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Model Predictive and Linear Quadratic Gaussian Control of a
Wind Turbine

S. Hur∗and W. E. Leithead

Department of Electronic and Electrical Engineering, University of Strathclyde, Glasgow, G1 1XZ, UK

SUMMARY

Model Predictive and Linear Quadratic Gaussian controllers are designed for a 5MW variable-speed pitch-
regulated wind turbine for three operating points – below rated wind speed, just above rated wind speed, and
above rated wind speed. The controllers are designed based on two different linear dynamic models (at each
operating point) of the same wind turbine to study the effect of utilising different control design models (i.e.
the model used for designing a model-based controller) on the control performance. The performance of the
LQG controller is enhanced by improving the robustness, achieved by replacing the Kalman filter with a
modified Luenberger observer, whose gain is obtained to minimise the effect of uncertainty and disturbance.
Copyright c© 2015 John Wiley & Sons, Ltd.

Received . . .
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1. INTRODUCTION

There is much interest in renewable energy due to concern over the environment, and wind is
considered to be one the most promising renewable energy sources, partly because wind is an
infinite and free source of energy with no harmful waste products. A wind turbine converts the
kinetic energy from the wind into mechanical energy. It is then converted into electricity, which
is subsequently transmitted to a power grid. The turbine components responsible for these energy
conversions are the rotor, consisting of the turbine hub and blades, and the nacelle mounted on top
of the tower as shown in Figure 1. Inside the nacelle of a variable speed wind turbine [1, 2] are
low-speed shaft, gearbox, high-speed shaft, and the generator. The low-speed shaft is coupled with
the hub and the high-speed shaft drives the generator; that is, the wind blows onto the blades, the
hub rotates due to aerodynamic forces, and this rotation is then sent through the gearbox to increase
the generator speed. This paper is concerned with a 5MW variable-speed pitch-regulated horizontal-
axis wind turbine, having three blades. The yaw mechanism, which is responsible for orientating the
turbine towards the wind, is ignored in this paper.

The design of a control system for regulating variable-speed wind turbines involves both the
determination of the operating strategy of the controller and its synthesis [3, 4]. The synthesis of the
controller design is concerned with designing single input single output (SISO) linear controllers
at different operating points. More specifically, linear controllers are often designed at 4 operating
points, in the lowest wind speeds (mode 1), in intermediate wind speeds (mode 2), in higher, but still
below rated, wind speeds (mode 3) and in above rated wind speeds (mode 4). Note that the rated
wind speed is a pre-determined wind speed, at which the limit on power output to the wind turbine
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Figure 1. Main elements of a horizontal-axis variable-speed wind turbine.

(5MW in this paper), is reached. When the wind speed exceeds rated, the excess power in the wind
is discarded to prevent the turbine from overloading.

Operating in mode 4 and switching between modes 3 and 4 are more challenging, and thus this
paper focuses on modes 3 and 4. Since the operation is weakly nonlinear in mode 3, designing a
linear controller at any mean wind speed within mode 3 suffices. In mode 4, as the operation is more
strongly nonlinear, more than one linear controller is designed, and the one that performs best is
chosen when designing the full nonlinear controller at a later stage. In mode 3, the linear controller
is designed at a mean wind speed of 10 m/s. In modes 4, the linear controllers are designed at
mean wind speeds of 12 and 14 m/s here. In each mode, a linear controller can be designed using
any appropriate control method. The most common one stems from PI control [5, 6] (usually with
significant modifications to incorporate fatigue reduction, anti-windup, etc.). In this paper, Model
Predictive Control (MPC) [7, 8] and Linear Quadratic Gaussian (LQG) [9, 10] control are tested.
Note that other control methods such as H∞ [11] could also be equally appropriate. To design such
model-based linear controllers in each mode, a control design model [12] is required in each mode;
that is, based on the control design model, a linear controller is designed and its performance tested
by application to the control design model before being applied to the turbine by being de-tuned.

The strategy of the controller design is responsible for switching between the linear controllers.
To determine the strategy, the implementation issues such as accommodation of the variation in
plant dynamics over the operational envelope, switching transients and actuator constraints, which
are most relevant to the application, need to be identified and the controller realisation, which
best resolves them, selected [3]. It is related to nonlinear aspects of the plant dynamics and an
investigation of the global behaviour of the system is required. The linear controllers, as a result of
the synthesis of the controller design, are combined by an appropriate switching method, yielding a
global nonlinear controller that covers the full operational envelop, i.e. full envelop controller.

It is feasible to utilise MPC/LQG for both the synthesis and strategy, but strong nonlinearity
that the wind turbines exhibit poses a significant challenge, resulting in a number of issues that
need to be addressed. The controllers at each operating point have not only different gains, but also

Copyright c© 2015 John Wiley & Sons, Ltd. Optim. Control Appl. Meth. (2015)
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MPC AND LQG OF A WIND TURBINE 3

different structures; that is, the controller in mode 2 exploits generator torque to regulate the power
output while the controller in mode 3 pitches the blades to limit the power output. It thus requires
complete switch-over of the controllers. The use of both generator torque and pitch in each mode
is not feasible due to the physical constraints. Also, due to actuator constraints, switching has to be
bumpless, and other issues such as fatigue reduction, anti-windup, etc., needs to be dealt with. Some
research has been conducted [13, 14, 15] addressing these challenges, but this topic is beyond the
scope of this paper, and MPC/LQG is only exploited for the synthesis here similarly to [16, 17, 18];
that is, linear MPC/LQG controllers are designed in each mode and subsequently gain-scheduled.

The overall control design steps in operation and pursued in this study can be briefly summarised
as (Steps 1, 2 and 3 have thus far been described):

1. Development of linear control design models at each mode
2. Design of control synthesis based on the design models from Step 1 at each mode
3. Design of control strategy (i.e., gain-scheduling of the controllers from Step 2, incorporation

of a drive-train damper, etc.) to obtain a full-envelope controller
4. Detuning of the full-envelope controller (from Step 3) by application to the high-fidelity aero-

servo-elastic model, developed DNV-GL Bladed (Bladed), from which the linear models have
been derived

5. Detuning and application of the full-envelope controller (from Step 4) to the real-life turbine
that the aero-elastic model represents

This paper focuses only on Step 2 – and Step 1 as a prerequisite– and the following steps are
beyond the scope of this paper. For Step 2, two different control design models are tested for
designing MPC and LQG controllers to investigate the effect of exploiting different control design
models on the control performance. Both control design models are linear models of the Supergen
Wind Energy Technologies Consortium (Supergen) 5MW exemplar turbine.

The first linear model is obtained from the (nonlinear) Bladed model of the turbine using its
built-in linearisation tool. Linear models are, in fact, identified as it generates input and state
perturbations, and records the resulting variations in the state derivatives and selected outputs to
finally derive a linearised model of the turbine in state-space form [19].

The second model is obtained by linearising the nonlinear model provided in [5, 20], with
the parameters of the same turbine, by the use of the standard linearisation technique via
symbolic differentiation (Taylor series expansion). Both linearised models are implemented in
Matlab/SIMULINK R© to allow the controller design to be performed in Matlab/SIMULINK.
Throughout the paper, the Bladed linearised models are referred to as “Models A”, and the linearised
models via symbolic differentiation “Models B”. These linearised models could be provided by the

authors upon request; please contact the corresponding author.

When model-based controllers are designed based on a model (Step 1), the controllers are first
tuned by application to the controller design model (Step 2). For the same reason here, when Models
A are exploited as the controller design models, the controllers are tuned by application to Models
A, and when Models B are exploited as the controller design models, the controllers are tuned by
application to Models B.

Thus the controllers designed based on Models A (i.e. Models A-based controllers) and the
controllers designed based on Models B (i.e. Models B-based controllers) are independent, and
there is no direct connection between them. However, merely for the purpose of comparing the
performance of these two controllers, the controllers need to be applied to another linearised model
that is neither Model A nor Model B. Unfortunately, such a model is not available, and at this stage
of the controller design the nonlinear turbine model, from which Models A and B have been derived,
cannot be utilised as the strategy part (Step 3) of the controller design has not been dealt with. If the
linear controllers are applied to the nonlinear model without completing Step 3, when the nonlinear
model requires the linear controller to switch around at 12 m/s (the rated wind speed), the process
would become unstable. For example at 12 and 14 m/s, the nonlinear model would require the linear
controller to provide negative control action, i.e., pitch angle, that is not physically feasible, leading
to actuator saturation. Also, drive-train and tower dampers [5] need to be designed as part of Step
3, or the process could become unstable.

Copyright c© 2015 John Wiley & Sons, Ltd. Optim. Control Appl. Meth. (2015)
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Figure 2. Point wind speed, effective wind speed, and rotational sampling.

Instead, the controllers are compared by both being applied to Models A, which have been chosen
over Models B for being higher order, thereby possessing closer complexity to the real-life turbine.
Since only Models B-based controllers would unfairly experience process-model mismatch, Models
A-based controllers are expected to produce superior results, but, for designing MPC controllers,
this is not true as demonstrated in Section 3; that is, the Models B-based controllers outperform
Models A-based controllers despite the disadvantage.

It is also important to point out that, for designing MPC controllers, when both the controllers
are applied to Models B, the Models B-based controllers outperform Models A-based controllers.
This outcome is less significant as the Models B-based controllers have an edge over the Models
B-based controllers since the Models A-based controllers are the only controllers experiencing
process-model mismatch. Hence, this test in which both the controllers are applied to Models B
is not presented in this paper, and only the test in which both the controllers are applied to Models
A is reported.

For LQG controllers, different conclusions are drawn in Section 4.
The first contribution of this paper is to investigate the effect of the control design model on the

performance of the controllers, i.e. the effect of utilising Models A in comparison to Models B
when designing MPC and LQG controllers. The second contribution of this paper is to improve the
performance of the LQG controller by replacing the Kalman filter with a modified version of the
Luenberger observer [21, 22], whose gain is obtained to reduce the effect of uncertainty and noise.

The wind speed model, which is required for simulations, Models A, and Models B are reported
in Section 2. Sections 3 and 4, respectively, report on the MPC and LQG controllers including some
simulation results. In Section 5, the performance of the LQG controller is improved by replacing the
Kalman filter with a modified version of the Luenberger observer. Conclusions are drawn in Section
6.

2. WIND SPEED AND LINEAR MODELS

2.1. Wind Speed Model

The wind is stochastically varying with time and continuously interacting with the rotor. The
effective wind speed is wind speed averaged over the rotor area such that the spectrum of
aerodynamic torque remains unchanged. It can be obtained by filtering the point wind speed. The
power spectrum for the point wind speed is the Von Karman spectrum [23]

Sv(ω) = 0.476σ2
v

Lt

V̄

(1 + (ωLt

V̄
)2)5/6

(1)

where Lt = 6.5h denotes the turbulence length of the spectrum, h height, and V̄ mean wind speed.
σv represents turbulence intensity and is assumed to be 18.34, 17.03, and 16.10 % for mean wind
speeds of 10, 12, and 14 m/s, respectively.
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MPC AND LQG OF A WIND TURBINE 5

The Von Karman spectrum can be approximated by the following Dryden spectrum:

SD(ω) =
1

2π

b2d
ω2 + α2

d

(2)

The corresponding point wind speed is modelled by coloured noise as follows:

vd =
V̄ bd
s+ ad

ξ (3)

where ξ denotes Gaussian noise.
For (3), the values of ad and bd, for which the Dryden spectrum best approximates the Von

Karman spectrum, are

ad = 1.14
V̄

Lt
(4)

bd = σv

√
2ad (5)

The effective wind speed is the wind speed actually experienced by the wind turbine. It can be
modelled by spatially filtering point wind speed using the following filter:

Sp(s) =

√
2(
√
2 + σ(V̂ )s)

(
√
2 +

√
ασ(V̂ )s)(

√
2 + σ(V̂ )s/

√
α)

(6)

α is set to 0.55 [24], and V̂ denotes the average wind speed over a period of time equivalent to a
small number of rotations of the rotor. It can be derived by filtering the point wind speed through
the first order filter

Sf (s) =
1

τs+ 1
(7)

τ is the period over which the wind speed is averaged, and σ(V̂ ) is given as follows:

σ =
γR

V̂
(8)

where γ denotes the turbulent wind field decay factor and is set to 1.3 [24]. The result from filtering
the point wind speed through the spatial filter is shown for a mean wind speed of 10 m/s in Figure
3. The figure depicts the effective wind speed (in blue) together with the point wind speed (in red).
Similar results can be obtained for mean wind speeds of 12 and 14 m/s. The rotor radius (R) and the
height of the Supergen 5MW turbine are 60 m and 90 m, respectively.

Nonlinear rotational sampling [25] is subsequently added to the effective wind speed as illustrated
in Figure 2. The equations for the rotational sampling (∆ω) are summarised as follows:

∆ω =
1.25

s/(3Ωo) + 1.25
xr (9)

where Ωo denotes the operating rotor speed (i.e., 1.23 rad/s), xr is given as

xr = ǫ1cos(3Ωot) + ǫ2cos(3Ωot) (10)

and

ǫ̇1 = −aǫ1 + bξ1 (11)

ǫ̇2 = −aǫ2 + bξ2 (12)

ξ1 and ξ2 denote Gaussian white noise, and a and b are, respectively, set to 0.4 and 3.
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Figure 3. Point wind speed (red) vs effective wind speed (blue) vs effective wind speed with linear rotational
sampling (green) at a mean wind speed of 10 m/s.

Throughout the paper, linearised turbine models are exploited to simulate the turbine. Hence, to
be consistent, the wind speed model (including rotational sampling) is also linearised. The linear
transfer functions for mean wind speeds of 10, 12, and 14 m/s, i.e. from ξ to vn in Figure 2, are,
respectively, as follow:

F10(s) =
3.962s3 + 3.673s2 + 1.564s+ 0.187

s5 + 0.899s4 + 15.930s3 + 6.273s2 + 0.632s+ 0.010
(13)

F12(s) =
3.963s3 + 4.423s2 + 2.281s+ 0.328

s5 + 0.978s4 + 15.990s3 + 7.533s2 + 0.910s+ 0.017
(14)

F14(s) =
3.964s3 + 5.183s2 + 3.154s+ 0.532

s5 + 1.058s4 + 16.050s3 + 8.793s2 + 1.239s+ 0.028
(15)

The wind speeds as a result of exploiting these transfer functions (i.e. effective wind speed with
rotational sampling) are depicted in comparison to the point and effective wind speed in Figure 3.

2.2. Wind Turbine Linear Models A (Bladed Linearisation)

Dynamic models are linearised from the (nonlinear) Bladed model of Supergen 5MW exemplar
turbine for three different operating points, below rated wind speed (10 m/s), just above rated wind
speed (12 m/s), and above rated wind speed (14 m/s). In state space form, they have the following
form:

∆ẋ(t) = A∆x(t) +B∆uT (t)

∆y(t) = C∆x(t) +D∆uT (t) (16)

where A, B, C, and D denote the state space matrices. ∆y(t) ∈ R
n, ∆uT (t) ∈ R

m and ∆x(t) ∈ R
r

(where n and m are respectively 10 and 3 at each mean wind speed, and r is 30 at 10 m/s and 26 at
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Figure 4. Linearised wind turbine model.

12 and 14 m/s) are defined as

∆y(t) = y(t)− yop(t) (17)

∆uT (t) = uT (t)− u
T ,op(t) (18)

∆x(t) = x(t)− xop(t) (19)

y(t), uT (t), and x(t) represent the output, input, and states, respectively, and yop(t), uT,op(t),
and xop(t) are the operating points around which the models are linearised. The resulting
Matlab/SIMULINK simulation model is depicted in Figure 4.

The outputs for the linear models, as shown in the figure, are

1. Measured generator speed
2. Nacelle x-acceleration (also known as tower acceleration)
3. Nacelle y-acceleration
4. Generator torque
5. Blade pitch angle
6. Blade pitch rate
7. Nominal pitch angle
8. Electrical power
9. Generator speed

10. Rotor speed
11. Blade flapwise bending moment
12. Blade edgewise bending moment

The inputs are
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Figure 5. Frequency responses of Model A and Model B at a mean wind speed of 10 m/s.

1. Wind speed
2. Pitch angle
3. Generator torque demand

When designing a generator torque controller for the below rated model, wind speed among the
inputs, uT (t), is considered to be a disturbance, d(t) ∈ R

1, and pitch angle set to zero modifying
(16) as follows.

∆ẋ(t) = A∆x(t) +Bu∆u(t) +Bd∆d(t)

∆y(t) = C∆x(t) +Du∆u(t) +Dd∆d(t) (20)

where the input, u(t) ∈ R
1, is now generator torque (or generator torque demand) only.

When designing pitch controllers for the just above and above rated models, u(t) would be pitch
angle only, wind speed is treated as a disturbance, and generator torque is set to a constant value.
This is also manifested in Figure 4. Therefore, MPC and LQG controllers utilise the following
single-input, single-output (SISO) equations:

∆ẋ(t) = A∆x(t) +Bu∆u(t)

∆yg(t) = Cg∆x(t) +Du,g∆u(t) (21)

where yg(t) ∈ R
1 denotes generator speed, and Du,g zero.

To wit, the torque (at 10 m/s) and pitch (at 12 and 14 m/s) controllers control generator speed by
varying generator torque demand and by active pitching, respectively.

As previously mentioned, these models are referred to as Models A throughout the paper. The
open-loop frequency responses of these models for mean wind speeds of 10, 12, and 14 m/s are
depicted in Figures 5 and 6, in comparison to the open-loop frequency responses of the models
introduced in the following section (i.e. Models B).

2.3. Wind Turbine Linear Models B (linearisation via symbolic differentiation)

The nonlinear model equations provided in [20] are linearised via symbolic differentiation in this
section. The parameters of the same turbine as the one used to derive Models A (i.e. Supergen 5MW

Copyright c© 2015 John Wiley & Sons, Ltd. Optim. Control Appl. Meth. (2015)
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Figure 6. Frequency responses of Models A and Models B at mean wind speeds of 12 and 14 m/s.

exemplar turbine) are exploited. Being only 12th order for at 10 m/s and 11th order at 12 and 14
m/s, they are much simpler models than Models A. As depicted in Figure 4, in below rated wind
speed (i.e., at 10 m/s) the process input is torque demand, while in above rated wind speed (i.e., at
12 and 14 m/s) the process input is pitch demand. Hence, it is a plausible outcome that the orders
of the models are different. These models are also in state space form, and referred to as Models
B throughout the paper, as previously mentioned. The open-loop frequency responses for 10, 12,
and 14 m/s are depicted in Figures 5 and 6, in comparison to the open-loop frequency responses of
Models A from Section 2.2.

The inputs are same as Models A, but the outputs are

1. Measured generator speed for 10 m/s, 12 m/s, and 14 m/s
2. Nacelle x-acceleration (also known as tower acceleration) for 12 and 14 m/s.

3. MODEL PREDICTIVE CONTROL

MPC is briefly revised in this section and designed based on both Models A and Models B to
investigate the controllers’ dependence on the choice of linear models used during the design
process. As mentioned in Section 1, applying both of the controllers to a neutral model that is neither
Models A nor Models B would provide a fair comparison, but such a model is not available for this
study. Applying the Models A and B-based controllers to Models A and B, respectively, would be
the normal approach when designing the controllers but would not provide the comparison. Instead,
the Models A-based controllers are applied to Models A, and the Models B-based controllers to
also Models A. Since both controllers are applied to Models A, which are chosen over Models B
due to being higher order, only the Models B-based controllers unfairly experience process-model
mismatch. These experiments are to show that despite process-model mismatch, the Models B-based
controllers outperform the Models A-based controllers, demonstrating importance of the choice of
the design models. Moreover, the differences between these models provide a degree of process-
model mismatch to test the robustness of design.

Copyright c© 2015 John Wiley & Sons, Ltd. Optim. Control Appl. Meth. (2015)
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10 S. HUR AND W. E. LEITHEAD

3.1. Controller Description

For the following state-space model, which can be obtained by discretising the continuous model in
(21),

xk+1 = Axk +Buuk (22)

yk+1 = Cgxk+1 (23)

the prediction equations for MPC can be derived as [26] (note that the D state-space matrix is zero
since no direct feedthrough is allowed in MPC)
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where ny denotes prediction horizon, and u
→

can be rewritten as




















uk+1

uk+2

...

uk+nu−1

uk+nu

uk+nu

...

uk+nu




















︸ ︷︷ ︸

u
→

(26)

MPC requires the prediction horizon, ny, not to be smaller than the control horizon, nu; that is,
nu ≤ ny.

The control solution can be attained with minimising the following objective function: [27]

J =
∥
∥
∥r − Hu

→
− Px̂k − Ld

∥
∥
∥

2

2

+ λ
∥
∥
∥u
→

∥
∥
∥

2

2

(27)

subject to the following constraints

ui ≤ ui ≤ ui (28)

∆ui ≤ ∆ui ≤ ∆ui (29)
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Figure 7. MPC based on Models A and Models B; generator speed (control output); time responses for mean
wind speeds of 10 m/s, 12 m/s, and 14 m/s.

where ui denotes the upper limit on ui, ui the lower limit, r the reference signal, L a vector of
ones, whose size is simply dependent on the prediction horizon, and ∆ui the rate of change of
input. The offset d = y − ŷ is included to give unbiased predictions and offset correction. The first
‖.‖2

2
term is to reduce the reference tracking error and the second ‖.‖2

2
term to reduce the control

action. Therefore, λ provides a trade-off between these two conflicting problems. x̂k comes from
the internal model here, but a state estimator such as the Kalman filter could also be utilised. For the
optimisation, the Matlab function, “quadprog” (the interior-point-convex algorithm) is employed.

3.2. Implementation, Tuning, and Simulation

The tuning parameters can be summarised as follows:

• At a mean wind speed of 10 m/s, for the Models A-based controllers, prediction horizon, ny,
is set to 25, control horizon, nu, to 25, and control weighting, λ, to 3× 10−18. For the Models
B-based controllers, prediction horizon, ny, is set to 30, control horizon, nu, to 30, and control
weighting, λ, to 5.5× 10−8.

• At a mean wind speed of 12 m/s, for the Models A-based controllers, prediction horizon, ny,
is set to 25, control horizon, nu, to 25, and control weighting, λ, to 1× 10−4. For the Models
B-based controllers, prediction horizon, ny, is set to 30, control horizon, nu, to 30, and control
weighting, λ, to 1.4× 10−2.

• At a mean wind speed of 14 m/s, for the Models A-based controllers, prediction horizon,
ny, is set to 25, control horizon, nu, to 25, and control weighting, λ, to 1.0× 10−12. For the
Models B-based controllers, prediction horizon, ny, is set to 30, control horizon, nu, to 30,
and control weighting, λ, to 6.3× 102.

The measured outputs (i.e. generator speed) are depicted in Figure 7. The time responses for
the Models B-based controllers at each mean wind speed are satisfactory in terms of fluctuation,
remaining well below 12 %, which is often within the controller design specification. High
frequency oscillation is observed throughout the simulations, especially at mean wind speeds of
12 and 14 m/s. The bottom subplot, i.e. 14 m/s, is rescaled at around 68 s in Figure 8. It oscillates at

Copyright c© 2015 John Wiley & Sons, Ltd. Optim. Control Appl. Meth. (2015)
Prepared using ocaauth.cls DOI: 10.1002/oca



12 S. HUR AND W. E. LEITHEAD

64 66 68 70 72

116

117

118

119

120

121

122

123

124

125

time (s)

G
e
n
e
ra

to
r 

S
p
e
e
d
 (

ra
d
/s

)

Figure 8. Rescaled plot of Figure 7; MPC based on Models B; generator speed (control output); time
responses for mean wind speeds of 14 m/s.
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Figure 9. MPC based on Models A and Models B; torque demand (10 m/s) and pitch (12 and 14 m/s) (control
input); time responses for mean wind speeds of 10 m/s, 12 m/s, and 14 m/s.

frequency of approximately 10 rad/s, corresponding to the drive-train mode, which can be removed
through the use of a drive-train damper [5]. This is explained in more detail with the corresponding
power spectra in Figures 10 and 11 below.
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Figure 10. MPC based on Models A and Models B for a mean wind speed of 10 m/s; open loop frequency
responses; Ts=0.2 s (sampling time) for Models A and Ts=0.02 s for Models B.

Although the fluctuations remain well below 12 % also for the Models A-based controllers,
sustained oscillation (at frequency of around 5.5 rad/s) can be observed at mean wind speeds of
12 and 14 m/s. It would result in increased loads on the rotor that would propagate down the power-
train and impact on the drive train components, e.g. gearbox and shaft. The cause is explained with
the frequency response in Figure 11.

Torque demand and pitch angle, i.e. the control inputs, are also presented in Figure 9. As
mentioned previously, the turbine operates in mode 3 at 10 m/s and in mode 4 at 12 and 14 m/s.
Generator speed is controlled by varying torque in mode 3 and by pitching in mode 4. Fluctuation
on the control inputs is not as limited as generator speed, the control output. Pitch angle ranges from
-5◦ to 35 ◦ for the turbine considered in this paper.

The open-loop frequency responses for the Models A-based controllers demonstrate poorer
results in comparison to the Models B-based controllers as depicted in Figures 10 and 11. The open-
loop system of a controller in this paper is referred to as the product of the process (i.e. the turbine
model) and the controller (open-loop). With information obtained from the open-loop responses
[21], such as gain crossover frequency, phase margin, etc, the response of the close-loop system,
such as the size of the control action, sensitivity to uncertainty, stability, etc, can be speculated.

The Models A-based controllers are more sensitive to sampling time, Ts, and 0.2 s needs to
be chosen to improve the results. The vertical lines that appear at 20 rad/s in the figures are due to
discretisation with this sampling time. The Models B-based controllers are less sensitive to sampling
time, and a smaller sampling time, i.e. 0.02 s, could successfully be exploited.

At a mean wind speed of 10 m/s, Figure 10 depicts that the gain crossover frequencies of the
Model A and B-based controllers are approximately 4 and 0.6 rad/s, respectively. Note that Control
System ToolboxTM in Matlab is exploited here for producing open-loop frequency responses in bode
plots throughout the paper. Due to the characteristics of wind, the controllers should be tuned to give
a gain crossover frequency in the range of 0.6 to 2 rad/s [28]. Gain crossover frequencies over this
range may lead to large control action, hence actuator saturation, especially in high wind speeds.
Thus, the Models A-based controller is too aggressive. Gain crossover frequencies below this range
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Figure 11. MPC based on Models A and Models B at mean wind speeds of 12 and 14 m/s; open loop
frequency responses; Ts=0.2 s (sampling time) for Models A and Ts=0.02 s for Models B.

could lead to too slow control action. Phase margins for the Model A and B-based controllers are
respectively some 90◦ and 75◦, indicating that their closed-loop responses would be stable – note
that the MPC controllers incorporate a positive feedback.

For mean wind speeds of 12 and 14 m/s, Figure 11 illustrates that the gain crossover frequencies
are approximately 1 rad/s for both controllers. However, the peaks from the Models A-based
controllers remain mostly above 0 dB slightly, indicating that the controllers would be sensitive to
uncertainty and noise. The peaks at around 5.5 rad/s in particular cause the sustained oscillation that
is observed in the time response depicted in Figure 7. The controllers should also be tuned to ensure
that the peaks at high frequencies are kept as small as possible. The responses of the Models B-
based controllers demonstrate significantly improved results keeping the peaks at 5.5 rad/s below 0
dB, hence no sustained oscillation at the specific frequency is visible in the time response. However,
the peaks crossing over 0 dB slightly at around 10 rad/s cause the oscillations at 10 rad/s as briefly
discussed above with Figures 7 and 8. As mentioned previously, this peak is normally removed by
subsequently applying a drive-train damper, but it is not discussed in this paper.

Phase margins are around 61◦ (12 m/s) and 78◦ (14 m/s) for the Models A-based controllers and
12◦ (12 m/s) and 60◦ (14 m/s) for the Models B-based controllers, indicating that their closed-loop
responses would be stable.

3.3. Summary

Both the Models A and B-based controllers are applied to Models A. Models A are chosen due to
being higher order than Models B. Only the Models B-based controllers thus experience process-
model mismatch. Nonetheless, the results presented in this section demonstrate that the Models
A-based controllers are more aggressive at a mean wind speed of 10 m/s and significantly more
sensitive to uncertainty and noise and more aggressive than the Models B-based controllers at mean
wind speeds of 12 and 14 m/s. The peaks crossing over 0 dB in the open-loop frequency response in
Figure 11 cause sustained oscillation at a specific frequency as demonstrated in the time response in
Figure 7. Models B are significantly simpler models than Models A, and Models A have a tendency
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to cause the controllers to become over-aggressive, i.e. active at higher frequencies, and to lack
robustness. It is thus recommended that the control design model be kept as simple as possible
when designing MPC controllers.

4. LINEAR QUADRATIC GAUSSIAN CONTROL

LQG is composed of a Kalman filter and a Linear Quadratic Regulator (LQR) [29, 30]. The Kalman
filter estimates the states, and LQR controls the process using these state estimates. LQG is briefly
revised in this section and designed based on both Models A and Models B to investigate the
controllers’ dependence on the choice of linear models used during the design process as with the
MPC controllers introduced in Section 3.

The Models A-based controllers are applied to Models A, and the Models B-based controllers
also to Models A. Consequently, only the Models B-based controllers experience process-model
mismatch. This test is to investigate if the Models B-based controllers, being designed based on
a simpler model, would outperform the Models A-based controllers despite the disadvantage (i.e.,
process-model mismatch), equally to designing the MPC controllers in Section 3. Moreover, the
process-model mismatch allows the robustness of design to be tested.

4.1. Controller Description

4.1.1. Kalman Filter Given the following continuous model from (20) with additional noise terms

ẋ(t) = Ax(t) +Buu(t) + w(t)

yg(t) = Cgx(t) +Du,gu(t) + v(t) (30)

where u(t) denotes the input, w(t) white process noise, and v(t) measurement noise, the following
assumptions could be made:

E(w(t)) = E(v(t)) = 0 (31)

E(w(t)wT (t)) = QN (32)

E(v(t)vT (t)) = RN (33)

E(w(t)vT (t)) = NN (34)

The state estimate, x̂(t), that minimises the following steady-state error covariance can be
constructed [31].

P = lim
t→∞

E((x(t)− x̂
T (t))(x(t)− x̂

T (t))) (35)

The optimal solution is the Kalman filter with the following equation:

˙̂x(t) = Ax̂(t) +Bu(t) +K(ŷ(t)− y(t)) (36)

The Kalman filter gain, K, is derived by solving an algebraic Riccati equation as follows: [32]

K = (PCT + (Bd(QNDT
d +NN )))(RN +DdNN +NT

NDT
d DdQNDT

d )
−1 (37)

The estimator utilises the inputs, u(t), and the measured output, y(t), to generate the output
estimates, ŷ(t), and state estimates, x̂(t). K(ŷ(t)− y(t)) in (36) continuously corrects ŷ(t) to cause
the estimator to track y(t) more closely.

4.1.2. Linear Quadratic Regulator LQR solves the following optimisation problem offline:

Jlq =

∫ ∞

0

x̂
T (t)Qx̂(t) + uT (t)Ru(t)dt (38)
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Figure 12. LQG based on Models A and Models B; time responses at mean wind speeds of 10, 12, and 14
m/s; the controllers based on Models B become unstable at mean wind speeds of 12 and 14 m/s, hence no

plots are included.

where Q is an r × r symmetric positive-definite matrix and R an m×m symmetric positive-definite
matrix. The first term is to reduce the reference tracking error and the second term is to reduce the
control action.

The optimal state-feedback LQR controller for minimising the performance index, Jlq, in (38) is
a simple matrix gain of the following form:

u(t) = −Lx̂(t) (39)

where x̂ is the state estimates from the Kalman filter, and L is a m× n matrix as follows:

L = (DT
uQDu +R)−1(BTP +DT

uQC) (40)

P is the unique positive-definite solution to the following algebraic Riccati Equation:

ATP + PA+ CTQC − (PB + CTQDu)(D
T
uQDu +R)−1(BTP +DT

uQC) = 0 (41)

4.2. Implementation, Tuning, and Simulation

Tuning parameters for the LQG controllers are as follows:

• At a mean wind speed of 10 m/s, for the Model A-based controllers, Q is set to the identity
matrix I and R to 2× 10−7. For the Model B-based controllers, Q is set to I , and R to
7× 10−8.

• At a mean wind speed of 12 m/s, for the Models A-based controllers, Q is set to CT
g Cg and

R set to 2× 102. For the Models B-based controllers, Q is initially set to CT
g Cg, Q(10, 10)

subsequently modified to Q(10, 10)× 105, and R to 5× 102.
• At a mean wind speed of 14 m/s, for the Models A-based controllers, Q is initially set to CT

g Cg

and R to 4× 102. For the Models B-based controllers, Q is initially set to CT
g Cg, Q(10, 10)

subsequently modified to Q(10, 10)× 105, and R set to 6× 102.
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Figure 13. LQG based on Models A and Models B; torque demand (10 m/s) and pitch (12 and 14 m/s)
(control input); time responses for mean wind speeds of 10 m/s, 12 m/s, and 14 m/s.
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Figure 14. LQG based on Models A and Models B at a mean wind speed of 10 m/s; open loop frequency
responses.

Figure 12 demonstrates that the time responses at a mean wind speed of 10 m/ produced by
both the Models A and Models B-based controllers are satisfactory. At mean wind speeds of 12
and 14 m/s, only the Models A-based controllers perform satisfactorily, and the Models B-based
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Figure 15. LQG based on Models A and Models B at mean wind speeds of 12 and 14 m/s; open loop
frequency responses.

controllers become unstable – hence no plots are displayed for the Models B-based controllers.
Note, however, that the Models B-based controllers provide satisfactory results when applied to
Models B, meaning that the Models A-based controllers do not necessarily outperform Models B-
based controllers although the results are not included here. The corresponding control action, i.e.
torque at 10 m/s and pitch at 12 and 14 m/s, is depicted in Figure 13.

The open-loop frequency response depicted in Figure 14 suggests that the Model A-based
controller would be too slow having a low gain crossover frequency, i.e. less than 0.4 rad/s, while the
gain crossover frequency of the Models B-based controllers is within the range – it was explained
in Section 3 that the gain crossover frequency should be in the range of 0.6 to 2 rad/s due to the
characteristics of wind. It was also previously explained that the peaks crossing over 0 dB at around
10 rad/s, corresponding to the drive-train mode, can be removed by subsequently applying a drive-
train damper. Phase margins for the Model A and Model B-based controllers are around 49◦ and 92◦,
respectively, indicating that their closed-loop responses would be stable – note that LQG controllers
incorporate a positive feedback.

For mean wind speeds of 12 and 14 m/s, Figure 15 illustrates that the gain crossover frequencies
for the Models A and B-based controllers are ideally 1.3 and 0.7 rad/s, respectively. The peaks
produced by the Model B-based controllers in Figure 15 cross over 0 dB, and the frequency
responses do not roll off at higher frequencies, indicating that the controllers would be sensitive
to uncertainty and noise. The time responses in Figure 13 agree with these frequency responses;
that is, the Model B-based controllers become unstable (hence, no plots for the Model B-based
controllers are included in Figure 12), while the Model A-based controllers produce satisfactory
time responses, as anticipated from the frequency responses. Phase margins are around 90◦ for both
the controllers, indicating that their closed-loop responses would be stable.

4.3. Summary

Both the Models A and B-based controllers are applied to the Models A-based controllers. Models
A are chosen as they are higher order, hence being closer to the nonlinear model in complexity. As
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a result, only the Models B-based controllers experience process-model mismatch. The simulations
carried out in this section are to investigate if the Models B-based controllers, being based on
simpler models, would provide superior results to the Models A-based controllers as with the MPC
controllers designed in Section 3.

The Models A-based controllers perform satisfactorily, having no process-model mismatch, while
the Models B-based controllers do not cope with process-model mismatch and fail to produce
satisfactory results, not to mention improved results, especially at mean wind speeds of 12 and
14 m/s. Nonetheless, it cannot be concluded that the Models A-based controllers outperform the
Models B-based controllers since only the Models B-based controllers experience process-model
mismatch and they perform fine when applied to Models B, although the results are not presented
here.

The LQG controllers are difficult and time-consuming to tune, and it has a tendency to be
over-aggressive, i.e., active at higher frequencies, and lacks robustness. Their properties are less
dependent on the choice of linear model used during the design process in comparison to the MPC
controllers.

5. EXTENSION TO LINEAR QUADRATIC GAUSSIAN

In Section 4, the controllers designed based on Models B are aggressive and unstable for 12 and 14
m/s. In this section, the controllers are stabilised by improving the robustness.

The LQG controller is a model-based controller that includes an internal model. The Kalman
filter included in the controller design acts as the internal model (with “Kalman gain”) providing
the controller (i.e., Linear Quadratic Regulator) with the state estimation. The Kalman filter assumes
that the disturbance model can be identified online or given in advance. When the disturbance model
can be neither identified online nor given in advance, or when any other uncertainty, which includes
unknown disturbance, modelling error, and faults, emerges, the performance of the Kalman filter,
and hence the LQG controller, could degrade significantly.

In this section, the Kalman filter is replaced by an observer whose gain is obtained to minimise
the effect of uncertainty and disturbances, thereby improving the robustness of the controller. The
resulting controllers are referred to as “observer-based LQR controllers” throughout this paper.

As mentioned previously, the observer design is based on the well-known Luenberger observer
and could be applied to any other control algorithms that utilise an estimator or an internal model
such as Inverse Model Control (IMC), MPC, etc. It would also be interesting to discover how other
types of observers, such as Unknown Input Observer (UIO) [33], would improve the original LQG
controller in future.

5.1. Observer Design

The mathematical description of the observer is as follows:

˙̃x(t) = Ax̃(t) +Buu(t) +K(yg(t)− ỹg(t))

ỹg(t) = Cgx̃(t) (42)

where yg(t) and ỹg(t) denote the measurement of generator speed and the estimate, respectively,
and u(t) represents the control action. The term involving the observer gain, K, should correct the
observer estimate continuously to cause ỹ1(t) to follow y1(t) more closely. This implies that the
effects of process-model mismatch and disturbances can be reduced by optimising K. Derivation of
an optimal gain, K is described here.

5.1.1. Observer Gain in Frequency Domain Process-model mismatch and disturbances may be
described by additional terms, d̃1(t) ∈ R

r and d̃2(t) ∈ R
1, and (20) can be modified as follows:

ẋ(t) = Ax(t) +Buu(t) + d̃1(t)

yg(t) = Cgx(t) + d̃2(t) (43)
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Subtracting ˙̃x(t) in (42) from ẋ(t) in (43), the equation for the residual r(t) = yg(t)− ỹg(t) can
be derived as follows: [33]

ė(t) = (A−KC)e(t) + d̃1(t)−Kd̃2(t)

r(t) = Ce(t) + d̃2(t) (44)

where

ė(t) = ẋ(t)− ˙̃x(t) (45)

Taking the Laplace transform of (44), the following equation can be obtained:

r(s) = C(sI −A+KC)−1d̃1(s) + (I −KC(sI −A+KC)−1)d̃2(s) (46)

Therefore, the effects of process-model mismatch and disturbances can be minimised using the
following performance indices:

J1(K) =
∥
∥C(sI −A+KC)−1

∥
∥
∞

(47)

J2(K) =
∥
∥I − C(sI −A+KC)−1K

∥
∥
∞

(48)

where ‖.‖∞ denotes L∞ norm, also known as infinity norm. By minimising J1(K) and J2(K), the
maximums of the largest singular values of C(sI −A+KC)−1 and I −KC(sI −A+KC)−1,
which correspond to the peak gains of the frequency response, are minimised. Hence, the effects of
process-model mismatch and disturbances can be minimised.

The problem now is to find K such that J1(K) and J2(K) are minimised. However, it is likely that
K causes instability. This can be prevented by parameterising K via the Eigenstructure Assignment
(EA) method [33] summarised as follows.

Note that, for improved results, the vectors d̃1(t) and d̃2(t) may be reconstructed to approximate
the effect of disturbances and process-model mismatch. If some bounds on these signals can be
estimated then good robustness may be incorporated in the design by adding these as constraints to
the minimisation problems of the performance indices. However, this approach is not pursued here
but good performance is still achieved by carefully tuning the controller.

5.1.2. Parameterisation via Eigenstructure Assignment Method When conducting an optimisation
to minimise J1(K) and J2(K) from (47) and (48), it is important to ensure that the stability of
the observer is always guaranteed when no disturbance or fault is present, and this leads to more
complex constrained optimisation problem. To guarantee the stability condition, the use of the
EA method, which parameterises K, is suggested. The method has an advantage of allowing the
eigenvalues in predefined regions and is summarised as follows. It is assumed that the eigenvalues
are always real for the sake of brevity. Since the observer design problem is the “dual problem” of
the controller design, vi is the ith eigenvector of AT − CTKT corresponding to the ith eigenvalue
λi as follows:

(AT − CTKT )vi = λivi (49)

vi = −(λiI −AT )−1CTwi (50)

where wi = KT vi. There are now two design parameters, wi and λi instead of one design parameter
K. These design parameters still do not guarantee the stability of the observer.

The eigenvalue λi, one of the design parameters, is generally not required to be placed at a specific
point in the s or z-planes but rather in a predefined region to satisfy the stability condition. This in
turn provides more relaxed design freedom as follows:

λi ∈ [Li, Ui] (51)
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where Li and Ui (i = 1, . . . n), respectively, denote the upper and lower bounds. By defining an
equation for the eigenvalue as

λi = Li + (Ui − Lisin
2(zi)) (52)

zi ∈ R (i = 1, . . . , n) becomes a design parameter instead of λi. Any zi subsequently guarantees
the stability condition.

Finally, the two design parameter vectors W and Z have been defined and the performance indices
in (47) and (48) can be rewritten as follows:

J1(W,Z) =
∥
∥C(sI −A+KC)−1

∥
∥
∞

(53)

J2(W,Z) =
∥
∥I − C(sI −A+KC)−1K)

∥
∥
∞

(54)

where

K = [WV −1]T (55)

Having redefined the optimisation problems as finding Z and W from finding K only, the stability
condition is always guaranteed.

Since, two performance indices (53) and (54) need to be minimised simultaneously, a multi-
objective optimization technique is required. The use of an evolutionary algorithm that exploits
the genetic algorithm is proposed here to solve the multi-objective optimization problem. An
evolutionary algorithm, or more specifically, a genetic algorithm, is used here for solving this
multi-objective optimisation problem. It computes for an optimisation solution by performing a
parallel search of the solution space or the objective function as opposed to the calculation of
cost function gradients. An advantage is that it is relatively straightforward to implement. Several
analytical methods for solving this multi-objective optimisation problem have also been proposed,
which include the optimisation via singular value decomposition [34] and the optimisation via
optimal projection [35], but we opt for the multi-objective based on genetic algorithm. It would
be interesting to see how this multi-objective optimisation performs against the analytical methods,
but the comparison is beyond the scope of this paper.

A genetic algorithm can be combined with the method of inequalities and moving boundaries
method to set up a multi-objective optimisation. For the genetic algorithm part, the Genetic
Algorithm toolboxTM in Matlab is exploited. The method of inequalities and moving boundaries
method are utilised to provide the genetic algorithm toolbox with an appropriate objective function.
The details of the algorithm is not presented in this paper, but readers could refer to [36, 37], instead.

5.2. Implementation, Tuning, and Simulation

In Section 4, the LQG controllers fail to produce satisfactory results at mean wind speeds of 12 and
14 m/s. The observer-based LQR controllers introduced in this section, to improve the controllers’
robustness, are designed based on Models B and applied to Models A for 12 and 14 m/s. The
differences between these models provide a degree of process-model mismatch to test the robustness
of design.

Tuning parameters for the LQR controllers are Q and R in (41). The parameters are set as follows:

• At a mean wind speed of 12 m/s, Q is initially set to 9× 102I , Q(4, 4) is subsequently
modified to Q(4, 4)× 107 and R is set to 2× 108.

• At a mean wind speed of 14 m/s, Q is initially set to 9× 102I , Q(7, 7) is subsequently
modified to Q(7, 7)× 107 and R is set to 2× 108.

The open-loop frequency responses for 12 and 14 m/s are depicted in Figures 16 and 17 (in
blue) in comparison to the LQG controllers (green) that fail to stabilise in Section 4. Figure 16
depicts that, for 12 m/s, the observer-based LQR controllers would be less sensitive to uncertainty
and noise because all the peaks remain below 0 dB and the response rolls off at high frequencies.
The gain crossover frequency remaining just below 1 rad/s indicates that the controllers would be
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Figure 16. observer-based LQR based on Models B at a mean wind speed of 12 m/s; open loop frequency
responses.
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Figure 17. observer-based LQR using Models B at a mean wind speed of 14 m/s; open loop frequency
responses.

neither too aggressive nor too slow. Moreover, phase margins are around 95◦ (12 m/s) and 90◦ (14
m/s), indicating that their closed-loop responses would be stable. Figure 17 demonstrates similar
results, and, therefore, the same conclusions could be drawn for 14 m/s. The measured outputs (i.e.,
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Figure 18. observer-based LQR using Models B; generator speed (control output); time responses at mean
wind speeds of 12 and 14 m/s.

generator speed) are depicted in Figure 18. In contrast to the performance of the original LQG
controllers depicted in Figure 12, the time responses of the observer-based LQR controllers for both
12 and 14 m/s are satisfactory as the fluctuations remain below 12 %.

5.3. Summary

The original LQG controllers based on Models B produce poor results, particularly for mean wind
speeds of 12 and 14 m/s in Section 4. In this section, improved results are obtained by enhancing the
robustness of the controllers. It is achieved by replacing the Kalman filter with an observer whose
gain is obtained to minimise the effect of uncertainty and disturbance. The results demonstrate
significant improvement achieved by the observer-based LQR controllers. The methodology could
be applicable to any control algorithms that utilise a state estimator or internal model, such as
MPC, Inverse Model Control, etc.. Furthermore, it is exploited in [33] in a similar approach to
design a fault monitoring system. Moreover, the extra computation is performed offline, i.e. during
the initialisation stage, and only takes a few seconds on an Intel R© CoreTMi7-4790K @4.00 GHz
machine.
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Figure 19. observer-based LQR using Models B; pitch (control input); time responses at mean wind speeds
of 12 and 14 m/s.

6. CONCLUSIONS

Two linear dynamic models (including wind speed models) of the Supergen 5MW exemplar turbine
are constructed for three operating points, below rated wind speed (10 m/s), just above rated wind
speed (12 m/s) and above rated wind speed (14 m/s). One is obtained in Bladed using its linearisation
toolbox, and the other using the standard linearisation method (i.e., via symbolic differentiation). In
order to investigate the MPC and LQG controllers’ dependence on the choice of linear model used
during the design process, the controllers designed based on Models A and B. The performance is
tested by applying both the controllers, i.e., Models A-based and Models B-based controllers, to
Models A. Models A are chosen since no other model is available and Models A are higher order,
thereby being closer to the nonlinear higher order model (from which the linear models are derived)
in complexity.

When designing MPC controllers, since only the Models B-based controllers experience process-
model mismatch, the Models A-based controllers are expected to provide improved results.
However, Models B-based controllers outperform Models A-based controller despite the handicap.
Also, the differences between these models provide a degree of process-model mismatch to test
the robustness of design. Models B, being simpler models, are less aggressive and more robust to
uncertainty and noise than Models B-based controllers. It is therefore recommended that the control
design models be kept as simple as possible when designing MPC controllers for wind turbines.

The LQG controller is difficult and time-consuming to tune than the MPC controllers. Its
properties are less dependent on the choice of linear model used during the design process in
comparison to the MPC controllers. The controller tuned based on Models B demonstrate poorer
results but it is due to process-model mismatch. The application of the Models B-based controllers
to Models A show that the controller has a tendency to be over-aggressive, i.e., active at higher
frequencies, and lacks robustness.

The last part of this paper improves the LQG controller in order to improve its robustness,
especially at higher frequencies. The Kalman filter included in the original LQG design is replaced
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by an observer whose gain is designed to minimise the effects of uncertainty and noise. The results
demonstrate significant improvement, and both the frequency and time responses produce improved
results in comparison to the original LQG design. The extra computation required for the observer
design is performed offline and only takes a few seconds on an Intel R© CoreTMi7-4790K @4.00 GHz
machine.
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