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The role of momentum and velocity for radiating electrons

Rémi Capdessus,∗ Adam Noble,† Paul McKenna,‡ and Dino A. Jaroszynski§

Department of Physics SUPA, University of Strathclyde, Glasgow G4 0NG, UK

Radiation reaction remains one of the most fascinating open questions in electrodynamics. The
development of multi-petawatt laser facilities capable of reaching extreme intensities has leant this
topic a new urgency, and it is now more important than ever to properly understand it. Two models
of radiation reaction, due to Landau and Lifshitz and to Sokolov, have gained prominence, but there
has been little work exploring the relation between the two. We show that in the Sokolov theory
electromagnetic fields induce a Lorentz transformation between momentum and velocity, which elim-
inates some of the counterintuitive results of Landau-Lifshitz. In particular, the Lorentz boost in a
constant electric field causes the particle to lose electrostatic potential energy more rapidly than it
otherwise would, explaining the long-standing mystery of how an electron can radiate while experi-
ence no radiation reaction force. These ideas are illustrated in examples of relevance to astrophysics
and laser-particle interactions, where radiation reaction effects are particularly prominent.

I. INTRODUCTION

Radiation reaction (RR)—how a charged particle in-
teracts with the radiation it emits—is among the oldest
and most controversial open questions in physics. In the
century since its first formulation by Lorentz and Abra-
ham [1, 2], there have been many theoretical investiga-
tions, but so far laboratory-based electromagnetic fields
have not been sufficiently intense to produce an appre-
ciable RR effect. A number of astrophysical scenarios do
exist for which RR is important [3–5], but the impossi-
bility of controlling the conditions of these events means
a clear signature of RR has yet to be detected. A new
generation of laser facilities, such as the Extreme Light
Infrastructure (ELI), are anticipated to produce field in-
tensities on the order of 1023 W/cm2, where RR will not
just be significant but will dominate the electron dynam-
ics [6]. A full understanding of RR is vital to the success
of these next generation laser facilities [7].

The first fully relativistic treatment of RR was given
by Dirac [8] on the basis of energy-momentum conser-
vation. This led to a third order differential equation,
known as the Lorentz-Abraham-Dirac (LAD) equation,
for the worldline of a radiating point charge. This equa-
tion has subsequently been rederived from a number of
quite distinct physical principles [9–13]. Unfortunately,
it suffers from some well-known anomalies, which render
it unphysical; see [14] for a recent discussion. A num-
ber of alternatives have been proposed [15–20], among
which two have received particular prominence in the lit-
erature: those of Landau and Lifshitz (LL) [15] and of
Sokolov [20].

Landau and Lifshitz derived their equation by assum-
ing that the RR force in LAD is a small correction to
the Lorentz force of the applied fields. This allows the
elimination of the third derivative terms, leading to the
second order equation

ẍa =
e

m
(F a

b + τẋc∂cF
a
b) ẋ

b + τ
e2

m2
∆a

bF
b
cF

c
dẋ

d. (1)

Here, e is the charge and m the mass of the particle,
τ = e2/6πm ≃ 6.2 × 10−24 s is the characteristic radi-
ation time, F a

b are components of the electromagnetic
field, and ∆a

b = δab − ẋaẋb is the ẋ-orthogonal projec-
tion. Indices are raised and lowered with the metric ten-
sor ηab = diag(1,−1,−1,−1), the Einstein summation
convention is used throughout and c = ǫ0 = 1.
The RR force in (1) does not share the defects of

LAD. In the decades since its introduction it has become
the dominant description of radiation reaction, and has
been applied to electron dynamics [21–28], ion accelera-
tion [29–31], and high-energy synchrotron radiation [32].
However, its provenance as an approximation to an un-
physical equation questions its validity. Furthermore, it
does not conserve energy in both rapidly varying [33] and
constant [34] fields. We show here that these anomalies
can be removed by a simple and physically motivated
redefinition of momentum.
An alternative description of RR using such a redefini-

tion has recently been introduced by Sokolov [20]. This
is derived according to principles arising from quantum
electrodynamics (QED), and has the unusual feature that
the momentum p is not parallel to the velocity ẋ. It
is convenient to introduce the normalized momentum
u = m−1p, in terms of which Sokolov’s equations are

ẋa =
(
δab + τ

e

m
F a

b

)
ub, (2)

u̇a =
e

m
F a

bu
b + τ

e2

m2
Ua

bF
b
cF

c
du

d. (3)

Here, the tensor Ua
b = δab − uaub projects out the com-

ponents parallel to u, not ẋ (such a distinction is not re-
quired for LL). As such, (3) preserves the normalization
of momentum u2 = 1, equivalent to the Einstein relation
E2 = m2c4 + p

2c2. Though not yet as widespread as
LL, the Sokolov model has attracted attention in recent
years, with application to ion acceleration [35, 36] and
generation of high energy synchrotron radiation [37–41].
Despite the emergence of two distinct theories, there has
been surprisingly little discussion of the relation between
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LL and Sokolov.
It is worth noting that classical physics is expected to

emerge as the appropriate limit of an underlying quan-
tum theory. Given the success of QED, some authors
have explored whether its classical limit can shed light
on the question of the correct theory of radiation reac-
tion [42–45]. In [46], the QED predictions for an electron
interacting with a plane electromagnetic wave have been
compared with those of a range of classical theories, in-
cluding LL and Sokolov. While agreement is found with
the former, the latter is found to disagree with the QED
result for momentum, but to agree on velocity, and hence
on trajectory. However, there are subtleties involved in
extracting the kinetic particle momentum from the total
momentum operator, and it is possible that the lesson
from this discrepancy is not that the Sokolov theory must
be rejected, but rather that the definition of electron mo-
mentum in QED should be reconsidered.
The paper is organised as follows. Section II presents

the relation between the particle momentum and its ve-
locity for both the LL model and the Sokolov model.
Section III considers the total energy of an electron expe-
riencing a purely electrostatic field, where it is found that
Sokolov, unlike LL, predicts behaviour consistent with an
intuitive physical understanding. Section IV treats two
examples of simple but physically relevant field-particle
configurations modelling an electron in the magnetic field
of a neutron star and in an intense laser pulse. The re-
sults of both models are compared and discussed.

II. MOMENTUM AND VELOCITY

The LL and Sokolov theories agree to a very high pre-
cision in their predictions for the trajectory of an elec-
tron. Indeed, substituting (3) into the derivative of (2)
yields precisely (1) with corrections of order O(τ2). It
follows that the distinction between the theories is less
one of the motion of particles, and more of the evolution
of their momenta.
As a particle moves through spacetime, it traces out

a worldline, and its velocity ẋ is the tangent vector to
this worldline. The direction of this vector is intrinsic
to the worldline, while its normalization, |ẋ| =

√
ẋ2, de-

pends on the choice of parameterization. It is common
to use proper time, defined by the condition |ẋ| = 1,
though it is important to recognize that this is a choice.
Momentum, on the other hand, describes the flow of en-
ergy through spacetime. For a noninteracting particle,
its energy must flow along the worldline, but this case
is of little interest. When the particle is allowed to in-
teract, it can exchange energy and momentum with its
environment, and a choice must then be made as to how
to divide the energy-momentum between particle and en-
vironment. To an extent, this partition is arbitrary, and
its ‘correctness’ should be judged by how the resultant

change in the particle’s momentum matches our expec-
tations for particle-like behavior.
The primary difference between LL and Sokolov de-

rives from this partition of electromagnetic momentum.
The particle’s Coulomb field contains an infinite self-
energy which in both theories is absorbed into a mass
renormalization. But since the energy-momentum is
quadratic in the fields, there is an additional contribution
when the Coulomb field is superposed on a background
field. Unlike LL, Sokolov interprets this also as contribut-
ing to the particle’s momentum, which is therefore not
parallel to the particle’s velocity.
While it might appear unusual to have momentum and

velocity aligned along different directions, this occurs in
several other contexts. For example, spinning particles in
gravitational [47] and electromagnetic fields [48] acquire
a contribution to their momenta which is not parallel
to velocity, while the canonical momentum of a charged
particle generally does not even have a uniquely defined
direction. Indeed, in some of the more ‘natural’ deriva-
tions of LAD [9, 49, 50], the troublesome Schott term (the
derivative of acceleration) arises from taking the momen-
tum to be p = m(ẋ−τẍ), which to a good approximation
agrees with (2). In a recent derivation [51] of the classical
radiation reaction by the integration of electromagnetic
momentum, it was shown that the Schott term arises
from the bound field momentum, in agreement with the
calculation of Dirac [8]. Unlike the emitted field momen-

tum, this bound momentum cannot escape to infinity, so
it is reasonable to treat it as part of the particle’s mo-
mentum. This approach is consistent with the theory of
Sokolov where it corresponds to the second term in the
RHS of Eq. (2).
In theories for which p = mẋ, the Einstein relation

p2 = m2 is a direct consequence of parameterizing the
worldline by proper time. In the Sokolov theory, rather
than being equivalent these relations are incompatible
Contraction of (3) with u indicates that its norm is pre-
served, and we can consistently set u2 = 1. Squaring (2)
then yields:

ẋ2 = 1−
(
2
3αχ

)2
, (4)

where α ≃ 1/137 is the fine structure constant and χ =
e~
m2

√
F a

bF b
cuauc is the electric field in the zero (spatial)

momentum frame in units of the Sauter-Schwinger field
[52, 53].
The result (4) indicates that the worldline parameter

is not strictly proper time. Rather, it is the time mea-
sured in the Lorentz frame in which the particle instanta-
neously has vanishing spatial momentum. However, the
difference between this and true proper time is appre-
ciable only when χ & 50, in which case quantum effects
should be sufficiently important to invalidate the notion
of a classical worldline. We therefore take (4) to im-
ply ẋ2 ≃ 1 and interpret the time parameter as effective
proper time.
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To understand the relation between momentum and
velocity in Sokolov’s model, it is convenient to introduce
the matrix

Λa
b = δab + τ

e

m
F a

b (5)

in terms of which (2) is ẋa = Λa
bu

b. The product ΛΛT

yields

Λa
bΛc

b = δac − τ2
e2

m2
F a

bF
b
c. (6)

If the RHS of (6) were δab , Λ would be an element of
the group SO(3,1), implying that the emission of radia-
tion induces a Lorentz transformation between velocity
ẋ and normalized momentum u. While this does not
hold exactly, even for the ultra-strong magnetic fields
B ≈ 1010 T surrounding some neutron stars, its violation
is ∼ 10−4, while for lasers of intensity I ≈ 1022 W/cm2,
the strongest fields currently produced in the laboratory,
it is ∼ 10−12. We thus interpret Λ as an effective Lorentz

transformation between velocity and momentum.
The electromagnetic tensor F has electric fields for its

spatio-temporal components and magnetic fields for its
purely spatial components. It therefore follows from (2)
that an electric field relates the particle’s velocity to its
momentum via a Lorentz boost, while a magnetic field
does so via a spatial rotation. In particular, an electron
with vanishing spatial momentum is unmoving in a pure
magnetic field, while an electric field will imbue it with
a nonzero velocity. This is illustrated in figure 1.

Figure 1: (Color online) Schematic showing how the electromag-
netic tensor components change the relation between the particle’s

momentum and its velocity.

III. ENERGY CONSIDERATIONS

So far, we have been considering only the kinetic 4-
momentum. However, in a purely electrostatic field,

Fab = ∂aϕηb − ∂bϕηa with ηa∂aϕ = 0, (7)

it is of interest also to consider the total energy

E = m(η · u) + eϕ, where η is the 4-velocity of the labo-
ratory frame, which picks out the time-component of the
canonical 4-momentum mu+ eA in that frame while an-
nihilating the spatial components. For the electrostatic
field (7) we choose the 4-potential A = ϕη.
In the absence of radiation reaction (the limit τ → 0),

the particle’s total energy is conserved, Ė = m(η · u̇) +
eẋ · ∂ϕ = 0. (In more general field configurations this
is not the case, hence the restriction in the present Sec-
tion to electrostatic fields.) Intuitively, since radiation
carries away energy, RR should cause the total energy of
the particle to decrease, Ė < 0. The radiation emitted
is greatest when the particle’s acceleration is orthogonal
to its 3-velocity, so we expect −Ė to be maximized when
u · ∂ϕ ≈ 0. And since the radiation emitted is propor-
tional to e2, we do not expect Ė to depend on the sign of
the charge. Let us see if these properties are respected
by the theoretical models.
Substituting (7) into (1) and contracting with η yields

for the rate of change of total energy according to LL,

Ė = −τe(u · ∂)2ϕ︸ ︷︷ ︸
(a)

+τ
e2

m


(u · ∂ϕ)2︸ ︷︷ ︸

(b)

+
{
(η · u)2 − 1

}
∂ϕ2

︸ ︷︷ ︸
(c)


 η·u.

(8)
Two differences occur in Sokolov’s theory: the term

involving the derivative of the fields is not present in
(3), eliminating (a), and the field-dependent term in (2)
contributes to ϕ̇, canceling with the −∂ϕ2 contribution
to (c). Hence the rate of change of energy according to
Sokolov becomes

Ė = τ
e2

m


(u · ∂ϕ)2︸ ︷︷ ︸

(b)

+(η · u)2∂ϕ2

︸ ︷︷ ︸
(c′)


 η · u. (9)

Consider each term in turn:

• (a) appears in LL only and can contribute either
positively or negatively, depending on the direc-
tion of the particle’s momentum relative to both
the electric field and its derivative. Moreover, it is
linear in e, so if it is positive for an electron it will
be negative for a positron, and vice versa.

• (b) has the same form in both LL and Sokolov,
and leads to an increase in the particle’s energy.
It is maximized when the particle’s momentum is
directed along the polarization of the field, and van-
ishes when it is perpendicular.

• (c) appears in LL and in a slightly modified form in
Sokolov. Since ∂ϕ is spacelike, this term leads to a
decrease in the particle’s energy, and it is insensitive
to the direction of the particle’s motion. In LL, this
term is always large enough to compensate for the
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gain of energy from (b), but not necessarily more
than that. In Sokolov it is enhanced, so that Ė < 0
provided only that ∂ϕ 6= 0.

The rate of change of energy according to Sokolov is
fully in keeping with our expectations: it is always neg-
ative; it is highest when the particle’s momentum is per-
pendicular to the field; and it does not depend on the
sign of the particle’s charge. None of these properties is
shared by the LL analogue. However, under the condi-
tions to maximize RR (u · ∂ϕ = 0, η · u ≫ 1), the two
predictions for Ė converge. Concerns over the interpre-
tation of LL are therefore very much ones of principle
rather than practical difficulties.
The benefits of the Sokolov model are clearly demon-

strated in the long-standing problem of the hyperbolic
motion of an electron accelerating in a constant electric
field, ϕ = −E0z. The LAD equation for this case gives
zero RR force, u̇a = e

m
F a

bu
b, and this result is inher-

ited by both LL and Sokolov. This has caused signifi-
cant confusion, leading some researchers to argue that a
charge with constant proper acceleration should not radi-
ate [54, 55]. While it has now been established that this
is not the case, explanations of how this is compatible
with energy conservation have not been compelling [34],
relying on the electron’s behaviour as it enters and leaves
the constant field, rather than providing a local energy
balance.
According to the LL result (8), Ė = 0, while (9) gives

Ė = −τ e2

m
E2

0η · u for Sokolov, consistent with loss of en-
ergy to radiation. Although there is no radiation reac-
tion force, per se, the effective Lorentz boost means the
electron moves through the potential more rapidly than
it would if it did not radiate, and thus converts poten-
tial energy into radiation. This situation was considered
in [20], but there lacked the detail of the Lorentz boost
which provides the physical mechanism for the energy
exchange.

IV. EXAMPLES

In this section, we consider the motion of an electron in
two cases which are simple enough to solve, yet capture
the key physics in situations in which radiation reaction
is most important.

A. Constant magnetic field

The strongest known magnetic fields are found around
magnetars, and can exceed 1010 T. In such fields, motion
across the field lines is strongly suppressed, so to a good
approximation the field can be taken as constant along
an electron’s orbit,

F a
b = B(ǫaλb − λaǫb). (10)

B is the constant strength of the magnetic field, directed
along the vector κ, which together with η, ǫ and λ forms
an orthonormal frame (η2 = −ǫ2 = −λ2 = −κ2 = 1,
with all other scalar products vanishing).
The LL equation has been studied in the field (10),

yielding simple expressions for the momentum [19].
Defining the contractions uℓ = (ε + iu‖) = (η − iκ) · u
and u⊥ = uǫ + iuλ = −(ǫ + iλ) · u, simple requirements
of Lorentz invariance lead to

uℓ =
√
1 + |u⊥|2

uℓ0√
ε20 − u2

‖0

, (11)

where the subscript ‘0’ denotes the value at time s = 0.
LL gives the transverse momentum as

u⊥ =
ei(ωcs+θ)

√
Ae2τω

2
c
s − 1

(12)

where ωc = eB/m is the cyclotron frequency, A = 1 +
|u⊥0|−2 and θ is the angle between the initial transverse
momentum and the ǫ direction.
Since the field is constant, the derivative terms in (1)

do not contribute, so the solutions (11)–(12) are equally
valid in the Sokolov theory. Defining the analagous con-
tractions ẋℓ = γ + iẋ‖ = (η − iκ) · ẋ, ẋ⊥ = ẋǫ + iẋλ =
−(ǫ+ iλ) · ẋ, it follows from (2)

ẋℓ = uℓ, ẋ⊥ = (1 + iτωc)u⊥ ≃ eiτωcu⊥. (13)

As anticipated, velocity is related to momentum by a
rotation around the direction of the magnetic field. Be-
cause the field is homogeneous, this discrepancy between
the directions of momentum and velocity does not affect
the rate at which the particle spirals inwards. Essentially,
as the particle rotates in the magnetic field, its transverse
momentum simply lags slightly behind its velocity.

B. Electromagnetic plane wave

The strongest fields available in the laboratory are
those produced by high power lasers. By tightly focusing
short laser pulses, present laser facilities can produce in-
tensities ∼ 1022 W/cm2, and it is anticipated that forth-
coming facilities could exceed 1023 W/cm2.
To simplify the analysis, we ignore the focusing and

treat the laser pulse as a plane wave. However, by allow-
ing an arbitrary longitudinal profile we can model the
short duration. We therefore take the field as

e

m
F a

b = aǫ(φ) (ǫ
akb − kaǫb) + aλ(φ) (λ

akb − kaλb) ,

(14)
where aǫ (aλ) is a dimensionless measure of the electric
field strength in the ǫ (λ) direction and k = ω(η + κ) is
the null wave 4-vector, with ω the frequency of the pulse,
and φ = k · x.
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The Landau-Lifshitz equation in the field (14) has been
studied extensively [56–60]. However, a number of con-
ceptual and technical differences arise in the Sokolov the-
ory.
Assume aǫ = a and aλ = 0, so the electric and mag-

netic fields are oriented in the ǫ and λ directions, re-
spectively (this can always be achieved at a given φ by
rotating ǫ and λ). Then (2) yields

γ = ε+ τωauǫ, ẋǫ = uǫ + τωaε− τωau‖,

ẋ‖ = u‖ + τωauǫ, ẋλ = uλ. (15)

Again, the magnetic field induces a rotation between mo-
mentum and velocity, while the electric field causes an
effective Lorentz boost, the plane wave assumption (14)
ensuring these are of equal magnitude τωa. These results
hold regardless of the polarization in the ǫ–λ plane.
Since the field components aǫ and aλ depend on the

coordinate φ, the Sokolov equation (3) for momentum
differs through the field derivative terms from LL, so so-
lutions to the latter cannot be imported from the litera-
ture as they were for the constant magnetic field. Nev-
ertheless, we can follow the approach in [56], changing
the independent variable from proper time s to phase φ.
This is possible since the field drops out of the phase
derivative:

φ̇ = k · ẋ = ω(γ − ẋ‖) = ω(ε− u‖). (16)

Substituting (14) in (3) and contracting with k then
yields

φ̇ = Ω(φ) =
Ω0

1 + τΩ0

∫ φ

φ0

[a2ǫ(φ
′) + a2λ(φ

′)] dφ′
, (17)

where Ω(φ) is the instantaneous frequency as measured
by the particle (i.e. Ω/ω is the Doppler factor). Note
that (17) is valid for LL as well as Sokolov, and moreover
Ω̇ < 0, so the frequency observed by the particle decreases
as it traverses the pulse.
Using (17) and defining the reduced momentum ũ =

u/Ω, we can now rewrite (2)–(3) as derivatives with re-
spect to φ:

dxa

dφ
= Λa

bũ
b,

dũa

dφ
= Ω−1Λa

b

e

m
F b

cũ
c. (18)

Not only does RR Lorentz transform the velocity relative
to the reduced momentum, but the same Lorentz trans-
formation relates the effective total force to the Lorentz
force. While the former is a universal effect, the latter is
a consequence of the specific field configuration (14).
Since (18) is linear in ũ, its solution is simply obtained

by exponentiating the integral of the matrix multiplying
it on the RHS. Moreover, since k is null, the exponentia-
tion terminates at second order, allowing us to write the

solution in the compact form

ũa =

[
δab + (Iakb − kaIb) +

1

2

(
1

Ω2
− 1

Ω2
0

− I2
)
kakb

]
ũb
0,

(19)
where we have introduced the vector

Ia(φ) =

∫ φ

φ0

aǫ(φ
′)ǫa + aλ(φ

′)λa

Ω(φ′)
dφ′. (20)

The solution (19) differs from that found for LL [56] only
by the terms in Ia arising from the field derivatives. From
(19) and (17) we readily obtain the particle’s momentum,
ua = Ωũa, and position, xa = xa

0 +
∫
Λa

bũ
bdφ.

V. DISCUSSION AND CONCLUSION

In conclusion, recent rapid advances in laser technol-
ogy have promoted the long-standing issue of radiation
reaction from an intellectual curiosity to a problem that
urgently needs clarification. Of the many models pro-
posed to describe radiation reaction, those of Landau and
Lifshitz and of Sokolov have attained particular promi-
nence. While the predictions they make for the motion
of a radiating charge are consistent with each other, they
differ on the evolution of its energy-momentum. This
suggests the distinction is not a question of one theory
being right and the other wrong, but rather how to in-
terpret the different momenta of the two theories.

In the Sokolov theory, normalized momentum is re-
lated to velocity by a Lorentz transformation, with elec-
tric fields generating boosts and magnetic fields induc-
ing spatial rotations. With this notion of momentum,
a particle in an electrostatic field necessarily loses en-
ergy as a consequence of radiation emission, which is not
the case for the Landau-Lifshitz momentum, which is di-
rected along the velocity.

It is worth noting that, in addition to a more satisfac-
tory interpretation of momentum, the Sokolov theory has
a distinct numerical advantage, as there is no need to cal-
culate derivatives of the electromagnetic field. In [61], a
number of classical radiation reaction theories were con-
sidered, with Sokolov among the most computationally
efficient, with less than half the overhead required for
Landau-Lifshitz.

As a final remark, we note that there is currently con-
siderable activity in the recoil of a massive body to the
emission of gravitational radiation [62], stimulated by the
prospect of detecting gravitational waves. While the fo-
cus of the present paper has been purely on electromag-
netic radiation reaction, there has been substantial cross-
fertilization of ideas across the two fields [63]. The per-
spective offered here may therefore also be of relevance
to gravitational radiation reaction.



6

ACKNOWLEDGEMENTS

We would like to thank other members of the
ALPHA-X collaboration for numerous discussions on ra-
diation reaction that have informed this work. This
work is supported by EPSRC (Grants EP/J003832/1,
EP/J018171/1 and EP/M018091/1) and the Euro-
pean Commission FP7 projects Laserlab-Europe (Grant
284464) and EuCARD-2 (Grant 312453).

∗ remi.capdessus@strath.ac.uk
† adam.noble@strath.ac.uk
‡ paul.mckenna@strath.ac.uk
§ d.a.jaroszynski@strath.ac.uk

[1] M. Abraham, Theorie der Elektrizität (Teubner, Leipzig,
1905) Vol. II

[2] H. A. Lorentz, The Theory of Electrons (Teubner,
Leipzig, 1909).

[3] C. H. Jaroschek, and M. Hoshino, Phys. Rev. Lett., 103,
075002 (2009).

[4] B. Cerutti, G. R. Werner, D. A. Uzdensky, and M. C.
Begelman, The Astrophysical Journal, 770, 147 (2013).

[5] M. D’Angelo, L. Fedeli, A. Sgattoni, F. Pegoraro, and A.
Macchi, arXiv:1502.00531v2 (2015).

[6] A. Di Piazza, C. Müller, K. Z. Hatsagortsyan, and C. H.
Keitel, Rev. Mod. Phys. 84, 1177 (2012).

[7] http://www.eli-laser.eu/; http://www.xcels.iapras.ru/;
http://cilexsaclay.fr/.

[8] P. A. M. Dirac, Proc. R. Soc. A 167 148 (1938).
[9] H. J. Bhabha, Proc. R. Soc. A 172, 384 (1939);

[10] J. A. Wheeler and R. P. Feynman, Rev. Mod. Phys. 17,
157 (1945).

[11] F. Rohrlich, Phys. Rev. Lett. 12, 375 (1964).
[12] C. Teitelboim, Phys. Rev. D 1, 1572 (1970).
[13] A. O. Barut, Phys. Rev. D 10, 3335 (1974).
[14] D. A. Burton and A. Noble, Contemporary Phys. 55, 110

(2014).
[15] L. D. Landau and E. M. Lifschitz, The Classical Theory

of Fields, 4th ed. (Pergamon, New York, 1994).
[16] C. J. Eliezer, Proc. R. Soc. A 194, 543 (1948).
[17] T. C. Mo and C. H. Papas, Phys. Rev. D 4, 3566 (1971).
[18] G. W. Ford and R. F. O’Connell, Phys. Lett. A 157, 217

(1991).
[19] J. C. Herrera, Phys. Rev. D 15, 453 (1977).
[20] I. V. Sokolov, J. Exp. Theor. Phys. 109, 207 (2009).
[21] F. Andersson, P. Helander, and L. G. Eriksson, Phys.

Plasmas 8, 5221 (2001).
[22] A. Zhidkov, J. Koga, A. Sasaki, and M. Uesaka, Phys.

Rev. Lett., 88 185002 (2002).
[23] S. V. Bulanov, T. Zh. Esirkepov, J. Koga, and T. Tajima,

Fiz. Plazmy (Moscow) 30 (3), 221 (2004) [Plasma Phys.
Rep. 30 (3), 196 (2004)].

[24] A. Di Piazza, K. Z. Hatsagortsyan, and C. H. Keitel,
Phys. Rev. Lett., 102 254802 (2009).

[25] M. Tamburini, F. Pegoraro, A. Di Piazza, C. H. Keitel,
T.V.Liseykina, and A. Macchi, Nucl. Instrum. Meth. B
653, 181 (2011).

[26] M. Tamburini, T. V. Liseykina, F. Pegoraro, and A. Mac-
chi, Phys. Rev. E 85, 016407 (2012).

[27] T. Schlegel, and V. T Tikhonchuk, New. J. Phys. 14,
073034 (2012).

[28] S. R. Yoffe, Y. Kravets, A. Noble, and D. A. Jaroszynski,
New. J. Phys. 17, 053025 (2015).

[29] M. Tamburini, F. Pegoraro, A. Di Piazza, C. H. Keitel
and A. Macchi, New. J. Phys., 12 123005 (2010).

[30] M. Chen, A. Pukhov, T. P. Yu and Z. M. Sheng, Plasma
Phys. Control. Fusion, 53 014004 (2011).

[31] E. N. Nerush, and I. Y. Kostyukov, Plasma Phys. Con-
trol. Fusion 57, 035007 (2015).

[32] L. L. Ji, A. Pukhov, E. N. Nerush, I. Yu. Kostyukov, F.
Shen, and K. U. Akli, Phys. Plasmas 21, 023109 (2014).

[33] W. E. Bayliss and J. Huschilt, Phys. Lett. A 301, 7
(2002).

[34] R. T. Hammond, EJPT 7, 221 (2010).
[35] N. M. Naumova, T. Schlegel, V. T. Tikhonchuk, C.

Labaune, I.V. Sokolov, and G. Mourou, Phys. Rev. Lett.,
102 025002 (2009).

[36] R. Capdessus and P. McKenna, Phys. Rev. E 91, 053105
(2015).

[37] I. Sokolov, N. M. Naumova, and J. A. Nees, Phys. Plas-
mas 18, 093109 (2011).

[38] R. Capdessus, E. d’Humières, and V. T. Tikhonchuk,
Phys. Rev. Lett 110, 215003 (2013).

[39] R. Capdessus, M. Lobet, E. d’Humières, and V. T.
Tikhonchuk, Phys. Plasmas 21, 123120 (2014).

[40] K. Q. Pan, C. Y. Zheng, Dong Wu, and X. T. He, Phys.
Plasmas 22, 083301 (2015).

[41] M. Lobet, C. Ruyer, A. Debayle, E. d’Humières, M.
Grech, M. Lemoine, and L. Gremillet, Phys. Rev. Lett
115, 215003 (2015).

[42] E. Moniz and D. Sharp, Phys. Rev. D 15, 2850 (1977).
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