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ABSTRACT 

 High velocity impact and shock or blast responses are a critical design characteristic 

determining sizing of composite parts and, ultimately, weight savings. This study demonstrates 

the applicability of peridynamics to accurately predict nonlinear transient deformation and 

damage behavior of composites under shock or blast types of loadings due to explosions. The 

peridynamic predictions correlate well with the experimental results available in the literature. 

Therefore, peridynamics provides the ability to predict residual strength and durability for 

improving structural designs of composites under such loading conditions.  
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1. Introduction  

 During the service life of an aircraft composite component, damage due to high velocity 

impact or blast may occur, which leads to catastrophic failure of these structures. However, 

component-level structural testing and analysis of advanced composites is prohibitively 

expensive and time consuming. Therefore, using robust and accurate computational tools 

complemented by experiments at key stages is a viable and cost-effective option.  

 High velocity impact and blast loads cause nonlinear structural deformation and multifaceted 

failure mechanism in composite laminates. However, it is a very challenging task to predict all 

possible failure modes because damage initiation and its progressive growth is very complex, 

and commonly accepted methods have had limited success. It is evident that the inhomogeneous 

nature of composites must be retained in the analysis to predict the correct failure modes. Aside 

from the complex loading conditions, the deformation of a laminate is dependent on the lamina 

properties, thickness, and stacking sequence. There exists, usually, a resin-rich and extremely 

thin layer between the laminae; an inherent source for cracking and delamination. Therefore, 

transverse normal and shear deformations especially play a critical role in the initiation and 

growth of delamination. 

 High velocity impact and shock or blast responses are a critical design characteristic 

determining the sizing of composite parts and, ultimately, weight savings. Deformation and 

failure characteristics of composite materials under shock loading conditions were considered in 

the past as part of many computational/analytical and experimental investigations. Rabczuk et al. 

[1] developed a simple model with two lumped masses to analyze sandwich structures subjected 

to dynamic underwater loads. Motley et al. [2] numerically investigated initial failure loads of 

fully submerged composite plates subjected to explosion by employing Hashin’s criteria for 
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failure initiation. A more complex study was performed by Batra and Hassan [3] for a composite 

laminate subjected to underwater shock loading by using a finite element method (FEM) while 

incorporating a rate-dependent damage evolution equations. Also, LeBlanc [4] used LS-DYNA, 

a commercially available FE software, which permits specific material models while 

incorporating progressive damage property. Wei et al. [5] proposed a progressive degradation 

model in order to analyze different damage mechanisms in composite structures, and they 

compared their results with experimental observations obtained from an underwater shock tube. 

Later, these results were improved by considering strain-rate effects on the mechanical behavior 

of constituents of composites [6]. Experimental investigations were also carried out in order to 

gain a better understanding of the dynamic and damage behavior of composite structures under 

shock loadings. In general, experiments were performed under either direct explosions or with 

laboratory-scale shock tubes. Using shock tubes is more favorable than using explosives [7] 

because field experiments can be expensive, dangerous, and harmful to the environment [8]. In 

experiments, small target dimensions may lead to small impacted regions and, subsequently, 

localized damage [9]. 

 Therefore, scaling relations involving plate dimensions, explosive intensity, and other 

parameters are rather important. Bachynski et al. [8] derived scaling relations for composite 

structures to conduct laboratory-scale experiments. Espinosa et al. [10] developed a novel 

experimental setup, which is based on scaling analysis, in order to represent full field 

experiments on a laboratory scale. Other shock tube test setups have been used in the literature 

[4, 11-13] to understand deformation and failure characteristics of composite structures. Mouritz 

[13] carried out prototype-scale experiments and showed the effect of stitching on improving 

damage characteristics, especially delamination damage, of glass/vinyl ester composites. Arora 
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et al. [7] carried out large-scale field experiments and investigated failure mechanisms of E-glass 

fiber-reinforced sandwich panels and laminated tubes. Latourte et al. [9] investigated failure 

modes and damage mechanisms of composite laminate and sandwich structures using a shock 

tube defined by Espinosa et al. [10]. Avachat and Zhou [14] used a novel gas-gun based 

Underwater Shock Loading Simulator (USLS) for investigating damage characteristics of 

composite structures, and comparisons were done with FE simulations performed by Avachat 

[12].  

 In summary, several numerical investigations have been performed in collaboration with 

experimental studies in order to develop the most suitable and accurate numerical modeling 

technique. However, the previous numerical studies utilized FE analysis, which suffers from 

mesh sensitivity in the case of impact analyses [15]. Although the use of Cohesive Zone 

Elements (CZE) is suitable for pure mode I or II type failures, it is still a topic of research for 

mixed-mode type failure. It requires a priori knowledge of the crack propagation path for CZE 

placement. In the case of composites, it is also not practical to place CZEs in between each ply 

for delamination and in-plane matrix cracking. Moreover, they require remeshing for accurate 

predictions, which is computationally challenging. While the eXtended Finite Element Method 

(XFEM) has been successfully applied to numerous applications with a moderate number of 

cracks, its application to complex fracture patterns as they occur in blast events of composite 

structures remains a challenge. Furthermore, although XFEM is capable of modeling crack 

growth without remeshing, it still requires a criterion for crack branching and coalescence, and 

robust criteria for such cases are still missing. 

 Meshfree methods [16] have been shown to be a good alternative to the finite element 

method for problems involving large deformations, fracture, and fragmentation. They can handle 



5 

 

changes in the ‘nodal connectivities’ more naturally. For example, modeling perforation during 

impact requires the deletion of elements. Meshfree methods have been extensively applied to 

dynamic fracture and fragmentation since the nineties [17-19]. They have been used to model 

shear bands in metals [20-23], concrete fragmentation [24-26], dynamic fracture in thin shells 

[21, 27-28], and fluid structure interaction [29, 30], among others. 

 Early approaches were based on Eulerian kernels, where fracture is modeled through a 

natural separation of particles. However, it was shown for instance in [31] that the use of 

Eulerian kernels lead to numerical fracture—that could be avoided by formulations based on 

Lagrangian kernels [32]—and would, in turn, require fracture criteria and a representation of the 

crack topology. A simple and robust method to treat dynamic fracture that does not require a 

representation of the crack topology was presented by Sulsky et al. [33]. The Cracking Particles 

Method (CPM) [24, 34] was specifically designed for complex fracture patterns such as crack 

branching and coalescence. In the CPM, the crack path is represented by a set of cracked 

particles. The crack kinematics, which is assumed to be piecewise constant, is obtained through 

enrichment, though a simple particle splitting [35, 36] can achieve the same objective.  

 Silling [37,38] introduced a nonlocal theory that does not require spatial derivatives, the 

peridynamic (PD) theory. This theory provides nonlinear material response with respect to 

displacements. Furthermore, the material response includes damage in the PD theory. The PD 

theory is formulated by using integral equations, and this feature allows damage initiation and 

propagation at multiple sites, with arbitrary paths inside the material, without resorting to special 

crack growth criteria. In the PD theory, internal forces are expressed through nonlocal 

interactions between the material points within a continuous body, and damage is part of the 
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constitutive model. Interfaces between dissimilar materials have their own properties and 

damage can propagate when and where it is energetically favorable for it to do so. 

 The PD methodology overcomes the weaknesses of the existing methods, and it is capable of 

identifying all of the failure modes without simplifying assumptions. It effectively predicts 

complex failure modes in composites under general dynamic and static loading conditions [39-

45]. Damage is inherently calculated in a PD analysis without special procedures, making 

progressive failure analysis more practical. The governing equations of peridynamics are in the 

form of integro-differential equations, which naturally incorporates damage into the structure, 

and no additional equations are needed for damage evolution. Moreover, its numerical 

implementation is achieved by a meshless approach, which does not result in unrealistic energy 

dissipations as in FEM [15]. 

 This study first briefly explains the peridynamic laminate theory (PDLT) for composite 

structures by Madenci and Oterkus [46]. Subsequently, it presents simulation results to 

demonstrate the capability of PD theory for shock/blast type analysis of composites by 

comparison with the previous experimental study by LeBlanc [4]. 

 

2. Peridynamics 

 In the peridynamic theory introduced by Silling [37], and later extended by Madenci and 

Oterkus [46], the material points interact with each other directly through the prescribed response 

function, which contains all of the constitutive information associated with the material. The 

response function includes a length scale parameter called internal length (horizon),  . The 

locality of interactions depends on the horizon, and interactions become more local with a 

decreasing horizon. Hence, the classical theory of elasticity can be considered as a limiting case 
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of the peridynamic theory as the internal length approaches zero. The PD theory is a good 

alternative to traditional methods for damage prediction in materials and structures. As the 

interactions between material points cease, cracks may initiate and align themselves along 

surfaces that form cracks, yet the integral equations continue to remain valid.  

 Madenci and Oterkus [46] extended the PD theory to PD laminate theory, and the details of 

the derivation and many validation cases are given by Colavito [47]. Each fiber-reinforced 

composite lamina of a laminate shown in Fig. 1 is idealized as a two-dimensional structure with 

the directional dependency of the interactions between the peridynamic material points.  

 

Fig. 1.Elevation of each lamina in a laminate and PD material points. 

 

As shown in Fig. 2, the material point q  represents material points that interact with material 

point k  only along the fiber direction with an orientation angle of   in reference to the x-axis. 

Similarly, material point r  represents material points that interact with material point k  only 

along the transverse direction. However, the material point p  represents material points that 

interact with material point k  in any direction, including the fiber and transverse directions. The 

orientation of a PD interaction between the material point k  and the material point p  is defined 

by the angle   with respect to the x-axis. The domain of integration, H  shown in Fig. 2, is a 
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disk with radius   and thickness h. The material points in a particular lamina interact with the 

other material points of immediate neighboring laminae, above and below it. 

 

Fig. 2.PD horizon for a family of material points and their interactions in a lamina. 

 

 The equation of motion for material point 
( )

n

kx  located on the thn  layer of a laminate with N  

layers can be expressed as 
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where the material point 
( )

n

kx  on the thn  layer is associated with an incremental volume, ( )

n

kV , and 

a mass density of ( )

n

k ; t designates time. With respect to a Cartesian coordinate system, the 

material point ( )

n

kx  experiences displacement, ( )

n

ku , and its location is described by the position 
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vector ( )ky  in the deformed state. The displacement and body load vectors at material point 
( )

n

kx , 

are represented by 
( )

n

ku  and 
( )

n

kb , respectively. 

 Arising from in-plane deformation, 
( )( )

n

k jt  represents the force density that material point 
( )

n

jx  

exerts upon material point 
( )

n

kx . The force density vectors, ( )( )

( )

n m

kp  and ( )( )

( )( )

n m

k jq  with 

( 1),( 1)m n n   , develop due to the transverse normal and transverse shear deformations, 

respectively, between the material points 
( )

n

kx  and 
( )

m

jx . The explicit form of the force density 

vectors, 
( )( )

n

k jt , ( )( )

( )

n m

kp  and ( )( )

( )( )

n m

k jq  associated with in-plane, transverse normal, and shear 

deformations, respectively, can be derived in the form 
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and 
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which represents the direction cosines of the relative position vectors between the material points 

( )

n

kx  and 
( )

n

jx  in the undeformed and deformed states.  

 The horizon size in the thickness direction is ̂ , and   is defined as 2 2ˆ    . Note 

that 
( ) ( )| |m n

j kx x  and 
( ) ( )| |m n

k jx x  are equivalent quantities. The parameters F and T  define the 

direction of the fiber as 
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j k j k
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The parameter ( )k  denotes the dilatation of the material point 
( )

n

kx  and is defined as 

 

 ( ) ( ) ( ) ( ) ( ) ( )( ) ( )

1 ( ) ( )

n n n n n n n

k j k j k k j jn n
j j k

d V
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 The PD material parameters a  and d  are associated with the dilatation term, and Fb , Tb , 

and FTb  are associated with deformation of PD interactions in the fiber direction, transverse 

direction, and remaining arbitrary directions, respectively. The PD material parameters Nb  and 
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Sb  are associated with the transverse normal and shear deformations. These parameters can be 

related to the four independent material constants of elastic modulus in the fiber direction, 11E , 

elastic modulus in the transverse direction, 22 ,E  in-plane shear modulus, 12G , and in-plane 

Poisson’s ratio, 12 . Their explicit expressions are derived by Madenci and Oterkus [ 46]. 

 This peridynamic laminate theory described in detail by Madenci and Oterkus [46] includes 

transverse normal and shear deformations, and it accurately models the behavior of fiber- 

reinforced composites. It accounts for deformation coupling such as stretch-shear, stretch-

twisting, and stretch-bending due to material layup. It is also geometrically nonlinear and 

captures damage through the thickness in the presence of local loading, such as blast or shock 

due to explosion. 

 Since the force density-stretch relations are nonlinear, the peridynamic equation of motion is 

solved numerically. Therefore, in order to carry out the numerical integration, the region of 

interest is first discretized into sub-domains in which the displacement and velocity fields are 

assumed to be constant. Hence, each sub-domain can be represented as a single collocation point 

located at the mass center of the sub-domain.  

 

2.1. Peridynamics for progressive damage  

 The material point x  has in-plane interactions within the same ply, as well as interlayer 

interactions between the adjacent plies above and below, as shown in Fig. 2. The interactions 

within the same layer establish the in-plane properties of the composite laminate, including fiber 

and matrix. The interlayer interactions with material points from different layers define the 

interlayer properties. The delamination prediction is based on the deformation state of the 

interlayer; they are terminated once reaching their critical values. Local damage at a point is 
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defined as the weighted ratio of the number of eliminated interactions to the total number of 

initial interactions of a material point with its family members. The local damage at a point can 

be quantified as [48] 

 

 
( , )

, 1 H

H

t dV

t
dV




 
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





x x

x  (9) 

 

The status variable,  , is defined as  

 

1, no damage

0, damage

cs s

s s



    

(10) 

 

with  representing the critical value of stretch. The local damage ranges from zero to one. 

When the local damage is one, all the interactions initially associated with the point have been 

eliminated, while a local damage of zero means that all interactions are intact. The measure of 

local damage is an indicator of possible crack formation within a body.  

 

2.1.1. Intralayer damage 

 The constitutive or force-stretch relations for the interactions within the plane of a lamina, in 

the fiber, transverse, and arbitrary directions, are shown in Fig. 3. In this study, the transverse 

and arbitrary critical parameters are combined into a matrix critical stretch in tension and 

compression as mts  and mcs , respectively. The critical parameters in the fiber direction in tension 

cs
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and compression are fts  and fcs , respectively. The critical stretch parameters for composite 

laminates can be obtained using experimental methods, Oterkus et al. [39, 40], calibration using 

an inverse approach [49, 50], or through equating the energy required to create a fracture surface 

to the energy release rate [51].  

 

Fig. 3. Force-stretch relationships for peridynamic interactions. 

 

2.1.2. Interlayer damage 

 The interlayer interactions may break due to the opening mode, releasing strain energy, IG , 

that accounts for interlaminar tension. Also, interlayer interactions may break due to the shearing 

mode, and releasing energy, IIG , that accounts for interlaminar sliding shear. As suggested by 

Oterkus and Madenci [39] , the transverse normal and the transverse shear critical stretch values 

can be determined as  

 

2 IC
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h E
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IIC
ds

m

G
s

hG
    (12) 

 

where ICG  and IICG  are the mode I and mode II critical energy release rates of the matrix 

material. The underlying idea is that energies required to break all interlayer interactions between 

the plies of a laminate are the same with mode I or mode II critical energy release rates. The 

elastic and shear moduli of the epoxy matrix material are denoted by mE  and mG . 

 

2.2. Numerical time integration 

 The numerical solution of the equations of motion is achieved by employing explicit time 

integration schemes. The advantage of explicit schemes over implicit time integration methods is 

that there is no need to solve the equation of motion using large matrices because each equation 

related to the main material point, i, can be solved independently. However, the explicit schemes 

are stable only if the time step size, t, is smaller than a particular value. The stability condition 

for isotropic materials was given by Silling and Askari [ 48]. Similarly, the stability criterion on 

the time step size can be derived by using a von Neumann stability analysis for a composite 

laminate as 
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 The use of a safety factor that has a value of less than 1 is recommended as it makes the 

analysis more stable in case of some type of nonlinearity in the structure.  

 

3. Numerical results 

 The applicability of this approach is demonstrated by simulating the damage evolution in a 

13-ply composite laminate under shock-type loading. The PD predictions are compared against 

an experimental study performed by LeBlanc [4]. A Conical Shock Tube (CST) was used to 

replicate underwater shock phenomena. The geometry and mechanical properties of the 

composite plate are the same as those reported by LeBlanc. The CST experimental setup is 

shown in Fig. 4. Shock wave propagates from the breech, at which the charge is located, and 

strikes the test plate. The test plate, shown in Fig 5, is clamped along the boundary region using 

bolts.  

 

Fig. 4. Representative CST test setup [3]. 
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Fig. 5. Composite test plate. 

 

 It is worth mentioning that only the first impact of the shock wave is considered, so pressure 

generated by the incident shock wave alone is applied to the test plate. Based on the 

measurements by LeBlanc [4], when the shock wave reaches the test plate, pressure rises up 

linearly to a peak value, maxP , during the time range of 0 ms 0.04 mst  . It retains its peak 

value until 0.08 mst  , before diminishing exponentially. This pressure profile is shown in Fig. 

6.  

 

Fig. 6. Pressure profile at the test plate in CST. 
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 The test plate made of Cyply® 1002 is a 13-ply composite plate with layup of 

[0 / 90 / 0 / 90 / 0 / 90 / 0] . Each ply is composed of epoxy matrix and E-glass filament materials. 

The material properties of the unidirectional lamina are 11 39.3 GPaE  , 22 9.7 GPaE  , 

12 9.7 GPaG  , and 12 0.27  . Its mass density is 
39.7 kg/m  . Tension and compression 

strength properties of the lamina are 1 965 MPat  , 1 883 MPac   , 2 20 MPat  , 

2 193 MPac   . The critical stretch values for fiber failure can be related to the measured 

tension and compression strength values as 1 11/ft ts E  and 1 11/fc cs E . The critical stretch 

value, mts , for the matrix under tension is determined as [18] 

 

2

5

9

IC
t

m

G
s

K 
    (15) 

 

where ICG  and mK  denote the mode I critical energy release rate and bulk modulus of the epoxy 

matrix material. The critical energy release rate for the matrix is specified as 

311.85 10  MPa-mICG   , and the critical stretch value for the matrix direction becomes 

22.1 10mts   . The critical stretch value for fiber is much higher than that of the matrix, thus 

providing material integrity during the analysis. Also, the critical stretch values in the arbitrary 

direction are the same as that of the matrix critical stretch. Furthermore, the matrix material is 

only allowed to fail in tension and not under compression. For the epoxy matrix material 

between the plies of a laminate, the critical energy release rates, ICG  and IICG  for Mode I and 

Mode II, respectively, are specified as 32.37 10  MPa-mICG    and 37.11 10  MPa-mIICG   . 
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Thus, the critical stretch values of interlayer damage are computed as 27.015 10dns    and 

0.1dss  .  

 The PD model of the composite laminate, shown in Fig. 7, includes each lamina with a single 

layer of material points with a grid size of 31.32715 10  mx    . Each material point has a 

horizon radius of 3.015 x   . The fully clamped conditions arising from the mounting fixtures 

are enforced by constraining only the bottom and top plies in the vertical direction and leaving 

the remaining free of constraints in other directions. 

 

Fig. 7. PD discretization of a 13-ply composite test plate. 

 

 Underwater shock analysis of the composite plate is performed for 1 ms; at this instant, the 

pressure profile becomes nearly zero. However, damage simulation continues until 0.452 ms 

because the bolt holes are fragmentized and the plate is pulled apart from the mounting fixtures. 

The time step size for an explicit time integration is specified as 87.69 10  st    . Peridynamic 
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matrix damage and delamination predictions are captured in all 13 plies of the test plate; the plies 

are numbered from the bottom to top ply as 1 to 13, respectively.  

 

3.1. Matrix damage 

 Matrix damage predictions are shown in Fig. 8 for all plies at time steps of 0.224 ms, 0.325 

ms, and 0.452 ms. Damage progression in the top and bottom plies is very distinctive because the 

top plies are compressed under shock loading and the bottom plies resist tensile loading. At time 

0.224 ms, the loading reaches about half of the maximum applied blast loading. Matrix damage 

predictions in the top, middle, and bottom plies at each time step are shown in Figs. 9-11. 

Damage in the bottom plies can be attributed to matrix cracking. However, damage can be both 

matrix cracking and fiber/matrix debonding near the bolt holes in the top plies. As the time 

progresses, damage characteristics between the top and bottom plies remain distinct. In 

comparison to the bottom plies, the matrix damage in the middle region remains lower than that 

of the top plies. As for the bottom plies, damage increases to higher values at the center of four 

quadrants. The matrix damage in the vicinity of bolt holes increases as time progresses. It 

propagates in all plies, and top and bottom bolt holes are fragmentized dramatically. Also, a 

significant amount of damage propagates towards the center from the top and bottom bolt holes 

in all plies. Therefore, it leads to the rupture of the plate from the top and bottom clamped 

regions. 
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                                         (a)                                     (b)                                     (c) 

Fig. 8. Matrix damage results of all plies at (a) 0.224 ms, (b) 0.325 ms, and (c) 0.452 ms. 

 

 

 
 

                 (a)                                          (b)                                             (c) 

Fig. 9. Top views of matrix damage of (a) top, (b) middle, and (c) bottom plies at 0.224 ms. 
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                                        (a)                                     (b)                                        (c)  

Fig. 10. Top views of matrix damage of (a) top, (b) middle, and (c) bottom plies at 0.325 ms. 

 

 
 

(a)                                             (b)                                           (c) 

Fig. 11. Top views of matrix damage of (a) top, (b) middle, (d) bottom plies at 0.452 ms. 

 

3.2. Delamination damage  

 Delamination damage occurs due to either mode I or mode II type deformations. Unlike the 

matrix damage, both delamination damage types commence at a later time, about 0.325 ms. As 

shown in Fig. 12a, mode II type delamination damage is observed in the boundary region of all 

plies; however, it is more considerable in the middle plies. In particular, middle plies have 

extensive damage around the top, bottom, left, and right sides of the clamped region, as shown in 

Fig. 13.  
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                                                            (a)                                      (b) 

Fig. 12. Mode II type delamination damage in all plies at 0.325 ms and 0.452 ms. 

 

 
                                                         (a)                                              (b)  

Fig. 13. Top views of delamination damage for (a) middle and (b) 6
th

 plies at 0.325 ms. 

 

 At 0.452 ms, delamination damage propagates, and all plies are delaminated from the 

circumference of the boundary region, as shown in Fig. 12b, with significant damage 

concentrations evident around the bolt holes, as shown in Fig. 14. Also, delamination damage 

propagates towards the center of the plate from the top and bottom bolt holes, similar to that 

observed in matrix damage predictions at 0.452 ms. Comtois et al. [52] observed similar 

delamination damage as in Fig. 14 in several experiments of circular specimens due to air shock 
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loading. Furthermore, damage propagates towards the inner region from the clamped areas while 

spreading throughout the specimen with an increase of charge weight.  

 

 
                                                           (a)                                    (b) 

Fig. 14. Top views of delamination damage for (a) middle and (b) 6
th

 plies at 0.452 ms. 

 

 
Fig. 15. Mode I type delamination damage in top three plies at 0.325 ms. 

 

 Mode I type delamination damage is contained around the circumference of the unsupported 

region in the top three plies, as shown in Fig. 15. As the time progresses, delamination damage 

concentrates around the bolt holes and is significant at the top and bottom holes, from which 

damage spreads along the circumference of the unsupported region especially for the top plies, as 

can be seen from Figs. 16 and 17.  
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Fig. 16. Mode I type delamination damage in all plies at 0.452 ms. 

 

 
                        (a)                                        (b)                                       (c) 

Fig. 17. Top views of mode I type delamination damage for (a) top, (b) middle, and (c) bottom 

plies at 0.452 ms. 

 

 The PD simulation predicts the test plate to be torn off from the mounting fixtures at 0.452 

ms, and it reaches the complete damage state. The predictions are consistent with the image of 

the damaged test plate provided by LeBlanc [4], shown in Fig. 18. All bolt holes are damaged 

and the damage around the top and bottom holes is more considerable than the others. Complete 
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rupture occurs from the top bolt. Also, damage progressions from the top and bottom holes to the 

center are quite significant. Similar damage behavior can also be observed in PD matrix damage 

predictions. 

 
 

Fig. 18. Damaged test plate after the shock loading in CST [4]. 

 

 As shown in Fig. 18, transparent regions of the image indicate delamination in the test plate. 

A considerable amount of delamination can be observed at the top and right sides of the test 

plate. Also, delamination regions are quite significant at the top and bottom bolt holes. The 

unsymmetrical delamination damage may be due to the presence of manufacturing process 

defects. Based on these observations, it can be concluded that the PD simulations successfully 

capture the experimental observations and delamination regions. 

 

4.  Conclusions 

 This study demonstrates the capability of PD theory for the prediction of damage patterns of 

complex structures under shock loading. The PD methodology overcomes the weaknesses of the 

existing methods, and it is capable of identifying all of the failure modes without simplifying 
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assumptions. Damage is inherently calculated in a PD analysis without special procedures, 

making progressive failure analysis more practical. The peridynamic predictions correlate well 

with experimental results available in the literature. Therefore, peridynamics can be used as a 

very effective computational methodology for investigating high velocity impact and blast 

response of composite structures.  
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