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Abstract

This paper is concerned with the stability and numerical analysis of solution to highly

nonlinear stochastic differential equations with jumps. By the Itô formula, stochastic

inequality and semi-martingale convergence theorem, we study the asymptotic stability

in the pth moment and almost sure exponential stability of solutions under the local

Lipschitz condition and nonlinear growth condition. On the other hand, we also show

the convergence in probability of numerical schemes under nonlinear growth condition.

Finally, an example is provided to illustrate the theory.
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1 Introduction

During the past few decades, stochastic models that incorporate jumps have been proved

successful at describing unexpected, abrupt changes of state and have been used with great

success in a variety of application areas, including biology, epidemiology, mechanics, etc. In

particular, they are used in mathematical finance in order to simulate asset prices, interest

rates and volatilities [5,12].

Recently, qualitative theory about the existence and stability of SDEs with jumps have

been studied intensively for many scholars. For example, Applebaum [1-3], Li [16], Rong [31],

Yin [38], Yang [39] and Zhu [40]. Meantime, explicit solutions can hardly be obtained for SDEs

with jumps. Thus appropriate numerical schemes such as the Euler (or Euler-Maruyama) are

needed to apply them in practice or to study their properties. Here, we refer to Bruti-Liberati

[6], Chalmers [7], Gardon [8], Higham [9,10], Liu [19], Platen [30] and references therein. For

above mentioned papers, most of the existing convergence and stability theory require the

coefficients of SDEs with jumps to satisfy linear growth condition. In fact, this condition is

often not met by many systems in practice and the existing results of convergence and stability

are somewhat restrictive for the purpose of practical applications. For example, consider the

following SDEs with jumps:

dx(t) = f(x(t))dt+ g(x(t))dw(t) +

∫ 1

0

h(x(t−), v)N(dt, dv), (1.1)

where Poisson random measure N(dt, dv) is generated by a Poisson point process p̄(t) (see

Section 2 for more details). Here

f(x) = −2x− 5

2
x3, g(x) = x2 and h(x, v) = 0.1v(x+ x2).

Obviously, the coefficients f, g, h satisfy the local Lipschitz condition but they do not satisfy

the linear growth condition. Hence, we cannot apply the convergence and stability results

([2],[6],[8],[9],[10],[38],[39],[40]) to equation (1.1). Therefore, it is very important to establish

the convergence and stability theory of SDEs with jumps under some weak conditions.

In the past few decades, many authors devoted themselves to find the other conditions to

replace the linear growth condition. By using the Lyapunov-type functions, a lot of important
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results have been obtained by many scholars under the Khasminskhii-type conditions. For

example, in terms of Lyapunov functions, Khasminskii [14] first investigated the existence

and stability of solution for SDEs under the local Lipschitz condition. Next, Mao [23,24,26]

extended the Khasminskii theorem ([14]) to the case of stochastic differential delay equations

(SDDEs) and obtain the almost sure asymptotic stability of solution to SDDEs. Based on

[24,26], Mao [28] also studied the almost surely asymptotic stability of the neutral SDDEs

with Markovian switching. Meanwhile, under the Khasminskhii-type conditions, some au-

thors studied the convergence of numerical solutions for stochastic differential systems. By

using the Lyapunov functions, Marion [21] studied the convergence in probability of the Euler

approximation to the exact solution for SDEs. Subsequently, Li [20] and Yuan [37] extended

the results of Marion [21] to the case of SDDEs with markovian switching, respectively. Milo-

sevic [22] studied the numerical solution of highly nonlinear neutral SDEs with time-dependent

delay under the Khasminskhii-type conditions.

Although above mentioned works are very important and general, many SDEs obey these

Khasminskhii-type conditions derived by the Lyapunov approach, but the greatest disadvan-

tage of this approach is that no universal method has been constructed which enables us

to find a Lyapunov function or determine that no such function exists. For example, Kol-

manovskii [15] and Li [20]. In order to avoid constructing Lyapunov functions, the other

general conditions are needed to satisfy highly nonlinear stochastic differential systems. For

example, Boulanger [4] provided the polynomial growth condition and prove that there exists

a control Lyapunov function such that single input nonlinear stochastic systems is asymptoti-

cally stable; Wu [34] assumed the coefficients of SDDEs to be polynomial and established the

existence-and-uniqueness theorems of the global solution; In the meantime, Wu [35] and Liu

[17] considered the suppression and stabilization of noise for stochastic differential systems.

Under the polynomial growth condition, they showed that the noise perturbation may ensure

the corresponding stochastic perturbed system is almost surely exponentially stable. Further,

Wu [36] extended the results on stochastic suppression and stabilization of [35] to the case of

SDDEs. Besides, many researchers also focused on the numerical solution of a class of highly

nonlinear SDEs. In particular, they proved that numerical solutions converge to the true solu-

tions in the strong sense under the polynomial growth condition. For detailed understanding
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on this, please refer to Hutzenthaler [11], Kumar [13], Mao [27], Szpruch [32], Sabanis [33].

Motivated by equation (1.1) and [11,27,33,35], we consider a class of nonlinear SDEs with

jumps:

dx(t) = f(x(t))dt+ g(x(t))dw(t) +

∫

Z

h(x(t−), v)N(dt, dv), (1.2)

on t ≥ 0. To the best of our knowledge, there are no literatures concerned with the related

results on stability and numerical solution of SDEs with jumps under nonlinear growth con-

ditions. By using the Itô formula, stochastic inequality and nonnegative semi-martingales

convergence theorem, we prove that SDEs with jumps (1.2) is the asymptotically stable in

the pth moment and almost surely exponentially stable under nonlinear growth conditions;

Meantime, we show that the approximate solution converges in probability to the true so-

lution of equation (1.2) under above mentioned conditions. Comparing with [11,27,33,35],

the proof about stability and convergence of numerical solution for SDEs with jumps is not

a straightforward generalization of that for SDEs without jumps. Unlike the Brown process

w(t) whose almost all sample paths are continuous, the Poisson random measure N(dt, dv)

is a jump process and has the sample paths which are right-continuous and have left limits.

Therefore, there is a great difference between the stochastic integral with respect to the Brown

process and the one with respect to the Poisson random measure. As a result, those results

of [11,27,33,35] cannot be naturally extended to the jumps case.

In this paper, we prove that SDEs with jumps is asymptotically stable in the pth moment.

However, most of the existing results on SDEs with jumps are about the exponential stability

[1,2,38,39], while little is known on the asymptotic stability. Until recently, based on Mao’s

work [25], Zhu [40] studied the asymptotic stability in the p-th moment and almost sure

stability for SDEs with Levy jump under the Lipschitz conditions and linear growth conditions.

Unfortunately, the existing Theorem 3.2 for asymptotic stability in the p-th moment stability

of SDEs with jumps require the operator LV (2.3) of [40] have the same order as some certain

function at some instants. In fact, we will encounter a problem when we attempt to apply

Theorem 3.2 of [40] to deduce the asymptotic stability in the p-th moment stability of the
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solution. Let us consider equation (1.1). If we choose V (t, x) = x2, then LV operator becomes

LV (t, x) = −4|x|2 − 4|x|4 +
∫ 1

0

{[5
2
(1 + 0.1v)2 − 1]|x|2 + 5

3
0.01v2|x|4}π(dv)

≤ −(2−√
e− 0.05e2)|x|2 − (4− 0.05

3
e2)|x|4.

Here, the terms −(4− 0.05
3
e2)|x|4 which has a higher degree than the degree of V , appear on

the right-hand side and these prevent Theorem 3.2 of [40] from being used. It is due to this

problem that we see the necessity to develop new stability crireria for SDEs with jumps under

nonlinear growth conditions. In addition, although there exist a number of works concerned

with exponential stability and numerical solutions for SDEs with jumps, those results in

[2,3,6,9,10,30] cannot cover a wide range of highly nonlinear SDEs with jumps. In this case,

we prove that SDEs with jumps (1.2) is almost surely exponentially stable and show that the

approximate solutions converge in probability to the true solutions of equation (1.2) under

nonlinear growth conditions.

The rest of the paper is organized as follows. In Section 2, we introduce some notations

and hypotheses concerning equation (1.2); In Section 3, by applying the Itô formula, stochastic

inequality and semi-martingale convergence theorem, we study the asymptotic stability in the

pth moment and almost sure exponential stability of solutions to equation (1.2); While in

Section 4 we investigate the convergence in probability of the numerical schemes (4.2) to

equation (1.2) under above mentioned conditions; Finally, we give an example to illustrate

the theory in Section 5.

2 Preliminaries and the global solution

Throughout this paper, unless otherwise specified, we use the following notation. Let |x|
be the Euclidean norm of a vector x ∈ Rn. If A is a matrix, its trace norm is denoted by

|A| =
√
trace(A⊤A). Let (Ω,F , {Ft}t≥0, P ) be a complete probability space with a filtration

{Ft}t≥0 satisfying the usual conditions (i.e. it is increasing and right continuous while F0

contains all P -null sets). Let w(t) = (w1(t), · · · , wm(t))
T be an m-dimensional Brownian

motion defined on the probability space (Ω,F , P ).
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Let {p̄ = p̄(t), t ≥ 0} be a stationary Ft-adapted and Rn-valued Poisson point process.

Then, for A ∈ B(Rn−{0}), here 0 ̸∈ the closure of A, we define the Poisson counting measure

N associated with p̄ by

N((0, t]× A) := #{0 < s ≤ t, p̄(s) ∈ A} =
∑

t0<s≤t

IA(p̄(s)),

where # denotes the cardinality of set {.}. For simplicity, we denote N(t, A) := N((0, t]×A).

It is known that there exists a σ- finite measure π such that

E[N(t, A)] = π(A)t, P (N(t, A) = n) =
exp(−tπ(A))(π(A)t)n

n!
.

This measure π is called the Lévy measure. Moreover, by Doob-Meyer’s decomposition the-

orem, there exists a unique {Ft}-adapted martingale Ñ(t, A) and a unique {Ft}-adapted
natural increasing process N̂(t, A) such that

N(t, A) = Ñ(t, A) + N̂(t, A), t > 0.

Here Ñ(t, A) is called the compensated Poisson random measure and N̂(t, A) = π(A)t is called

the compensator. For more details on the Poisson point process and Lévy jumps, see [1,31].

In this paper, we assume that Poisson random measures N is independent of Brownian

motion w. For Z ∈ B(Rn − {0}), consider a nonlinear SDEs with Poisson random measures

dx(t) = f(x(t))dt+ g(x(t))dw(t) +

∫

Z

h(x(t−), v)N(dt, dv), t ≥ 0, (2.1)

with initial value x(0) = x0 ∈ Rn, where

f : Rn → Rn, g : Rn → Rn×m and h : Rn × Z → Rn.

The well known conditions imposed for the existence and uniqueness of the global solution

are the local Lipschitz condition and the linear growth condition (see e.g. Applebaum [1], Mao

[25]). To be precise, let us state these conditions.

Assumption 2.1 (The local Lipschitz condition) For each integer d ≥ 1, there exist a positive

constant kd such that

|f(x)− f(y)|2 ∨ |g(x)− g(y)|2 ≤ kd(|x− y|2),∫

Z

|h(x, v)− h(y, v)|2π(dv) ≤ kd(|x− y|2),

for any x, y ∈ Rn with |x| ∨ |y| ≤ d.
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Assumption 2.2 (The linear growth condition) There is a positive constant k such that

|f(x)|2 ∨ |g(x)|2 ∨
∫

Z

|h(x, v)|2π(dv) ≤ k(1 + |x|2),

for all x ∈ Rn.

In this paper we shall retain the local Lipschitz condition but replace the linear growth

condition by a more general condition in order to guarantee the existence of a unique global

solution. Let us now propose our more general conditions.

Assumption 2.3 For any x ∈ Rn and v ∈ Z, there exist positive constants ki, qi, (i = 1, 2, 3)

and a bounded function h̄(v) such that

|f(x)|2 ≤ k1(1 + |x|q1+2), |g(x)|2 ≤ k2(1 + |x|q2+2)

and

|h(x, v)|2 ≤ k3(1 + |x|q3+2)h̄(v),

where Ch̄ =
∫
Z
h̄(v)π(dv) < ∞.

Assumption 2.4 For any x ∈ Rn and v ∈ Z, there exist positive constants αi, βi, γi, (i =

1, 2), such that

x⊤f(x) +
p− 1

2
|g(x)|2 ≤ −α1|x|2 − α2|x|γ1+2

and

|x+ h(x, v)|2 ≤ h̄(v)(β1|x|2 + β2|x|γ2+2).

We will denote by C([0,∞]×Rn;R+) the family of continuous functions from [0,∞)×Rn

to R+. Also denote by C2,1(R+ ×Rn;R+) the family of all continuous non-negative functions

V (t, x) defined on R+ × Rn, they are continuously twice differentiable in x and once in t.

Given V ∈ C2,1(R+ ×Rn;R+), we define an operator LV : R+ ×Rn → R by

LV (t, x) = Vt(t, x) + Vx(t, x)f(x) +
1

2
trace[g⊤(x)Vxx(t, x)g(x)]

+

∫

Z

[V (t, x+ h(x, v))− V (t, x)]π(dv), (2.2)
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where

Vt(t, x) =
∂V (t, x)

∂t
, Vx(t, x) =

(∂V (t, x)

∂x1

, · · · , ∂V (t, x)

∂xn

)
,

Vxx(t, x) =
(∂2V (t, x)

∂xi∂xj

)
n×n

.

Theorem 2.1 Let Assumptions 2.1 and 2.4 hold. If

2α1 − β1Ch̄ + π(Z) > 0, γ1 ≥ γ2 and 2α2 > β2Ch̄, (2.3)

then for any given initial data x0, there is a unique global solution x(t) to SDEs with jumps

(2.1) on t ∈ [0,∞). Moreover, the solution has the property that

∫ ∞

0

E|x(t)|2dt < ∞, (2.4)

for any t ≥ 0.

The proof of this theorem is rather standard and we omit it here.

Remark 2.1 If γ1 = γ2, it is necessary for us to prove Theorem 2.1 by using 2α2 > β2Ch̄;

If γ1 > γ2, we can relax this condition 2α2 > β2Ch̄ and only require α2 > 0. Meanwhile, we

also obtain an important result (2.4) which is known as the H∞-stability.

3 Asymptotic Stability of Solutions

In this section, we will discuss the asymptotic behavior of solution, including the asymptotic

stability in the pth moment, almost sure exponential stability.

Theorem 3.1 Let Assumptions 2.1, 2.3 and 2.4 hold. If

α1p− β
p

2
1 Ch̄,p + π(Z) > 0, γ1 ≥

pγ2

2
and α2p > β

p

2
2 Ch̄,p, (3.1)

where Ch̄,p =
∫
Z
2

p

2
−1(h̄(v))

p

2π(dv), then for any given initial data x0, the unique global

solution x(t) has the property that

lim
t→∞

E|x(t)|p = 0 (3.2)

for any p ≥ 2.
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Proof. The proof is rather technical and we divide it into two steps.

Step 1. Let we show that E|x(t)|p ∈ L1(R+;R+). By the Itô formula (see [1]) to

V (t, x(t)) = |x(t)|p, we have

|x(t)|p = |x(0)|p +
∫ t

0

LV (s, x(s))ds+

∫ t

0

p|x(s)|p−2x(s)⊤g(x(s))dw(s)

+

∫ t

0

∫

Z

[|x(s−) + h(x(s−), v))|p − |x(s−)|p]Ñ(ds, dv), (3.3)

where

LV (s, x) = p|x|p−2x⊤f(x) +
p

2
|x|p−2|g(x)|2

+
p(p− 2)

2
|x|p−4|x⊤g(x)|2 +

∫

Z

[|x+ h(x, v))|p − |x|p]π(dv).

Taking expectation on both side of (3.3), we get

E(|x(t)|p) = E|x0|p + E

∫ t

0

p|x(s)|p−2[x(s)⊤f(x(s)) +
p− 1

2
|g(x(s))|2]ds

+E

∫ t

0

∫

Z

[|x(s−) + h(x(s−), v))|p − |x(s−)|p]π(dv)ds. (3.4)

By the basic inequality |a+ b| p2 ≤ 2
p

2
−1(|a| p2 + |b| p2 ) and assumption 2.4, it follows that

E(|x(t)|p) = E|x0|p + E

∫ t

0

[(−α1p+ β
p

2
1 Ch̄,p − π(Z))|x(s)|p

−α2p|x(s)|p+γ1 + β
p

2
2 Ch̄,p|x(s)|

pγ2
2

+p]ds,

where Ch̄,p =
∫
Z
2

p

2
−1(h̄(v))

p

2π(dv). Let C̃0 = α1p− β
p

2
1 Ch̄,p + π(Z), recalling that

γ1 ≥
pγ2

2
, α1p− β

p

2
1 Ch̄,p + π(Z) > 0 and α2p > β

p

2
2 Ch̄,p,

we see that there is a positive constant C̃ ∈ [0, C̃0] such that

−α2p|x(s)|γ1 + β
p

2
2 Ch̄,p|x(s)|

pγ2
2 ≤ C̃, ∀x ∈ Rn. (3.5)

Hence

E(|x(t)|p) = E|x0|p − (α1p− β
p

2
1 Ch̄,p + π(Z)− C̃)E

∫ t

0

|x(s)|pds. (3.6)

Note that α1p− β
p

2
1 Ch̄,p + π(Z)− C̃ > 0, it follows from (3.6) that

E

∫ t

0

|x(s)|pds ≤ 1

α1p− β
p

2
1 Ch̄,p + π(Z)− C̃

E|x0|p.
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Using the Fubini theorem and letting t → ∞, we obtain that

∫ ∞

0

E|x(s)|pds < ∞.

Step 2. Now we prove that E|x(t)|p is uniformly continuous on [0,∞). By the Itô formula,

for any t > s, we have

E|x(t)|p = E|x(s)|p + pE

∫ t

s

|x(σ)|p−2x(σ)⊤f(x(σ))dσ

+
p(p− 1)

2
E

∫ t

s

|x(σ)|p−2|g(x(σ))|2dσ

+E

∫ t

s

∫

Z

[|x(σ−) + h(x(σ−), v))|p − |x(σ−)|p]π(dv)dσ.

Then, by assumption 2.3, we have

|E|x(t)|p − E|x(s)|p| ≤ p

2
E

∫ t

s

|x(σ)|pdσ +
p

2
k1E

∫ t

s

(|x(σ)|p−2 + |x(σ)|p+β1)dσ

+
p(p− 1)

2
k2E

∫ t

s

(|x(σ)|p−2 + |x(σ)|p+β2)dσ

+E

∫ t

s

∫

Z

[|x(σ−) + h(x(σ−), v)|p − |x(σ−)|p]π(dv)dσ. (3.7)

Using the basic inequality arb1−r ≤ ra+ (1− r)b for any r ∈ [0, 1], we derive that

k1|x(σ)|p−2 ≤ k1[1
2
p (|x(σ)|p)1− 2

p ]

≤ 2

p
k1 + (1− 2

p
)k1|x(σ)|p ≤ 2k1 + k1|x(σ)|p. (3.8)

Similarly, we get

k2|x(σ)|p−2 ≤ 2k2 + k2|x(σ)|p. (3.9)

On the other hand, by the basic inequality (see [25]), there exists a ε > 0 such that

|x(σ−) + h(x(σ−), v)|p ≤ (1 + ε
1

p−1 )p−1(
1

ε
|h(x(σ−), v)|p + |x(σ−)|p).

Then, assumption (2.3) implies that

|x(σ−) + h(x(σ−), v)|p ≤ (1 + ε
1

p−1 )p−1{1
ε
[(2k3h̄(v))

p

2 (1 + |x(σ−)| p2 (β3+2))] + |x(σ−)|p}.
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Letting ε = (
√
2k3h̄(v))

p−1, we obtain

|x(σ−) + h(x(σ−), v)|p ≤ (1 +
√

2k3h̄(v))
p(1 + |x(σ−)|p + |x(σ−)| p2 (β3+2)). (3.10)

Inserting (3.8),(3.9) and (3.10) into (3.7), it follows that

|E|x(t)|p − E|x(s)|p|

≤ C1

∫ t

s

dσ + C2

∫ t

s

E|x(σ)|pdσ +

∫ t

s

[
p

2
k1E|x(σ)|p+β1 +

p(p− 1)

2
k2E|x(σ)|p+β2

+C̄h̄,pE|x(σ)| p2 (β3+2)]dσ

≤ [C1 + C2E|x0|p +
p

2
k1E|x0|p+β1 +

p(p− 1)

2
k2E|x0|p+β2 + C̄h̄,pE|x0|

p

2
(β3+2)](t− s),

where

C̄h̄,p =

∫

Z

(1 +
√

2k3h̄(v))
pπ(dv), C1 = pk1 + p(p− 1)k2 + C̄h̄,p,

C2 =
p+ pk1

2
+

p(p− 1)

2
k2 + C̄h̄,p − π(Z).

This implies that E|x(t)|p is uniformly continuous on [0,∞). Finally, similar to the proof of

[29], we can derive that

lim
t→∞

E|x(t)|p = 0,

for any p ≥ 2. Then the proof of Theorem 3.1 is completed.

Remark 3.1 From (3.2), we have that SDEs with jumps (2.1) is asymptotically stable

in pth moment. In particular, when p = 2, the condition (3.1) of Theorem 3.1 becomes the

condition (2.3) of Theorem 2.1, then equation (2.1) has a unique solution x(t) and the solution

x(t) is asymptotically stable in 2th moment.

Remark 3.2 It should also be mentioned that Mao [25] and Zhu [40] have studied the

asymptotic stability of solutions for SDEs and SDEs with jumps, respectively. But the main

results of [25] and [40] rely on the linear growth condition. Obviously, their results can not

be used in this paper, the corresponding results of [25] and [40] on asymptotic stability are

improved and generalized.

Next, we will study the almost sure exponential stablity of equation (2.1).

Lemma 3.1 (see [18],[25]) Let A(t), U(t) be two Ft-adapted increasing processes on t ≥ 0

with A(0) = U(0) = 0 a.s. Let M(t) be a real-valued local martingale with M(0) = 0 a.s. Let
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ζ be a nonnegative F0-measurable random variable. Assume that x(t) is nonnegative and

x(t) = ζ + A(t)− U(t) +M(t) for t ≥ 0.

If limt→∞ A(t) < ∞ a.s. then for almost all ω ∈ Ω,

lim
t→∞

x(t) < ∞ and lim
t→∞

U(t) < ∞,

that is, both x(t) and U(t) converge to finite random variables.

Theorem 3.2 Let Assumptions 2.1, 2.4 and condition (3.1) hold. Then for any given

initial data x0, the unique global solution x(t) has the property that

lim sup
t→∞

1

t
log(|x(t)|) ≤ −ε

p
(3.11)

for any t ≥ 0.

Proof. For any t ≥ 0 and ε > 0, applying the Itô formula to eεtV (t, x(t)), we have

eεtV (t, x(t))− V (0, x0) =

∫ t

0

eεs[LV (s, x(s)) + εV (s, x(s))]ds+M(t), (3.12)

where

M(t) =

∫ t

0

eεsVx(s, x(s))g(s, x(s))dw(s)

+

∫ t

0

∫

Z

eεs[V (s, x(s−) + h(x(s−), v))− V (s, x(s−))]Ñ(ds, dv)

is a local martingale with the initial value M(0) = 0. By assumption 2.4, we compute

∫ t

0

eεs[LV (s, x(s)) + εV (s, x(s))]ds

≤
∫ t

0

eεs[(ε− α1p+ β
p

2
1 Ch̄,p − π(Z))|x(s)|p − α2p|x(s)|p+q + β

p

2
2 Ch̄,p|x(s)|

pγ

2
+p].

Recalling (3.5), we have

∫ t

0

eεs[LV (s, x(s)) + εV (s, x(s))]ds ≤
∫ t

0

eεs(ε−α1p+ β
p

2
1 Ch̄,p−π(Z) + C̃)|x(s)|pds.(3.13)

Inserting (3.13) into (3.12), we get

eεt|x(t)|p = |x0|p −
∫ t

0

eεs(α1p− β
p

2
1 Ch̄,p + π(Z)− C̃ − ε)|x(s)|pds+M(t).

12



Since α1p−β
p

2
1 Ch̄,p+π(Z)−C̃ > 0, we choose sufficiently small ε > 0 such that α1p−β

p

2
1 Ch̄,p+

π(Z)− C̃ − ε > 0. By lemma 3.2, we obtain that

lim sup
t→∞

(eεt|x(t)|p) < ∞ a.s.

Hence, there exists a finite positive random variable η such that

sup
0≤t<∞

(eεt|x(t)|p) ≤ η a.s.

This implies

lim sup
t→∞

1

t
log(|x(t)|) ≤ −ε

p
a.s.

Remark 3.3 Under the nonlinear growth conditions, we prove that SDEs with jumps

(2.1) is almost sure exponentially stable which is studied by Applebaum [1,2], but they did

not relax the linear growth conditions. In this way, the corresponding results of [1,2] are

improved and generalized by Theorem 3.2.

4 Convergence in probability of numerical Solution

In this section, we study the convergence of numerical solutions for SDEs with jumps (2.1)

under local Lipschitz condition and nonlinear growth condition.

First, we need to define the approximate solution of SDEs with jumps (2.1). For a given

constant stepsize h > 0, we propose the Euler method for SDEs with jumps (2.1) as follows

yn+1 = yn + f(yn)h+ g(yn)∆wn +

∫

Z

h(yn, v)N(h, dv), (4.1)

with initial value y0 = x0. For arbitrary stepsize h > 0, yn denotes the approximation of x(t) at

time tn = nh, n = 0, 1, 2 · · · . ∆wn = w(tn+1)−w(tn) and N(h, dv) = N(tn+1, dv)−N(tn, dv).

In the following convergence analysis, we find it convenient to use continuous-time ap-

proximation solution. To define the continuous extension, let us introduce one step processes

z(t) = yn

for t ∈ [tn, tn+1). Hence we define the continuous version y(t) as follows

y(t) = y(0) +

∫ t

0

f(z(s))ds+

∫ t

0

g(z(s))dw(s) +

∫ t

0

∫

Z

h(z(s), v)N(ds, dv). (4.2)

13



It is not hard to verify that y(tn) = yn, that is, y(t) coincides with the discrete solutions at

the grid-points.

Let we define three stopping times

αd = inf{t ∈ [0, T ] : |x(t)| ≥ d} and βd = inf{t ∈ [0, T ] : |y(t)| ≥ d},

γd = αd ∧ βd, where as usual inf ∅ is set as ∞.

Lemma 4.1 If assumptions 2.1 and 2.3 hold, then there exists a positive constant Cd

such that

E|y(t)− z(t)|2 ≤ Cdh, ∀ t ∈ [0, γd ∧ T ], (4.3)

where Cd depend on d, but independent of h.

Proof. Similar to that of the SDEs, we can have the result.

Lemma 4.2 If assumptions 2.1 and 2.3 hold, then the Euler approximate solution y(t)

converges to the true solution x(t) of SDEs with jumps (2.1); i.e.,

E[ sup
0≤t≤T

|y(t ∧ γd − x(t ∧ γd))|2] ≤ C̄dh, (4.4)

where C̄d > 0 depend on d, but independent of h.

Proof. For simplicity, denote e(t) = y(t)− x(t). From (2.1) and (4.2), we have

e(t) =

∫ t

0

[f(z(s))− f(x(s))]ds+

∫ t

0

[g(z(s))− g(x(s))]dw(s)

+

∫ t

0

∫

Z

[h(z(s), v)− h(x(s−), v)]N(ds, dv).

Applying the Itô formula to |e(t)|2, we obtain

|e(t)|2 = 2

∫ t

0

(e(s), f(z(s))− f(x(s)))ds+

∫ t

0

|g(z(s))− g(x(s))|2ds

+2

∫ t

0

(e(s), g(z(s))− g(x(s)))dw(s)

+

∫ t

0

∫

Z

[|e(s) + h(z(s), v)− h(x(s−), v)|2 − |e(s)|2]N(ds, dv). (4.5)
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The right side of (4.5) can be written as

|e(t)|2 = 2

∫ t

0

(e(s), f(z(s))− f(x(s)))ds+

∫ t

0

|g(z(s))− g(x(s))|2ds

+2

∫ t

0

(e(s), g(z(s))− g(x(s)))dw(s)

+2

∫ t

0

∫

Z

(e(s), h(z(s), v)− h(x(s−), v))π(dv)ds

+2

∫ t

0

∫

Z

(e(s), h(z(s), v)− h(x(s−), v))Ñ(ds, dv)

+

∫ t

0

∫

Z

|h(z(s), v)− h(x(s−), v)|2N(ds, dv).

Using the basic inequality 2ab ≤ a2 + b2, we get

|e(t)|2 ≤ (1 + π(Z))

∫ t

0

|e(s)|2ds+
∫ t

0

|f(z(s))− f(x(s)|2ds

+

∫ t

0

|g(z(s))− g(x(s))|2ds+ 2

∫ t

0

(e(s), g(z(s))− g(x(s)))dw(s)

+

∫ t

0

∫

Z

|h(z(s), v)− h(x(s−), v)|2π(dv)ds

+2

∫ t

0

∫

Z

(e(s), h(z(s), v)− h(x(s−), v))Ñ(ds, dv)

+

∫ t

0

∫

Z

|h(z(s), v)− h(x(s−), v)|2N(ds, dv). (4.6)

Taking expectation on both sides of (4.6), it follows that

E sup
0≤t≤γd∧T

|e(t)|2 ≤ (1 + π(Z))E

∫ γd∧T

0

|e(t)|2dt+
4∑

i=1

Ii, (4.7)

where

I1 = E

∫ γd∧T

0

|f(z(t))− f(x(t))|2dt+ E

∫ γd∧T

0

|g(z(t))− g(x(t))|2dt

+E

∫ γd∧T

0

∫

Z

|h(z(t), v)− h(x(t−), v)|2π(du)dt,

I2 = 2E sup
0≤t≤γd∧T

∫ t

0

(e(s), g(z(s))− g(x(s)))dw(s),

I3 = 2E sup
0≤t≤γd∧T

∫ t

0

∫

Z

(e(s), h(z(s), v)− h(x(s−), v))Ñ(ds, dv),

I4 = 2E sup
0≤t≤γd∧T

∫ t

0

∫

Z

|h(z(s), v)− h(x(s−), v)|2N(ds, dv).
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By assumption 2.1 and lemma 4.1, we have

I1 ≤ 3kd

∫ γd∧T

0

E|z(t)− x(t)|2dt

≤ 3kd

∫ γd∧T

0

(2E|z(t)− y(t)|2 + 2E|y(t)− x(t)|2)dt

≤ 6kd

∫ γd∧T

0

E|y(t)− x(t)|2dt+ 6kdCdhT. (4.8)

Let us estimate I2. Using the Burkholder-Davis-Gundy inequality, we get

I2 ≤ 2E sup
0≤t≤γd∧T

∫ t

0

|e(s)||g(z(s))− g(x(s))|dw(s)

≤ 6E[ sup
0≤t≤γd∧T

|e(t)|(
∫ γd∧T

0

|g(z(t))− g(x(t))|2dt)] 12 .

By the young inequality, there exists ε > 0, such that

I2 ≤ 6[εE sup
0≤t≤γd∧T

|e(t)|2] 12 [1
ε
E(

∫ τd∧T

0

|g(z(t))− g(x(t))|2dt)] 12

≤ 6εE sup
0≤t≤γd∧T

|e(t)|2 + 6

ε
E

∫ γd∧T

0

|g(z(t))− g(x(t))|2dt

≤ 1

4
E sup

0≤t≤γd∧T
|e(t)|2 + 288kd

∫ γd∧T

0

E|y(t)− x(t)|2dt+ 288kdCdhT. (4.9)

Next, we give the estimation of I3. By the Burkholder-Davis-Gundy inequality, there exist a

C > 0 such that

I3 ≤ CE(
∑

t∈Dp,t≤γd∧T

|e(t)|2|h(z(t), pt)− h(x(t−), pt)|2)
1
2

≤ CE sup
0≤t≤γd∧T

|e(t)|E(
∑

t∈Dp,t≤γd∧T

|h(z(t), pt)− h(x(t−), pt)|2)
1
2 .

From the Young inequality, we obtain that

I3 ≤ CE[
1

4C
sup

0≤t≤γd∧T
|e(t)|2] 12E[4C(

∑

t∈Dp,t≤γd∧T

|h(z(t), pt)− h(x(t−)), pt)|2]
1
2

≤ 1

4
E sup

0≤t≤γd∧T
|e(t)|2] + 4C2E(

∑

t∈Dp,t≤γd∧T

|h(z(t), pt)− h(x(t−), pt)|2]

≤ 1

4
E sup

0≤t≤γd∧T
|e(t)|2 + 4C2E

∫ γd∧T

0

∫

Z

|h(z(t), v)− h(x(t−), v)|2π(dv)dt

≤ 1

4
E sup

0≤t≤γd∧T
|e(t)|2 + 8C2kd

∫ γd∧T

0

E|y(t)− x(t−)|2dt+ 8C2kdCdhT. (4.10)
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Finally, let us estimate I4. SinceN(dt, dv) = Ñ(dt, dv)+π(dv)dt and Ñ(dt, dv) is a martingale,

we get

I4 ≤ 2E

∫ γd∧T

0

∫

Z

|h(z(t), v)− h(x(t−), v)|2N(dt, dv)

= 2E

∫ γd∧T

0

∫

Z

|h(z(t), v)− h(x(t−), v)|2π(dv)dt.

By assumption 2.1 and lemma 4.1, we have

I4 ≤ 2kd

∫ γd∧T

0

E|z(t)− x(t−)|2dt

≤ 4kd

∫ γd∧T

0

E|y(t)− x(t−)|2dt+ 4kdCdhT. (4.11)

Substituting (4.8), (4.9), (4.10) and (4.11) into (4.7), we obtain that

E sup
0≤t≤T∧γd

|y(t)− x(t)|2 ≤ C1d

∫ T

0

sup
0≤s≤t∧γd

E|y(s)− x(s)|2ds+ C2dh,

where C1d = 2(1+π(Z)+298kd+8C2kd), C2d = 2(298+8C2)kdCdT . The Gronwall inequality

implies that

E sup
0≤t≤T

|y(t ∧ γd)− x(t ∧ γd)|2 ≤ C2de
C1dTh.

The proof is therefore completed.

Now, we will show the convergence in probability of the approximate solution y(t) to the

true solution x(t) for SDEs with jumps (2.1).

Theorem 4.1. Let conditions of lemma 4.2 and assumption 2.4 hold. Then the ap-

proximate solution y(t) converges to the true solution x(t) of equation (2.1) in the sense of

probability. That is

lim
h→0

sup
0≤t≤T

|x(t)− y(t)|2 = 0, in probability. (4.12)

Proof. Step 1. By Theorem 2.1, we have

E|x(αd ∧ T )|2 ≤ C. (4.13)

Noting that |x(αd)| ≥ d, as αd < T , we derive from (4.13) that

d2P (αd ≤ T ) ≤ E|x(αd ∧ T )|2 ≤ C.
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That is

P (αd ≤ T ) ≤ C

d2
.

Letting d → ∞, it follows that C
d2

→ 0. Let ε
3
= C

d2
∈ (0, 1). Thus, there exists a sufficiently

large d∗ such that

P (αd < T ) ≤ ε

3
, ∀ d ≥ d∗. (4.14)

Step 2. We will give the estimate of P (βd < T ). By the Itô′s formula to V (t, y(t)) =

|y(t)|2, it follows that

dV (t, y(t)) = Vx(t, y(t))f(z(t))dt+ Vx(t, y(t))g(z(t))dw(t)

+
1

2
trace[g⊤(z(t))Vxx(t, y(t))g(z(t))]dt

+

∫

Z

[V (t, y(t) + h(z(t), v))− V (t, y(t))]π(dv)dt

+

∫

Z

[V (t, y(t) + h(z(t), u))− V (t, y(t))]Ñ(dt, dv).

From the operator LV in (2.2),we have

dV (t, y(t)) = LV (t, y(t))dt+ [Vx(t, y(t))f(z(t))− Vx(t, y(t))f(y(t))]dt

+
1

2
trace[g⊤(z(t))Vxx(t, y(t))g(z(t))]dt

−1

2
trace[g⊤(y(t))Vxx(t, y(t))g(y(t))]}dt

+

∫

Z

[V (t, y(t) + h(z(t), v))− V (t, y(t) + h(y(t), v))]π(dv)dt

+Vx(t, y(t))g(z(t))dwt +

∫

Z

[V (t, y(t) + h(z(t), v))− V (t, y(t))]Ñ(dt, dv).

Integrating from 0 to βd ∧ t and taking expectations gives,

E|y(βd ∧ t)|2 ≤ E|y(0)|2 + E

∫ βd∧t

0

LV (s, y(s)))ds

+2E

∫ βd∧t

0

|y(s)||f(z(s))− f(y(s))|ds

+E

∫ βd∧t

0

[|g(z(s))|2 − |g(y(s))|2]ds

+E

∫ βd∧t

0

∫

Z

[|y(s) + h(z(s), v)|2 − |y(s) + h(y(s), v)|2]π(dv)ds

≤ E|y(0)|2 + E

∫ βd∧t

0

LV (s, y(s))ds+
3∑

i=1

Ji. (4.15)
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Let us estimate J1. By assumption 2.1, the Jensen inequality and lemma 4.1, we have

J1 ≤ 2d
√
kd

∫ βd∧t

0

(E|z(s)− y(s)|2) 1
2ds

≤ 2d
√
kd

∫ βd∧t

0

(E sup
0≤σ≤s

|z(σ)− y(σ)|2) 1
2ds

≤ 2d
√
kd
√
Cdh

1
2T. (4.16)

Rearranging J2 by plus-and minus technique, we obtain that

J2 ≤ E

∫ βd∧t

0

[|g(z(s))|2 − |g(z(s))g(y(s))|+ |g(z(s))g(y(s))| − |g(y(s))|2]ds

≤ E

∫ βd∧t

0

[|g(z(s))||g(z(s))− g(y(s))|+ |g(y(s))||g(z(s))− g(y(s))|]ds.

Using the Hölder inequality, we get

J2 ≤
∫ βd∧t

0

[(E|g(z(s))|2) 1
2 (E|g(z(s))− g(y(s))|2) 1

2

+[(E|g(y(s))|2) 1
2 (E|g(z(s))− g(y(s))|2) 1

2 ]ds.

By assumption 2.3, we get

J2 ≤
∫ βd∧t

0

[(k2(1 + E|z(s)|q2+2))
1
2 (E|g(z(s))− g(y(s))|2) 1

2

+[(k2(1 + E|y(s)|q2+2))
1
2 (E|g(z(s))− g(y(s))|2) 1

2 ]ds.

Recalling the elementary inequality

(a+ b)p ≤ ap + bp, ∀a, b ≥ 0, 0 < p ≤ 1,

it follows that

J2 ≤
√
k2

∫ βd∧t

0

[(1 + E|z(s)| 12 (q2+2))(E|g(z(s))− g(y(s))|2) 1
2 ]ds

+
√

k2

∫ βd∧t

0

[(1 + E|y(s)| 12 (q2+2))(E|g(z(s))− g(y(s))|2) 1
2 ]ds.

By assumption 2.1 and lemma 4.1, we get

J2 ≤ 2
√

k2(1 + d
1
2
(q2+2))

∫ βd∧t

0

[(E|g(z(s))− g(y(s))|2) 1
2 ]ds

≤ 2
√

k2(1 + d
1
2
(q2+2))

√
kd

∫ βd∧t

0

(E|z(s)− y(s)|2) 1
2ds

≤ 2
√

k2(1 + d
1
2
(q2+2))

√
kd
√
Cdh

1
2T. (4.17)
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Finally, we estimate J3. Rearranging J3 by plus-and minus technique again, we obtain that

J3 ≤ E

∫ βd∧t

0

∫

Z

[|y(s)||h(z(s), v)− h(y(s), v)|]π(dv)ds

+E

∫ βd∧t

0

∫

Z

[|h(z(s), v)||h(z(s), v)− h(y(s), v)|]π(dv)ds

+E

∫ βd∧t

0

∫

Z

[|h(y(s), v)||h(z(s), v)− h(y(s), v)|]π(dv)ds.

Using the Hölder inequality again, we get

J3 ≤ d
√

π(Z)

∫ βd∧t

0

[E

∫

Z

|h(z(s), v)− h(y(s), v)|2π(dv)] 12ds

+

∫ βd∧t

0

[(E

∫

Z

|h(z(s), v)|2π(dv)) 1
2 (E

∫

Z

|h(z(s), v)− h(y(s), v)|2π(dv)) 1
2 ]ds

+

∫ βd∧t

0

[(E

∫

Z

|h(y(s), v)|2π(dv)) 1
2 (E

∫

Z

|h(z(s), v)− h(y(s), v)|2π(dv)) 1
2 ]ds.

By assumption 2.1 and 2.3, it follows that

J3 ≤ d
√
π(Z)

√
kd

∫ βd∧t

0

[E|z(s)− y(s)|2] 12ds

+
√

Ch̄k3
√

kd

∫ βd∧t

0

[(1 + E|z(s)|q3+2)
1
2 (E|z(s)− y(s)|2) 1

2

+[(1 + E|y(s)|q3+2)
1
2 (E|z(s)− y(s)|2) 1

2 ]ds.

By lemma 4.1, we have

J3 ≤ d
√
π(Z)

√
kd

∫ βd∧t

0

[E|z(s)− y(s)|2] 12ds

+
√
Ch̄k3

√
kd

∫ βd∧t

0

[(1 + E|z(s)| 12 (q3+2))(E|z(s)− y(s)|2) 1
2

+[(1 + E|y(s)| 12 (q3+2))(E|z(s)− y(s)|2) 1
2 ]ds

≤ [d
√
π(Z)

√
kd + 2

√
Ch̄k3

√
kd(1 + d

1
2
(q3+2))]

√
Cdh

1
2T. (4.18)

Inserting (4.16), (4.17) and (4.18) into (4.15), we obtain

E|y(βd ∧ t)|2 ≤ E|y(0)|2 + C(d)Th
1
2 + E

∫ βd∧t

0

LV (s, y(s))ds.

Repeating the procedure from Theorem 2.1, we can prove that

E|y(βd ∧ T )|2 ≤ C + C(d)Th
1
2 . (4.19)
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Since |y(βd)| ≥ d, as βd < T , we derive from (4.19) that

C + C(d)Th
1
2 ≥ E|y(βd ∧ t)|2I{βd<T}(w)]

≥ d2P (βd ≤ T ).

So we have

P (βd ≤ T ) ≤ C + C(d)Th
1
2

d2
. (4.20)

Now, for any ε ∈ (0, 1), choose d = d∗ sufficiently large for C

d∗2
< ε

6
, and then choose h∗

sufficiently small forC(d)Th∗
1
2

d∗2
< ε

6
. It then follows from (4.20) that

P (βd < T ) ≤ ε

3
, ∀ h ≤ h∗, (4.21)

as required.

Step 3. Let ϵ, δ ∈ (0, 1) be arbitrarily small, set

Ω̄ = {w : sup
0≤t≤T

|x(t)− y(t)|2 ≥ δ},

we have

P (Ω̄) ≤ P (Ω̄ ∩ {γd > T}) + P (γd < T )

≤ P (Ω̄ ∩ {γd > T}) + P (αd < T ) + P (βd < T ).

By (4.14) and (4.21), we get

P (Ω̄) ≤ P (Ω̄ ∩ {γd > T}) + 2ε

3
. (4.22)

Using lemma 4.2, we have

C̄dh ≥ E[ sup
0≤t≤T

|x(t)− y(t)|2Iγd>T (w)]

≥ E[ sup
0≤t≤T

|x(t)− y(t)|2Iγd>T (w)IΩ̄(w)]

≥ δP (Ω̄ ∩ {γd > T}). (4.23)

Inserting (4.23) into (4.22), we obtain that

P (Ω̄) ≤ C̄d

δ
h+

2ε

3
.
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Consequently, we can choose h sufficiently small for C̄dh
δ
h < ε

3
to obtain

P ( sup
0≤t≤T

|x(t)− y(t)|2 ≥ δ) < ε.

The proof of Theorem 4.1 is now complete.

Remark 4.1 We note that the convergence results on numerical solution of [6],[9],[10],[30]

are obtained under the Lipschitz and linear growth condition, while in this paper, we deal with

the convergence of the approximate solution to the true solution of equation (2.1) under the

local Lipschitz and nonlinear growth condition, so we generalize and improve the corresponding

results of [6],[9],[10],[30].

5 An example

In this section, we construct one example to demonstrate the effectiveness of our theory.

Let w(t) be a one-dimensional Brownian motion. N(dt, dv) be a Poisson random measures

and is given by π(du)dt = λf(v)dvdt, where λ = 2 and

f(v) =
1√
2πv

e−
(lnv)2

2 , 0 ≤ v < ∞

is the density function of a lognormal random variable. Of course w(t) and N(dt, dv) are

assumed to be independent.

Let us return to the nonlinear SDEs with jumps (1.1) with the coefficients f, g and h

defined on page 2. Obviously, the coefficients f, g, h satisfy the local Lipschitz condition but

they do not satisfy the linear growth condition. Through a straight computation, we have

x⊤f(x) +
1

2
|g(x)|2 ≤ −2|x|2 − 2|x|4, (5.1)

|x+ h(x, v)|2 ≤ 5

2
(1 + 0.1v)2|x|2 + 5

3
0.01v2|x|4, (5.2)

where

α1 = 2, α1 = 2, β1 =
5

2
, β2 =

5

3
, γ1 = 2, γ2 = 2 and h̄(v) = (1 + 0.1v)2.
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So the inequalities (5.1) and (5.2) show that assumption 2.4 holds. Moreover, by the property

of log-normal distribute f(v), we can obtain that π(Z) = 1, and

Ch̄ =

∫

Z

h̄(v)π(dv) = 2

∫ 1

0

(1 + 0.1v)2
1√
2πv

e−
(lnv)2

2 dv

≤ 1 + 0.4
√
e+ 0.02e2.

Clearly, the above conditions imply that

γ1 ≥ γ2, 2α2 − β2Ch̄ > 0 and 2α1 − β1Ch̄ + π(Z) > 0.

Hence, by Theorem 3.1, 3.2, we have that the solution of equation (1.1) is asymptotically

stable in the mean square sense and almost sure exponentially stable.

On the other hand, let us define the approximate solution of equation (1.1). Similar to

(4.1), we get

yn+1 = yn + (−2yn −
5

2
y3n)h+ y2n∆wn + 0.1

∫ 1

0

v(yn + y2n)N(h, dv), (5.3)

with initial value y0 = x0. Then, by the step function z(s) =
∑∞

n=1 ynI[tn,tn+1)(s), we have the

continuous Euler approximate solution y(t) of equation (1.1)

y(t) = y(0) +

∫ t

0

(−2z(s)− 5

2
z3(s))ds+

∫ t

0

z2(s)dw(s)

+0.1

∫ t

0

∫ 1

0

v(z(s) + z2(s))N(ds, dv). (5.4)

Note that conditions of Theorem 4.1 are satisfied, then Theorem 4.1 implies that the conver-

gence in probability of numerical solution y(t) and the true solution x(t) to equation (1.1).

Conclusion

In this paper, we generalize and extend the existing theory of stability and convergence of

numerical solution to the case of highly nonlinear SDEs with jumps. Under nonlinear growth

conditions, we investigate the asymptotic stability in the pth moment and almost sure expo-

nential stability of solutions to SDEs with jumps; Meantime, we obtain that the approximate

solution converges in probability to the true solution of SDEs with jumps under the above

mentioned conditions. Finally, an example is provided to demonstrate the effectiveness of the

main results in this paper.
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