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Abstract—Prognostics aims to improve asset availability 

through intelligent maintenance actions. Up-to-date remaining 

useful life predictions enable the optimization of maintenance 

planning. Verification of prognostics techniques aims to analyze 

if the prognostics application meets the design requirements. 

Online prognostics applications depend on the data-gathering 

hardware architecture to perform correct prognostics 

predictions. Accordingly, when verifying prognostics 

requirements compliance, it is necessary to include the effect of 

hardware failures on prognostics predictions. In this paper we 

investigate the use of formal verification techniques for the 

integrated verification of prognostics applications including 

hardware and software components. Focusing on the 

probabilistic model-checking approach, a case study from the 

power industry shows the validity of the proposed framework. 
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I. INTRODUCTION 

Prognostics is an emerging field focused on the estimation 
of the Remaining Useful Life (RUL) of assets. Based on the 
available data and/or degradation equations, prognostics 
models predict the RUL of assets deployed in some specific 
conditions [1]. Prognostics predictions enable the optimization 
of maintenance strategies by scheduling intervention when 
failure is imminent, while minimizing risk of failure in service. 

Different prognostics fields remain under study such as the 
verification of prognostics models [2]. For correct maintenance 
planning, verification of prognostics applications is crucial so 
as to avoid undesirable consequences. 

The prognostics engineering literature suggests prognostics 
metrics for the evaluation and verification of the correctness, 
timeliness, and confidence of prognostics models [2-4]. The 
quantification of these metrics requires the implementation of 
their logic with each prognostics application on a case-by-case 
basis. A model-independent requirement verification technique 
would assist in doing this task semi-automatically for any 
prognostics model. 

Additionally, most of the proposed approaches for 
prognostics verification focus on the verification of the 
prediction software, but the effect of hardware failures on the 
prognostics predictions is barely taken into account. For online 
prognostics applications, hardware failures can cause data loss 

or corruption and these failures affect directly the performance 
of the prognostics application. In a continuously operating 
environment, it may not be possible to handle corrupt data or 
outages. Accordingly, the implementation environment adds 
uncertainties to online prognostics predictions. 

Based on these ideas we investigate the use of model-
checking for the formal verification of prognostics 
requirements including the effect of data gathering hardware 
architectures. Model-checking is a formal verification approach 
which emerged from the computer science community to 
design formally verified safety-critical systems [5]. The 
approach relies on a state-based model of the system and a set 
of design requirements to be verified against the probabilistic 
model. Based on the model-checking engine, all possible 
variants of the model are analyzed to see if there is any 
possible path that violates design requirements. If any of the 
stated requirements are violated, a counterexample is generated 
showing the path that violates the requirement. Interestingly, 
model-checking has been extended towards probabilistic 
concepts with probabilistic model-checking, so that the design 
requirements can be analyzed quantitatively [6]. 

The main contribution of this paper is the proposal of an 
integrative formal verification framework for prognostics. Not 
only the verification of software requirements, but the effect of 
the failures of data-gathering hardware architecture on the 
prognostics predictions are taken into account. 

The remainder of this paper is organized as follows: 
Section II overviews the related work, Section III reviews 
probabilistic model-checking concepts, Section IV presents the 
proposed approach, Section V applies the approach to a 
realistic case study, and finally Section VI draws conclusions 
and identifies future work. 

II. RELATED WORK 

Verification of prognostics models is a challenging issue. In 
fact, many prognostics models are black box techniques which 
hinder the verification process (e.g., neural networks [7]). The 
lack of effective verification mechanisms delays the adoption 
of prognostics applications in industry. 

Generally, prognostics verification research has been 
focused on the definition of prognostics metrics [2-4]. These 
metrics focus on the assessment of the prognostics model with 
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respect to the accuracy, uncertainty, and timing requirements. 
The main prognostics metrics are [2, 3]: prediction horizon: 
time difference between prediction and ground truth; g-そ 
accuracy: evaluates if the prediction falls within g-bounds of 
accuracy at a specific time instant tそ; relative accuracy: an 
error measure of the RUL prediction relative to the ground 
truth; and convergence: quantifies the rate at which any 
previous metric improves with time. See [2, 3] for the complete 
definitions and examples. More recent literature has updated 
these metrics to include the effect of uncertainties [4]. To 
evaluate the timeliness of the prediction, more general metrics 
such as false positives and false negatives can also be used.  

The key underlying assumptions of these metrics are the 
availability (and correctness) of the ground truth data and the 
ideal operation of the data-gathering architecture. If ground-
truth data is not available, average reliability figures may be 
used. However, for online applications the effect of hardware 
failures on prognostics predictions also needs to be included. 

Probabilistic model-checking has been used for different 
applications [5, 6]. However, so far its use in the prognostics 
arena has been scarce. To the best of authors’ knowledge only 
[8] used (non-probabilistic) model-checking within 
prognostics. The approach presents a real-time sensor and 
software health management implementation. Model-checking 
is used for monitoring of the correct operation of sensor data. 

Despite these advances, verification of prognostics 
applications remains difficult. The use of prognostics metrics is 
a possible solution, but their quantification depends on the 
specific prognostics application. Accordingly, they are 
implemented on a case-by-case basis for each application.  

Probabilistic model-checking provides an alternative 
framework for the formal verification of probabilistic systems. 
If the connection between prognostics and probabilistic model-
checking is well-defined, it is possible to quantify prognostics 
metrics automatically from probabilistic model-checking. 

III. PROBABILISTIC MODEL-CHECKING 

In probabilistic model-checking, the system behavior is 
specified with a state-based probabilistic model. In parallel, 
requirements are defined using formal specification logic, and 
these are verified against the state-based specification. The 
specification of the probabilistic model and requirements 
depend on a probabilistic model-checking tool. In our approach 
we will focus on the PRISM model-checker because it 
provides flexibility for requirements specification [6]. 

A. State-Based Probabilistic Model 

In order to model prognostics specifications with state-
based probabilistic models, we need a formalism which enables 
the specification of the continuous-time behavior of the system. 
Besides, to integrate prognostics results without loss of 
information, ideally we need the specification of any 
Probability Density Function (PDF) for state transitions. 
However, prognostics results depend on the specific technique 
[1]: some techniques provide the PDF of the RUL, while others 
provide deterministic RUL estimations. Therefore, this 
requirement depends on the specific technique. Furthermore, 

the specification of deterministic transitions is necessary to 
model time-specific event occurrences, e.g., prediction times. 

PRISM enables the specification of the following 
probabilistic state-based models [6]: continuous and discrete 
time Markov chains, Markov decision processes, probabilistic 
timed automata, and stochastic multi-player games. Among 
these models, Continuous-Time Markov Chains (CTMC) is the 
formalism that best suits our needs. The use of CTMC limits 
the probabilistic behavior to the exponential distribution. 
Although this can be seen as a limitation from the prognostics 
engineering side, this property makes CTMC efficient for the 
verification of formal requirements. Other more powerful 
formalisms (e.g., Stochastic Activity Networks [9]) enable the 
specification of the stated requirements, but there is no 
probabilistic model-checking approach for these models. 

A CTMC model is defined as a 5 tuple C = (S, sinit, R, L, E) 
where [10], 

 S is a finite set of states. 

 sinit א S: is the initial state.   

 R: S x S  Թ≥0, is the rate matrix, where R(s, s’) is the 
rate of transitioning form state s to s’. 

 L: S  2AP is a labelling with atomic propositions. 

 E μ S s Թ ≥0 is the exit rate function 

The transition rate matrix assigns rates to each pair of states 
and these rates are used as parameters for the exponential 
distribution. The transition between the state s and s’ occurs 
when R(s, s’) > 0 and the probability of the transition from s to 
s’ in t units is: Pr(t) = 1 – exp(-R(s, s’)∙t). A timed path of C is a 
finite or infinite sequence (s0t0,s1t1,…,sntn) where ti א Թ >0 for 
each i ≥ 0. Alternatively, it is possible to approximate 
deterministic distributions in CTMC via the Erlang 
distribution. 

B. Reactive Modules and Formal Property Specification 

PRISM is based on the reactive modules formalism [6]. A 
CTMC model is represented as the parallel composition of a 
number of (possibly) interactive modules, where each module 
contains variables and commands.  

A command in PRISM includes actions and guards 
specified as: [action] guard  probability: update. Actions 
force events of different modules to synchronize and guards 
specify conditions that must be satisfied to execute the 
command. In addition, rewards are defined by associating real 
values to the states or transitions of the PRISM modules. 

The verification of CTMC models is done using the 
Continuous Stochastic Logic (CSL) [10]. CSL formulas are 
interpreted over the states of the CTMC model to check if the 
stated formula is satisfied. PRISM enables the specification of 
timing, occurrence, and ordering of events as well as transient 
and steady-state probabilities. These formulas represent 
properties that the model must satisfy which can be interpreted 
as prognostics design requirements. 

The main operators for property specification are: P for the 
specification of the probability that the observed execution of 



the model satisfies a given specification; S to compute steady 
state probabilities; and R to express reward-based properties. 

The P operator is used in conjunction with temporal 
operators defined over a state or a path of the CTMC model.  

The main operators for temporal state or path specifications 
are: G for properties that needs to be satisfied globally; F for 
properties that become true eventually, X for properties that 
become true in the next state, and U for properties that are not 
satisfied until another property is true.  

The S operator is used to reason about the steady-state 
operation and it has no timed variants. As for the R operator it 
is possible to combine it with F for reachability properties, C 
for cumulative properties, and I for instantaneous properties.  

 All these operators have time bounded extensions [10]. 
Table I displays some examples of formal properties expressed 
in CSL and their informal meaning. For the formal reasoning 
over the CTMC model see [10]. 

TABLE I.  EXAMPLES OF CSL PROPERTIES 

IV. VERIFICATION OF PROGNOSTICS REQUIREMENTS  

VIA PROBABILISTIC MODEL-CHECKING 

The design of prognostics applications includes different 
challenges throughout the design process. To design 
prognostics applications systematically a design methodology 
is needed which integrates prognostics model selection and 
verification in the design process [1]. The prognostics model 
selection enables the systematic selection of prognostics 
algorithms based on strategic decision points. After the model 
selection, it is necessary to verify if the prognostics model 
meets the design requirements. 

We have identified two possibilities to verify prognostics 
models using probabilistic model-checking: (a) specify the 
prognostics algorithm using a state-based specification and 
express prognostics requirements as a part of the model; or (b) 
define a generic and reusable prognostics pattern using a state-
based specification and use prognostics results extracted from 
any prognostics model to update transitions between states. We 
focus on the second alternative to implement a technique-
independent verification framework. The implementation of 
this technique requires regular updating of the state-based 
specification model using prognostics results. 

The goal of the proposed verification approach is the 
verification of prognostics requirements at independent and 
dependent design layers. When designing a prognostics system, 
we differentiate three design layers (L): L1: data-gathering 
hardware; L2: prognostics software model; and L3: RUL 

prediction of the asset. Requirements for each of these design 
stages will be different. However, their inter-dependencies 
need to be taken into account (i.e., L1L2L3). 

Throughout the paper we will assume that L1 fails in 
omission failure mode, i.e., hardware fails to provide the data 
when required. This failure will prevent the prognostics 
software model (L2) from making predictions and accordingly, 
intelligent condition-based maintenance actions cannot be 
undertaken for the asset under study (L3). 

Fig. 1 shows the generic pattern for prognostics parameter 
specification. Dashed connections and states indicate 
dependencies between modules. The data gathering module 
depends on the application-specific hardware. Depending on 
whether the data gathering architecture has failed or not, it will 
affect the prediction module. In Fig. 1 this is represented with 
an equivalent failure and repair rate of the hardware system 
failure (そHW_PHM, たHW_PHM). In reality, these failure and repair 
rates will be computed using reliability analysis techniques 
such as Fault Tree analysis [11].  

The prediction module will transit between prediction 
(Pred) and failed states (HW down) according to the 
deterministic prediction instants of the prognostics module (Tp) 
and failure rates of the data gathering architecture respectively. 

The asset module transits among working (W), failed (F), 
and maintenance (M) states. If there is no prognostics 
information, the maintenance time TM is defined by the default 
preventative maintenance: TM  = TPrev, where TPrev designates the 
preventive maintenance rate. However, if prognostics 
predictions are performed, TM is defined with the RUL 
estimation of prognostics. Typically it will be defined by a 
safety factor SF so that TM = RUL-SF.  

The failure of the data-gathering architecture causes the 
failure of the prediction block and accordingly, prognostics 
predictions cannot be performed without real up-to-date data. 

Fig. 2 shows the overall verification approach. The core of 

# CSL Meaning 

1 P=? [F<t prop1] Prob. of prop1 is true eventually before t 

2 P=? [G[t1,t2] prop1] 
Prob. globally prop1 is true within the 

time instant [t1,t2] 

3 P=? [prop1 U<=t prop2] 
Prob. of prop2 not being true until prop1 

is not true in the interval [0,t] 

4 R{“oper”}=? [C<t] Expected cumulative operational time 

5 R{“time”}=? [F prop ] Time accumulated until prop is satisfied 

 
Fig. 1. State-based prognostics system specification. 



the proposed approach is the prognostics system specification 
depicted in Fig. 1. For the specification of the data-gathering 
architecture, the Minimal Cut Set (MCS) is defined [11] in 
conjunction with the specification of failure and repair rates of 
components. The MCS defines the minimal and sufficient 
combination of component failures that cause the failure of the 
hardware architecture. As for the prognostics algorithm 
specification, prediction time Tp, RUL estimation, and default 
preventive maintenance period Tprev are taken into account. 
Finally, for the specification of the asset behavior, failure and 
repair rates of the asset under study are considered (そAsset, たAsset 
respectively). Note that the failure rate of the asset will 
determine the ground truth estimation. 

The state-based specification in Fig. 1 is specified in 
PRISM and requirements over this model are specified using 
CSL in the same modelling formalism. The final outcome of 
the proposed framework is the probabilistic argumentation of 
whether the prognostics application meets design requirements. 
If these are not satisfied, the prognostics algorithm prediction 
needs to be reconsidered – assuming that the data gathering 
architecture is a fixed design decision. 

V. CASE STUDY 

Transformers are the most expensive asset in the power 

system, and critical to meeting network performance targets. 

Therefore condition monitoring and prognostics of 

transformers can lead to a cost-effective maintenance strategy. 

A. Data Gathering Architecture 

A common data-gathering architecture for transformers 
uses temperature and current sensors. It may comprise a 
redundant data gathering scheme, employing a High Frequency 
Network (HFN) where available (e.g., critical substations), 
supported by the lower frequency SCADA network. The 
SCADA platform includes a Remote Terminal Unit (RTU), in 
the substation reporting to the central Master Station (MS). 
Both SCADA and higher frequency data are then archived, 
using a system such as a PI Historian (cf. Fig. 3). 

Fault Tree analysis of the architecture in Fig. 3 identified 
the combination of component failures that lead the system to 
failure. This is the Minimal Cut Set (MCS) function: 

MCS = PI 員 (T1咽T2) 員 (I1咽I2) 員 [HFN咽(MS員Net員RTU)] 

where PI indicates the failure of the PI Historian, Ti and Ii 
indicate the failure of the ith temperature and current sensor 
respectively, Net indicates the failure of the network, and HFN, 
MS, and RTU indicate the failure of the identified components. 
For the analysis we have used hypothetical failure and repair 
rates (cf. Table II). 

TABLE II.  FAILURE AND REPAIR RATES OF HARDWARE COMPONENTS 

Component そ (m-1) µ (m-1) 

PI Historian 0.001 0.25 

Temp. sensor, current sensor, MS, RTU, HFN 0.01 0.25 

Network 0.0001 0.25 

B. Transformer Prognostics Model 

Transformer aging involves deterioration of the paper 
insulation due to temperature. One model which relates 
temperature to rate of change of paper degradation is found in 
IEEE Standard C57.91, which defines an aging acceleration 
factor. This can be rearranged to give a particle filter process 
model, by converting it into a recurrence relation for remaining 
paper life [12]: 

Lt =  Lt-1 - exp(15000/383-15000/(273+eHt
)) +  ut 

where t is the time index in hours, Lt is RUL at time t, eHt
 is 

hotspot temperature at time t, and ut is process noise.  

Based on this model we have performed predictions at 
different time instants (Tp) obtaining RUL estimations shown 
in Fig. 4. 

Ideally the probabilistic model-checker would have the 
possibility to model the PDF obtained with the particle filter 
because it includes uncertainty information [13]. However, 
given that there is no possibility to model these PDFs directly, 
we adopt the following approximation そ≈1/RUL [14]; that is, 
we use the mean RUL with maximum and minimum deviation 
as the failure rate parameters of the exponential distribution. 

The RUL prediction results (in months) are as follows: Tp1 

(36m) = 992.5 ± 2.89 m; Tp2 
(40m) = 987 ± 2.64 m;   

Fig. 2. Probabilistic model-checking of prognostics systems. 

 

Fig. 3. Prognostics data-gathering architecture. 



Tp3 
(44m) = 984.3 ± 2.76 m; and Tp4 

(48m) = 979.3 ± 3.05 m. 

See [12] for more details of the particle filter model. 

C. Prognostics Requirements Verification 

Focusing on the verification of the hardware, these are the 
analyzed requirements: “Probability that eventually the data 
gathering system fails in [0, T]” implemented via property #1 
in Table I; “Probability that the MCS occurs for more than T 
time units in order to avoid intermittent failures”; analyzed via 
property #2 in Table I; and “Probability that the first failure of 
the HW architecture occurs in the [T, T+Ttransient] period” 
verified via property #3 in Table I. Fig. 5 shows the results. 

As Fig. 5 confirms, the difference between transient and 
permanent failures is evident, i.e., transient failures lead to 
higher failure probabilities. Besides, we can see that the first 
failure occurrence is more likely to occur in the first half of the 
time interval. These results can trigger redesign decisions – for 
instance, if the designer needs to postpone the first failure 
occurrence, different hardware modules will be needed to 
satisfy the design requirements. 

With probabilistic model-checking we can evaluate other 
properties of interest such as maximum operation time of the 
data gathering architecture. This is defined using PRISM filter 
command as follows [6]: filter(max, R{"time"}=? [F 
MCS],!MCS); which informally means: maximum time to 
failure (MCS) starting from an operative state (!MCS). This 
property gives as a result of 92.72 months using the values in 
Table II. 

As for the metrics of the prognostics prediction module, we 

will focus on false positive and negative metrics. Recall that 
we have assumed that the data-gathering hardware architecture 
fails in omission failure mode. Accordingly, the effect of the 
omission failure on the particle filtering and prognostics 
metrics needs to be taken into account. 

The hardware omission failure provokes the incorrect RUL 
prediction of the particle filtering model. Namely, the RUL 
prediction will not include the aging that has occurred during 
the data outage. Therefore, this failure will have a direct effect 
on false negative metric. That is, it will increase the false 
negative rate because the particle filter will predict an RUL 
which does not take into account data outage periods. 

In PRISM rewards can be used to define False Positive 
(FP) and False Negative (FN) metrics. Assuming that asset=1 
identifies failed state, asset=2 identifies maintenance state, 
pred=2 identifies HW down state in the prediction module (cf. 
Fig. 1), and CIX identifies the confidence interval of the event 
X, where X = {FP, FN}; we define the following conditions  

FN =  (asset=1)咽 (RUL+Tp > そAsset - CIFN) 員 (pred=2) 

FP =  (asset=2)咽 (そAsset - (RUL+Tp)) >  CIFP) 

When reward equations (3) and (4) are satisfied by the 
PRISM reactive modules they will be increased by a unit. For 
the asset under study we have used the following reliability 
figures (in months)μ そAsset = 1/1038 m-1 (transformer failure 
rate); たm = 0.1 m (maintenance time); たAsset = 1 m (repair time);  
CIFP = 10 m; CIFN = 4 m, and SF = 4 m (safety factor). 

After specifying false positive and false negative rewards in 
PRISM using the property #4 in Table I, Fig. 6 shows the 
obtained results. If the designer has a threshold for an 
acceptable rate of FP and FN events this would lead to 
identifying if these values are acceptable or not.  

For the FP events we have used different prediction results 
from Fig. 4 including their deviation. After the prediction at the 
time instant Tp = Tp2

-dev, the prognostics predictions become 

accurate enough to avoid false positive event occurrences.  

For the FN event we have used the mean RUL prediction value 
at Tp1

. Fig. 6 (b) shows the difference between the metric with 

and without the hardware omission failure effect. The 
incorporation of the hardware omission failure enables 
accounting for the uncertainties that may arise in the 
prognostics application environment. 

The failure of the data gathering hardware architecture 
causes the failed prognostics prediction, which in turn leads to 
a non-updated maintenance schedule at the asset level. We 
have defined a penalty function using rewards which includes 
the effect of downtimes (i.e., asset in failed state sums 1 while 
in maintenance state sums 0.5), FP, and FN events multiplied 
by the probability of failure of the asset under study.  

Fig. 7 shows the effect of different failure rates of both the 
transformer and data gathering hardware failures. Apart from 
the uncertainty arising from the application context, the 
specification of the failure rate of the asset (or ground truth) 

 

Fig. 4. Transformer RUL prediction at different prediction times Tp. 

 

Fig. 5. HW requirements verification. 



has uncertainties too. The ground truth is estimated either 
under some specific conditions or it is an average failure 
behavior. Therefore, when using it as a reference failure model, 
uncertainty estimations should be included. In this case study 
uncertainty in the ground truth value makes little difference. 

VI. CONCLUSIONS & FUTURE WORK 

In this paper we have investigated the use of probabilistic 
model-checking for the formal verification of prognostics 
system requirements. 

The main limitation for the specification of prognostics 
results is the lack of mechanisms to model any probability 
density function. This would allow the inclusion of the 
uncertainty information of the prognostics results and 
evaluation of other prognostics metrics. 

However, the advantages offered by the proposed 
framework are worth considering: (a) a single integrative 
framework including hardware/software behavior; (b) formal 
specification of the system behavior and design requirements 
for an exhaustive formal verification; and (c) mechanisms to 
automate the quantification of prognostics metrics and compare 
prognostics approaches with respect to design requirements. 

Future work for the formal verification of prognostics 
requirements will include the analysis of other probabilistic 
techniques to overcome the stated limitations and automating 

the connection between prognostics and formal models.  
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Fig. 6. Prognostics prediction module metrics: (a) false positive; (b) false negative. 

 

 

Fig. 7. Asset penalty function. 



 


