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Optical Rogue Waves in Vortex Turbulence

Christopher J. Gibson, Alison M. Yao, and Gian-Luca Oppo
SUPA and Department of Physics, University of Strathclyde, Glasgow G4 0NG, Scotland, U.K.

We present a spatio-temporal mechanism for producing 2D optical rogue waves in the presence of
a turbulent state with creation, interaction and annihilation of optical vortices. Spatially periodic
structures with bound phase lose stability to phase unbound turbulent states in complex Ginzburg-
Landau and Swift-Hohenberg models with external driving. When the pumping is high and the
external driving is low, synchronized oscillations are unstable and lead to spatio-temporal vortex-

mediated turbulence with high excursions in amplitude. Nonlinear amplification leads to rogue waves
close to turbulent optical vortices, where the amplitude tends to zero, and to probability density
functions (PDFs) with long tails typical of extreme optical events.

Rogue waves (RWs) in high seas were once a thing of
legend: massive walls of water tens of metres high, ca-
pable of destroying large ships, appearing from nowhere
then vanishing leaving no trace of their existence [1]. Be-
cause of the very short lifetime of such extreme events,
quantitative studies and simulations of the mechanisms
behind their creation in oceanography have grown only
recently [2, 3]. Although the origin of these waves is still
under debate, RWs have been realized in several optical
systems [4] from optical fibres [5], to optical cavities [6, 7]
and photonic crystals [8].

Here we investigate a spatio-temporal mechanism in-
volving vortices in a 2D turbulent state that is capable
of generating RWs, building upon previous work con-
cerning a singly resonant optical parametric oscillator
system with a low amplitude detuned seeding field [9].
For generality and application to a variety of nonlin-
ear dynamical systems, we consider a Forced Complex
Ginzburg-Landau (FCGL) equation [10] and a Forced
Complex Swift-Hohenberg (FCSH) equation, both with
external driving. We focus on the loss of synchronisa-
tion of the Adler locked states obtained at large driving
amplitudes. When decreasing the external forcing, oscil-
lations at the Adler frequency become spatio-temporally
unstable leading first to a phase and then to an amplitude
instability that forces, locally and randomly, the forma-
tion of pairs of oppositely charged vortices. Since the
total power in the transverse direction remains almost
constant throughout, the nonlinearity pushes the inten-
sity to high spikes close to interacting vortices, resulting
in the rare formation of RWs. The RWs described here
are outside thermodynamic equilibrium, do not survive
in the purely temporal (single mode) case and are due
to a deterministic, nonlinear and vortex-mediated turbu-
lence far removed from a purely stochastic superposition
of optical waves.

To demonstrate the generality of optical RWs in vortex
turbulence we employ a variety of mathematical models:

∂tE = EIN − (1− iω) E + i∇2
E + P f(|E|2) E

− Γ(ω + ǫ∇2)2E , (1)

where E is the complex field, EIN is the (real) amplitude
of the external forcing, ω is the frequency difference be-

tween the unperturbed field and the external driver, ∇2

is the transverse Laplacian, P is the laser pump, f(|E|2)
is 1 − |E|2/3 for the laser [11] and sinc2(|E|) for the
optical parametric oscillator [9]. Time is normalised to
the photon decay rate in the optical cavity and space to
√

Lλ/4π where L is the cavity length and λ the wave-
length. Finally, Γ is zero for the FCGL model and one
for the FCSH case, where ǫ is a small parameter (here
fixed at 0.01) due to the fast dynamics of atomic vari-
ables in lasers [12]. The FCGL and FCSH models can be
applied in many other systems, e.g. chemical oscillations
[13], granular media [14] and hydrodynamics [15].

The cases of relevance are obtained when the detun-
ing ω is different from zero. In this case the frequency
locked states that one observes at large driving ampli-
tudes become unstable upon decreasing the driving EIN .
For fixed values of ω and P , the homogeneous stationary
states of Eq. (1) have a typical S-shaped dependence
on E2

IN
as displayed, for example, in Fig. 1 where the

stability of these solutions to perturbations of zero wave-
vectors is shown. The uppermost lines in the S-shaped
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FIG. 1. (Color online) Stationary intensity of plane waves
and their stability (stable = solid green, unstable with real
eigenvalues = dashed blue, unstable with complex eigenval-
ues = dash-dotted red) for the FCGL model with P = 4 and
ω = 0.53. The black dotted lines represent the minima and
maxima of stationary hexagonal patterns, the vertical lines
where the optical turbulent state starts (shaded area). The
blue circle is the stationary intensity of the laser with no in-
jection. The FCSH model displays very similar results.

curves of Fig. 1 correspond to the homogeneous locked
states where the external driving is large enough to over-
come the frequency difference with the injected device.
When increasing EIN , a saddle-node bifurcation heralds
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the onset of the frequency and phase locked homogeneous
states. When, instead, decreasing the parameter EIN the
homogeneous solution loses stability to spatially periodic
patterns with a critical wave-vector given by kc =

√
ω.

In Fig. 1 the maximum and minimum intensities of the
hexagonal patterns obtained numerically [16] when re-
ducing the external driver are displayed via a black dot-
ted line. Although the phase of the pattern is periodically
modulated in space, the stationary character of these pat-
tern solutions demonstrates that they are locked to the
frequency of the injection. A typical hexagonal structure
in the case of the FCGL equation with finite size input
beams is shown in Fig. 2a. Note that all the results pre-
sented in this paper remain valid in the limit of transverse
periodic boundary conditions. As the amplitude EIN of
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FIG. 2. (Color online) Transverse intensity for (a) hexago-
nal Turing pattern and (b)-(c) optical vortex-mediated tur-
bulence. Corresponding transverse phase distribution of two
oppositely charged vortices (d). Simulations of the FCGL
equation with parameters, P = 6, ω = 0.77, EIN = 1.00 (a)
and EIN = 0.95 (b)-(d), see [16]. The beam radius is 10π.
(c) and (d) correspond to the area of the white square in (b).

the external drive is further reduced (see shaded area in
Fig. 1), spatially periodic patterns become unstable and
a regime of unlocked dynamics sets in [9, 10]. Figure 3
shows the temporal evolution of an unstable hexagonal
pattern in an Argand (Im(E) versus Re(E)) diagram.
The hexagonal pattern (see Fig. 3a) is a phase bound so-
lution that progressively loses stability along a circle in
the Argand diagram corresponding to a phase instability
(Fig. 3b). This phase instability then grows into an am-
plitude instability (Fig. 3c) that leads to the formation
and annihilation of pairs of oppositely charged vortices
(see Fig. 2c and d) and a regime of spatio-temporal ir-
regularity similar to the vortex-mediated turbulence de-
scribed in [17] in the CGL in the absence of forcing (see
Fig. 3d). The helical waves propagating around the de-
fects act as the driving force behind the turbulent state.

A typical instantaneous intensity distribution of this tur-
bulent state is presented in Fig. 2b & c. The interacting
vortices correspond to the localized regions of zero ampli-
tude (shown in black). Note that the turbulent dynamics
of vortices is deterministically driven by the spatially cou-
pled nonlinearity and not by the superposition of random
waves typical of optical speckles [18]. Indeed, in the case
of speckle, the field distribution in the Argand plane has
a Gaussian shape as opposed to the almost circular one
shown in Fig. 3d. There are also noticeable intrinsic dif-
ferences in the field correlations [19] and in the PDFs of
the intensity (see below).
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FIG. 3. (Color online) Field distributions in the Argand plane
of the unstable hexagonal pattern at t=0 (a), during phase
instability (t=183) (b), in a regime of amplitude instability
(t=236) (c) and in a turbulent state (t=472). The green cir-
cle in (d) is the Adler limit cycle. Simulations of the FCGL
equation with the same parameters as Fig. 1 and EIN = 0.60.

To better understand the nature of the turbulent state
in forced models (1) we consider dynamical solutions cor-
responding to unlocked oscillations and their robustness
to spatially dependent perturbations in the FCGL model
(Γ = 0) where analytical predictions are feasible. In the
absence of spatial coupling an approximate limit cycle
trajectory for the field can be found by period averaging
methods, E = A0 [cos(φ(t)) + i sin(φ(t))], [11, 20], where
A2

0 = 3(P −1)/P , φ(t) is well approximated by its period
average Ωt + π with Ω =

√

ω2 − ω2
L

and ωL = EIN/A0.
When Ω is real, i.e. in the absence of locked states, the
trajectory is the phase-drift solution of the Adler equa-
tion [21], dtφ = ω−ωL sin(φ(t)). Such solution is clearly
phase unbound and is superimposed onto the Argand di-
agram in the turbulent regime of Fig. 3d to show that its
underlying dynamics is ruled by the unlocked state. The
accuracy of the approximate solution has been checked
for a wide range of EIN values in the FCGL model. The



3

excursions in intensity do not exceed 10% while those in
frequency are well within 1%. We have then proceeded
to study the stability of the spatially synchronized oscil-
lation by including spatial coupling in the FCGL. The
stability eigenvalues of the spatially synchronized limit
cycle are given by

λ± = −(P − 1)±
√

(P − 1)2 − (ω − k2)2 (2)

where k is the spatial wave-vector. At the critical wave-
vector for pattern formation kc =

√
ω, the stability λ+ is

marginal but perturbations due to the approximate na-
ture of E induce a slow instability of the synchronous
oscillation. The eigenvector associated with λ+ is along
the limit cycle, again demonstrating a phase instability.
As mentioned earlier, this phase instability grows into
an amplitude instability and then into vortex-mediated
turbulence as demonstrated numerically in Fig. 4, start-
ing from low amplitude noise. A homogeneous zero state
with added noise quickly evolves towards the unstable
limit cycle (from 0 to 4 in Fig. 4a). The limit cycle
dynamics first synchronises the spatial oscillations (see
the narrow line at t = 90 in Fig. 4b) and then moves
towards the vortex turbulence state via phase (Fig. 4b)
and amplitude (see Fig. 3c) instabilities. We outline
that the mechanism of spontaneous vortex creation in
the FCGL and FCSH is not trivial. In contrast with
the CGL, stationary vortex solutions are not possible in
driven systems like (1) as all locked states have bound
phases around that of the injection. However, at low
driving amplitudes, moving vortices and vortex-mediated
turbulence in (1) are possible due to the Adler unlocked
dynamics of the limit cycle trajectory. It is known [22]
that the adiabatic elimination of the polarization variable
introduces an all wave-vector instability of the spatially
homogeneous state below the point where the linear sta-
bility of the lower branch of the S-shaped homogeneous
state predicts complex conjugate eigenvalues (see Fig.
1). This feature, in principle, may have serious conse-
quences in the turbulent regimes. A second important
consequence of our analysis, however, is that Eq. (1)
for Γ = 0 displays a very fast dynamics that takes the
system towards the limit cycle where large wave-vector
instabilities are promptly eliminated (see Fig. 4)). The
large wave-vector instability of the lower branch of the
homogeneous stationary states is not present in the case
of FCSH when Γ = 1.

This mechanism for vortex turbulence is essential for
the generation of RWs in externally driven systems de-
scribed by the spatio-temporal dynamics of Eq. (1).
These systems are outside thermodynamic equilibrium,
do not display relaxation oscillations and present a deli-
cate balance between the energy input and the losses (the
pump P , injection EIN , nonlinearity f(|E|2) and output
mirror). During the turbulent evolution, the total power
P remains almost constant at values close to those of the
laser with no injection (see Fig. 5a). By considering the
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FIG. 4. (Color online) Field distributions in the Argand plane
for the FCGL equation with the same parameters as Fig. 1
and EIN = 0.70. (a): t=0 (black), t=0.40 (red), t=0.75
(blue) and t=1.4 (green). (b): t=90 (black), t=256 (red),
t=280 (blue) and t=314 (green).

energy density and the energy flux of the FCGL equation
[23] the time evolution of the power is given by

∂P
∂t

= 2

ˆ

[

EINRe(E) +

(

P − 1− P

3
|E|2

)

|E|2
]

dxdy

(3)
where (x, y) is the transverse plane. For the approximate
limit cycle solution the power P is conserved at the value
of πw2

0A
2
0 where w0 is the beam width of the input laser.

In the turbulent state, however, maintaining an almost
constant power in the presence of moving vortices of zero
intensity implies the simultaneous appearance of large
amplitude spikes. If the vortex density is large, multi-
vortex collisions can occur with the production of large,
short-lived spikes in the intensity (see Fig. 5b). Short-
lived large intensity spikes are rare but possible events,
fitting the characteristics of RWs. The particular shape
and symmetry of these spikes is crucially determined by
the number and position of the surrounding vortices, a
feature that is unique to this particular mechanism of
RW formation. RWs in single transverse mode class-B
lasers with injected signals have been observed in [7] but
due to relaxation oscillations and not to 2D vortex tur-
bulence. In fact, without spatial coupling due to diffrac-
tion, no RWs can be observed in systems described by
Eq. (1). To characterize our spatio-temporal RWs, we
use a commonly accepted definition of statistically rare
events [4, 7, 9], i.e. if the intensity of the field at a spatial
point over a long period of time is greater than the mean
wave height plus eight standard deviations then the wave
can be classified as an extreme event or RW, similarly to
the significant peak intensity method [4].

In Fig. 6 we show PDFs for different regimes of vortex
turbulence. The wave statistics is well-approximated by
a Gaussian fit when the pump intensity is low (blue solid
line in Fig. 6). At higher pump intensities the long-tailed
PDFs show mass generation of RWs. Here the statistics
changes drastically and is very well approximated by a
Weibull distribution [2, 16] (red dashed line in Fig. 6).
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FIG. 5. (Color online) (a) Time evolution of the power for
three values of the pump (P = 2, 4 and 5) and for the FCGL
(solid lines) and FCSH (dashed lines) models during vortex
turbulence. The horizontal lines are the predictions from the
approximate Eq. (3). (b) RW spike in the transverse inten-
sity for the FCGL with P = 6, ω = 0.77, EIN = 1.00. The
peak intensity is 42.22, the average is 4.93 and the standard
deviation is 1.57 (all in normalised units).

Note that non-Gaussian PDFs cannot be replicated by
superpositions of random waves. We also note that the
RWs in vortex turbulence demonstrated in Fig. 6 are
different from those due to vorticity in models of inviscid
fluids [3]. The CGL and CSH have been shown to be
equivalent to the flow of a compressible and viscous fluid
with density ρ = |E|2 and velocity v=∇φ where φ is the
phase of the field [26]. In the case of our forced systems,
∇×v remains extremely close to zero in the locations
where RWs are observed. We conclude that our RWs are
due to the interaction of free vortices in the absence of
vorticity.
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FIG. 6. (Color online) Intensity PDFs for the FCGL model:
P = 2, ω = 0.3, EIN = 0.24 (purple triangles) with Gaussian
fit (blue line) and P = 8, ω = 2.4, EIN = 3.40 (green stars)
and the sinc2 model: P = 8, ω = 1, EIN = 1.48 (black circles)
with Weibull fit (red dashed line) [16]. The vertical black line
is the threshold for defining waves as an extreme event. Inset:
Parameter region for RWs (red area) in the FCGL. The upper
curve is the pattern to vortex-mediated turbulence transition,
the lower curve the turbulence to target pattern transition.
No RWs are observed below the red dashed line.

Finally, we show in the Fig. 6 inset the wide parameter
region where we observe RWs induced by vortex turbu-
lence in systems with external driving of the FCGL kind.
Very similar results have been obtained for the FCSH

and different nonlinearities such as those of the FCSH
and the singly resonant OPO, thus demonstrating the
universality of the phenomenon.

In conclusion, we demonstrate a mechanism for pro-
ducing RWs in the transverse area of externally driven
nonlinear optical devices via vortex turbulence. Given
the universality of our model, this mechanism should be
observable in a large variety of systems. Models of lasers
with injected signal, where the invariance of the Adler
limit cycle is well known [11, 24], can be easily extended
to semiconductor media [25] and to class B lasers, thus
including the largest majority of solid state lasers. Out-
side optics, vortex-mediated turbulence without driving
has been observed in nematic liquid crystals [27], chemi-
cal reactions [28] and fluid dynamics [29]. In the unlocked
regime of these systems with driving, vortex turbulence
can excite RWs and lead to the formation of highly inho-
mogeneous fields with non-Gaussian statistics.

The prototype model used to describe RWs is the
Non-Linear Schrödinger (NLS) equation [2, 4, 5]. The
FCGL and FCSH models studied here are active, non-
conservative systems outside thermodynamic equilibrium
where many of the methods developed for the NLS can-
not be applied. In the NLS equation, as well as in the
CGL and CSH equations, stationary vortex solutions are
possible although mainly unstable. In the presence of
forcing, vortices can only exist in dynamical states. It
is exactly in these situations that we have demonstrated
RWs close to regions of interaction of turbulent vortices.
Because of universality, suitably perturbed NLS models
may also display these features.

Unlike RWs in the longitudinal direction [4], the aspect
ratios required for transverse RWs induced by 2D vortex
turbulence are extremely small (typical input beams have
diameters less than 1mm) and the statistics require times
of the order of hundreds of µs. The small aspect ratio, the
full 2D character and the quick dynamics represent the
major advantages of transverse optical devices in study-
ing the generation and control of RWs with applications,
by universality, in hydrodynamics and oceanography.
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METHODS

Numerical integration

We have numerically integrated the models described
by Eq. (1) in two transverse dimensions plus time by
using a split-step algorithm with periodic boundary con-
ditions [1]. The numerical grids used had dimensions of
256× 256 and 512× 512. The numerical boundaries be-
come irrelevant when the pump P and the injection EIN

have finite size, in which case the field E vanishes well
before the integration boundaries.

Two dimensional probability distribution functions

The statistics for the Probability Distribution Func-
tions (PDF) are built by recording the intensity at each
point in the two-dimensional transverse field for five
thousand images. These are then used to create a his-
togram containing the probabilities of each wave height
and intensity that can be used to analyse the distribu-
tion. On the horizontal axes we report the wave intensity
minus its average value, normalised by the standard de-
viation and subdivided in 100 bins. On the vertical axes
we report the probability of measuring a certain intensity
value in the transverse field over the full duration of the
simulation. The data on the right side of the vertical line
at 8 in Fig. 6 corresponds to wave intensities with values
above 8 standard deviations. The time interval between
images is short enough to sample the dynamics but long

enough to capture a significant number of rogue waves.

Fitting of probability distribution functions

In the regime where no rogue waves are observed and
above a threshold probability of 10−4 the intensity dis-
tribution is well approximated by that of a Gaussian fit
of the form

f(x) = A exp

(

−
x2

b2

)

. (1)

In Fig. 6 the fitting parameters for the Gaussian PDF
are A=1.3, b=2.8 and x = I − 〈I〉 where I = |F |2 is
the intensity and 〈I〉 is the average intensity over all the
images included in the evaluation.

In the regime where many rogue waves are observed
and the number of vortex interactions are frequent, we
observe long tailed PDFs typical of non-Gaussian inten-
sity distributions. These can be approximated extremely
well by a Weibull distribution

f(x) = A
(x

b

)c−1

exp
(

−
x

b

)c

. (2)

In Fig. 6 the fitting parameters for the Weibull curve
are A=1.4, b=0.42, c=0.62 and again x = I − 〈I〉.
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