio
test was used to test model signiicance against the null hypothesis in addition to checking
residual plots.

© 2016 The Authors. Journal of Fish Biology published by John Wiley & Sons Ltd

on behalf of The Fisheries Society of the British Isles. 2016, doi:10.1111/jfb.12998
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A general linear mixed model (GLMM) using R package ‘nlme’ (Pinheiro et al., 2014) was
used to model length measurements. The best model it included JD as a ixed effect with an
offset for the transect area, and a random effect for zone: Y i = �0 + �1, JDi + offset(transect
area)i + bij, where Yi is G. morhua LF, � the coeficient are the coeficients, , JDi the Julian
date and , bij is the random effect for zone. A large outlier identiied by Cleveland dotplot was
removed from analysis since it was considered that the individual could have been of age 1 year.

RESULTS

Thirty-one stereo-video scuba transects were analysed, covering an area of
4093·14 m2 (mean± s.d. transect length= 95·56± 10·23 m and mean± s.d. tran-
sect width= 1·38± 0·18 m) (Fig. 1). A total of 496 G. morhua were identiied with a
mean± s.d. of 11·41± 19·47 per transect and within four of the 31 (13%) transects
no G. morhua were observed. Forty-ive taxonomic groups were identiied from 34
different families. Ninety per cent (9327) of the fauna identiied were classed as
epibenthic fauna. The maximum distance G. morhua were able to be identiied and
measured accurately was 2·86 m from the cameras (mean± s.d.= 1·52± 0·39 m) and
the minimum distance objects were measured was 0·85 m. The maximum distance the
Secchi disc was seen from the cameras varied between 4 and 5·5 m. It is therefore
unlikely that varying underwater visibility affected identiication and measurement
analysis.

Differences in community composition between substratum types were observed
(pseudo-F = 2·33, P(perm) < 0·001). Pair-wise tests between substratum type showed
signiicant differences between algal-gravel-pebble (AGP) and algal-boulder-cobble
(ABC) (t= 1·63, P(perm) < 0·001) and ABC and sand substratum type (t= 1·99,
P(perm) < 0·001). No signiicant difference between AGP and sand substratum type
was observed (t= 0·91, P(perm) > 0·05). The nMDS plot (Fig. 3) shows relatively
good ordination (stress 0·16), with some overlap between substratum types. SIMPER
analysis showed 22 species were required to explain dissimilarity between substratum
types with 80% dissimilarity between AGP and sand, 79% between AGP and ABC and
94% between ABC and sand. Hydroids and poor cod Trisopterus minutus (L. 1758)
featured in the top species causing the largest dissimilarity between AGP and sand
and AGP and ABC. Burrowing anemones Ceriantheopsis lloydii and the common
sea urchins Echinus esculentus led to greatest dissimilarity between ABC and sand
(cumulative dissimilarity of 19%).

A B I OT I C A N D B I OT I C E F F E C T S O N G. M O R H UA A B U N DA N C E

The PCA was conducted on seven variables. Two components had eigenvalues over
Kaiser’s (1960) criterion of 1, and in combination explained 57% (PC1 35%, PC2 22%)
of the variance. PC1 was most negatively correlated with Hill diversity indices fol-
lowed by substratum type and positively correlated with wave fetch. PC2 correlated
most strongly with distance from coast with a negative correlation with substratum
type (Table II). These results indicate that N2, substratum type, distance from coast
and wave fetch had stronger trends than other variables and were therefore used as
explanatory variables to understand the abundance and distribution of G. morhua.

Analysis of the explanatory variables independently, only substratum type and JD had
an effect on the abundance of juvenile G. morhua [L= 95·32 (d.f.= 5, theta= 0·48,

© 2016 The Authors. Journal of Fish Biology published by John Wiley & Sons Ltd

on behalf of The Fisheries Society of the British Isles. 2016, doi:10.1111/jfb.12998
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2D Stress: 0·16

Fig. 3. nMDS plot of the community composition of all fauna observed between substratum types ( ,

algal-boulder-cobble; , algal-gravel-pebble; , sand). Signiicant effects of substratum type on assemblage

structure are observed (PERMANOVA, P< 0·001).

P< 0·01)]. The highest abundance of juvenile G. morhua was observed within AGP
substratum type, and the lowest abundance was observed in sand substratum type. Inter-
mediate values were observed in ABC (Fig. 4 and Appendices I and II). A decrease in
the abundance of G. morhua was observed over the period of data collection (Fig. 5
and Appendix I).

L E N G T H A NA LY S I S

One hundred and twenty-one G. morhua LF measurements were made with a
mean± s.d. of 6·3± 1·4 cm. The largest G. morhua observed was 11·4 cm and the
smallest 3·2 cm. The largest individual (2 cm larger than the second largest individual)
was excluded from analysis as it could have been a small age 1 year individual

Table II. Eigenvectors of the standardized irst and second principal components from the PCA

of seven Gadus morhua habitat variables

Variable PC1 PC2

Depth 0·240 0·268

Distance from coast 0·258 0·568

JD −0·175 0·265

N2 −0·539 0·360

N∞ −0·512 0·410

Substratum type −0·448 −0·261

Wave fetch 0·301 0·409

JD, Julian date; N2, Hill diversity N2 (reciprocal of Simpson’s index); N∞, reciprocal of the proportional

abundance of the commonest species.

© 2016 The Authors. Journal of Fish Biology published by John Wiley & Sons Ltd

on behalf of The Fisheries Society of the British Isles. 2016, doi:10.1111/jfb.12998
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Fig. 4. Substratum type association of age-0 year group Gadus morhua observed around south Arran nature

conservation marine protected area (NCMPA). More juveniles were found in relation to substratum type

algal-gravel-pebble than algal-boulder-cobble or sand. No signiicant difference was observed between

algal-boulder-cobble and sand. The varied width boxplots, proportional to the square root of the sample

sizes, indicate the 25th and 75th percentiles of the total number of G. morhua observed within the differ-

ent substrata. The upper bars indicate the 10th and the lower bars the 90th percentiles. The indicates

the median size. indicate the outliers. between substratum types with * refers to Tukey test P-value

signiicance (*, P< 0·05; **, P< 0·01).

following exploration of Marine Scotland Science quarter three (July to September)
scientiic bottom trawl data. All other G. morhua analysed were deemed to be
age 0 year (Dalley & Anderson, 1997; Marty et al., 2014). An increase in LF was
observed over the course of data collection [L=−470·50 (d.f.= 4, P< 0·01); Fig. 6
and Appendix III]. No other variables were signiicant in explaining G. morhua LF.
An increase in LF variation was also observed over this time period (LM, F1,118 = 9·18,
P< 0·01) [L=−547·30 (d.f.= 3, P< 0·01)] (Appendix IV).

DISCUSSION

As far as is known, this is the irst study using stereo-video scuba transects in the
North Atlantic Ocean and builds upon existing single camera and underwater visual
census (UVC) studies (Schneider et al., 2008; Hunter & Sayer, 2009). Stereo-video
scuba transects permit accurate, isheries-independent, three-dimensional measure-
ments of fauna and transect dimensions to be made (Harvey et al., 2002). Data
collected have enabled ine-scale abundance and distribution information to be
gathered for the irst time on G. morhua during daylight hours within the Firth of
Clyde.

The abundance of juvenile G. morhua varied with substratum type, with more
G. morhua observed in algal-gravel-pebble substrata than algal-boulder-cobble or
sand. Juvenile G. morhua exhibit a light brown and white checkerboard pattern
which on gravel-pebble surfaces makes them relatively dificult to distinguish from
their background, obscuring their movement from predators (Gregory & Anderson,
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Fig. 5. Gadus morhua abundance for each substratum type over the course of data collection. , abundance of

G. morhua from 22 July to 20 September 2013. , algal-boulder-cobble; , algal-gravel-pebble; ,

sand GLM itted lines; shaded area indicates ±95% c.i. A decline in G. morhua abundance was observed

over the course of data collection (P< 0·01).

1997). The combination of colouration and substrata of suficient rugosity to seek
refuge within suggests that age-0 year G. morhua, of the size ranges observed, may
choose to spend a greater proportion of their time on algal-gravel-pebble substratum
type. Similarly, Lough et al. (1989) observed juvenile G. morhua in high abundance
on pebble-gravel substrata. The high variability associated with these observations
(Fig. 4) is likely to be a consequence of the small sample size and some variability in
juvenile G. morhua substratum selection.
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Fig. 6. Gadus morhua fork length (LF) over the course of data collection. Data points represent LF of G. morhua

measured from 22 July to 20 September 2013. , the GLMM itted line; , ±95% c.i. An increase in

age-0 year G. morhua LF was observed over the course of data collection (P< 0·01).
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Transects within Lamlash Bay NTZ were algal-gravel-pebble substratum types. The
effect of the NTZ on juvenile G. morhua abundance was not explored as data on
juvenile gadoid abundance were not available prior to its establishment to perform a
before-after control impact study (Sale et al., 2005). A study undertaken by Howarth
et al. (2015) found no difference in ish abundance within and out-with Lamlash Bay
NTZ. The latter may be a result of the reserve’s small size (2·67 km2) and its young age
(Howarth et al., 2015). Previous research on juvenile G. morhua does, however, show
limited movement (Grant & Brown, 1998) but this may vary depending on substratum
type (Laurel et al., 2004).

Seagrass beds have previously been observed to be nursery grounds for age-0 year
G. morhua (Linehan et al., 2001; Bertelli & Unsworth, 2014; Lilley & Unsworth, 2014)
with some studies showing increased nocturnal association (Anderson et al., 2007;
Bertelli & Unsworth, 2014). Because of the sample size and low density of Z. marina

sampled within the area, this substratum was merged with sand. Low-density sea-
grass areas have been related to be more similar to sandy sites (Jackson et al., 2001;
McCloskey & Unsworth, 2015), particularly when patchy with low shoot density and
area coverage (Jackson et al., 2001; Gorman et al., 2009). Mixed diurnal behaviour
has also been observed with age-0 year G. morhua, with some experiments showing
more active behaviour during daylight hours (Keats & Steele, 1992; Sayer & Poonian,
2007). Differential aggregation behaviour has also been observed depending on light
levels, predator presence and seagrass patch size (Laurel et al., 2003, 2004; Anderson
et al., 2007).

Gotceitas & Brown (1993) observed that juvenile G. morhua within an experimen-
tal tank selected cobble substrata in the presence of predators whilst selecting sand
and gravel-pebble substrata in the absence of predators. It is possible that the juveniles
identiied during data collection did not feel threatened by the diver, and the low abun-
dance of larger piscivores (Heath & Speirs, 2012) may have led to higher abundances
on algal-gravel-pebble substratum type. In this study, no predator–prey interactions
were observed. It is thought that some gravel substrata, speciically containing maerl,
may contribute to higher species diversity, structural rugosity (relative to the size of
G. morhua) and heterogeneity, and that these factors are of importance to the survival
of juvenile G. morhua (Hall-Spencer et al., 2003; Kamenos, 2004; Lough, 2010).

A decline in G. morhua abundance and an increase in juvenile size and size variation
were detected over the course of data collection. Gadus morhua have been observed
to arrive in recruitment pulses to coastal areas during downwelling events (Ings et al.,
2008). The increase in size variation is most likely caused by pulse recruitment occur-
ring over this time period, or one continued long pulse recruitment (Bastrikin et al.,
2014) from July to August 2013. The decline in abundance is unlikely to have been
caused by ish moving into deeper waters within such a narrow time span since previ-
ous studies show that this migration occurs after their irst winter or irst year (Magill
& Sayer, 2004).

Fewer LF measurements than counts were made (24% of the total number of
G. morhua) owing to a combination of not being able to distinguish individual juve-
niles within schools in both cameras and a blind spot between the cameras where the
G. morhua were too close to the cameras to be measured (Unsworth et al., 2014).
This latter problem could have been reduced by having the cameras closer together,
but at the expense of reduced accuracy at distance (Boutros et al., 2015). Precision in
the Z direction (towards and away from camera) is affected by the distance between
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cameras, affecting all measurements of objects which are not angled normal to the
camera axis (SeaGIS, 2013; Boutros et al., 2015).

Future temperate water studies should take water visibility and ish size into account
in order to maximize the number of ish measured. Stereo-video scuba transects can
provide detailed and valuable information on ish assemblage and population struc-
ture in rocky and sensitive substrata which would otherwise be inaccessible. Use of
semi-closed or closed circuit rebreather apparatus, or autonomous underwater vehicles
(AUV) may further reduce observer bias (Sayer & Poonian, 2007; Clarke et al., 2009).
With the rise in MPAs and spatial restrictions to manage substrata and species around
the U.K., this technique provides important information for isheries management and
information for possible future monitoring.

Despite measures in place to recover stocks, the already low numbers of G. morhua,
small length index and isolation of the Firth of Clyde in comparison to neighbour-
ing areas are likely to cause it to be more susceptible to local ishing impact (Heath &
Speirs, 2012). Much debate exists on the value of MPAs for the protection of ishes, par-
ticularly in temperate environments (Roberts et al., 2005; Takashina & Mougi, 2014;
Fernández-Chacón et al., 2015). If an MPA can protect important substrata of value
to juvenile G. morhua, bottle neck recruitment may be avoided, thus increasing the
survival of individuals at this critical stage in their life cycle (Lough, 2010). Man-
agement measures have recently (December 2015) been established to recover maerl
beds found within the NCMPA (Scottish Government, 2015). On the basis of the data
presented here, it appears that such management measures could have beneits for juve-
nile G. morhua. In the meantime, further investigations are recommended to strengthen
habitat-related observations of juvenile G. morhua abundance and distribution. Better
understanding and protection of important habitat components could support juvenile
G. morhua survival and recruitment.
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APPENDIX

APPENDIX I. Results from the model of best it for the response variable Gadus morhua abun-

dance. Explanatory variables show substratum type and Julian date (JD) with an offset of transect

area (m2). Coeficients and diagnostics (Z- and P-values) indicate the effect of each parame-

ter level on the reference level, denoted as intercept. The reference level is substratum type,

algal-boulder-cobble (ABC)

Variables Estimate s.e. Z-value P-value

Intercept 3·1028 1·6938 1·8320 >0·05

AGP 1·1524 0·4721 2·4410 <0·05

Sand −1·2494 0·7448 −1·6780 >0·05

JD −0·0280 0·0079 −3·5370 <0·001

AGP, algal-gravel-pebble.

APPENDIX II. Results from the Tukey test performed between substratum type categories for

the response variable Gadus morhua abundance

Variables Estimate s.e. Z-value P-value

AGP-ABC 1·1386 0·4757 2·393 <0·05

Sand-ABC −1·2227 0·7547 −1·620 >0·05

Sand-AGP −2·3613 0·7595 −3·109 <0·01

AGP, algal-gravel-pebble; ABC, algal-boulder-cobble.
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APPENDIX III. Results from the model of best it for the response variable Gadus morhua fork

length (LF). Fixed effects show Julian day (JD) with an offset of transect area (m2)

Variables Estimate s.e. t-value P-value

Intercept 23·30671 12·51339 1·862542 >0·05

JD 0·182449 0·059287 3·077398 <0·01

APPENDIX IV. Results from the model of best it for the response variable Gadus morhua fork

length (LF) variation over the period of data collection

Variables Estimate s.e. t-value P-value

Intercept −9·6035 20·48846 −0·469 >0·05

JD 0·2948 0·09732 3·030 <0·01

JD, Julian day.
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