
Strathprints Institutional Repository

Aizpurua Unanue, Jose Ignacio and Catterson, Victoria M. (2015) On the

use of probabilistic model-checking for the verification of prognostics

applications. In: 2015 IEEE Seventh International Conference on

Intelligent Computing and Information Systems, 2015-12-12 - 2015-12-14,

Ain Shams University. ,

This version is available at http://strathprints.strath.ac.uk/55320/

Strathprints is designed to allow users to access the research output of the University of

Strathclyde. Unless otherwise explicitly stated on the manuscript, Copyright © and Moral Rights

for the papers on this site are retained by the individual authors and/or other copyright owners.

Please check the manuscript for details of any other licences that may have been applied. You

may not engage in further distribution of the material for any profitmaking activities or any

commercial gain. You may freely distribute both the url (http://strathprints.strath.ac.uk/) and the

content of this paper for research or private study, educational, or not-for-profit purposes without

prior permission or charge.

Any correspondence concerning this service should be sent to Strathprints administrator:

strathprints@strath.ac.uk

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Strathclyde Institutional Repository

https://core.ac.uk/display/42592717?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://strathprints.strath.ac.uk/
mailto:strathprints@strath.ac.uk

On the use of Probabilistic Model-Checking for the

Verification of Prognostics Applications

Jose Ignacio Aizpurua and Victoria M. Catterson, Senior Member, IEEE

Institute for Energy and Environment, Department of Electronic and Electrical Engineering

University of Strathclyde

Glasgow, United Kingdom

jose.aizpurua@strath.ac.uk, v.m.catterson@strath.ac.uk

Abstract—Prognostics aims to improve asset availability

through intelligent maintenance actions. Up-to-date remaining

useful life predictions enable the optimization of maintenance

planning. Verification of prognostics techniques aims to analyze

if the prognostics application meets the design requirements.

Online prognostics applications depend on the data-gathering

hardware architecture to perform correct prognostics

predictions. Accordingly, when verifying prognostics

requirements compliance, it is necessary to include the effect of

hardware failures on prognostics predictions. In this paper we

investigate the use of formal verification techniques for the

integrated verification of prognostics applications including

hardware and software components. Focusing on the

probabilistic model-checking approach, a case study from the

power industry shows the validity of the proposed framework.

Keywords—prognostics; verification; metrics; model checking

I. INTRODUCTION

Prognostics is an emerging field focused on the estimation
of the Remaining Useful Life (RUL) of assets. Based on the
available data and/or degradation equations, prognostics
models predict the RUL of assets deployed in some specific
conditions [1]. Prognostics predictions enable the optimization
of maintenance strategies by scheduling intervention when
failure is imminent, while minimizing risk of failure in service.

Different prognostics fields remain under study such as the
verification of prognostics models [2]. For correct maintenance
planning, verification of prognostics applications is crucial so
as to avoid undesirable consequences.

The prognostics engineering literature suggests prognostics
metrics for the evaluation and verification of the correctness,
timeliness, and confidence of prognostics models [2-4]. The
quantification of these metrics requires the implementation of
their logic with each prognostics application on a case-by-case
basis. A model-independent requirement verification technique
would assist in doing this task semi-automatically for any
prognostics model.

Additionally, most of the proposed approaches for
prognostics verification focus on the verification of the
prediction software, but the effect of hardware failures on the
prognostics predictions is barely taken into account. For online
prognostics applications, hardware failures can cause data loss

or corruption and these failures affect directly the performance
of the prognostics application. In a continuously operating
environment, it may not be possible to handle corrupt data or
outages. Accordingly, the implementation environment adds
uncertainties to online prognostics predictions.

Based on these ideas we investigate the use of model-
checking for the formal verification of prognostics
requirements including the effect of data gathering hardware
architectures. Model-checking is a formal verification approach
which emerged from the computer science community to
design formally verified safety-critical systems [5]. The
approach relies on a state-based model of the system and a set
of design requirements to be verified against the probabilistic
model. Based on the model-checking engine, all possible
variants of the model are analyzed to see if there is any
possible path that violates design requirements. If any of the
stated requirements are violated, a counterexample is generated
showing the path that violates the requirement. Interestingly,
model-checking has been extended towards probabilistic
concepts with probabilistic model-checking, so that the design
requirements can be analyzed quantitatively [6].

The main contribution of this paper is the proposal of an
integrative formal verification framework for prognostics. Not
only the verification of software requirements, but the effect of
the failures of data-gathering hardware architecture on the
prognostics predictions are taken into account.

The remainder of this paper is organized as follows:
Section II overviews the related work, Section III reviews
probabilistic model-checking concepts, Section IV presents the
proposed approach, Section V applies the approach to a
realistic case study, and finally Section VI draws conclusions
and identifies future work.

II. RELATED WORK

Verification of prognostics models is a challenging issue. In
fact, many prognostics models are black box techniques which
hinder the verification process (e.g., neural networks [7]). The
lack of effective verification mechanisms delays the adoption
of prognostics applications in industry.

Generally, prognostics verification research has been
focused on the definition of prognostics metrics [2-4]. These
metrics focus on the assessment of the prognostics model with

This work was supported by the EPSRC through grant number

EP/M008320/1.

mailto:jose.aizpurua@strath.ac.uk
mailto:v.m.catterson@strath.ac.uk

respect to the accuracy, uncertainty, and timing requirements.
The main prognostics metrics are [2, 3]: prediction horizon:
time difference between prediction and ground truth; g-そ
accuracy: evaluates if the prediction falls within g-bounds of
accuracy at a specific time instant tそ; relative accuracy: an
error measure of the RUL prediction relative to the ground
truth; and convergence: quantifies the rate at which any
previous metric improves with time. See [2, 3] for the complete
definitions and examples. More recent literature has updated
these metrics to include the effect of uncertainties [4]. To
evaluate the timeliness of the prediction, more general metrics
such as false positives and false negatives can also be used.

The key underlying assumptions of these metrics are the
availability (and correctness) of the ground truth data and the
ideal operation of the data-gathering architecture. If ground-
truth data is not available, average reliability figures may be
used. However, for online applications the effect of hardware
failures on prognostics predictions also needs to be included.

Probabilistic model-checking has been used for different
applications [5, 6]. However, so far its use in the prognostics
arena has been scarce. To the best of authors’ knowledge only
[8] used (non-probabilistic) model-checking within
prognostics. The approach presents a real-time sensor and
software health management implementation. Model-checking
is used for monitoring of the correct operation of sensor data.

Despite these advances, verification of prognostics
applications remains difficult. The use of prognostics metrics is
a possible solution, but their quantification depends on the
specific prognostics application. Accordingly, they are
implemented on a case-by-case basis for each application.

Probabilistic model-checking provides an alternative
framework for the formal verification of probabilistic systems.
If the connection between prognostics and probabilistic model-
checking is well-defined, it is possible to quantify prognostics
metrics automatically from probabilistic model-checking.

III. PROBABILISTIC MODEL-CHECKING

In probabilistic model-checking, the system behavior is
specified with a state-based probabilistic model. In parallel,
requirements are defined using formal specification logic, and
these are verified against the state-based specification. The
specification of the probabilistic model and requirements
depend on a probabilistic model-checking tool. In our approach
we will focus on the PRISM model-checker because it
provides flexibility for requirements specification [6].

A. State-Based Probabilistic Model

In order to model prognostics specifications with state-
based probabilistic models, we need a formalism which enables
the specification of the continuous-time behavior of the system.
Besides, to integrate prognostics results without loss of
information, ideally we need the specification of any
Probability Density Function (PDF) for state transitions.
However, prognostics results depend on the specific technique
[1]: some techniques provide the PDF of the RUL, while others
provide deterministic RUL estimations. Therefore, this
requirement depends on the specific technique. Furthermore,

the specification of deterministic transitions is necessary to
model time-specific event occurrences, e.g., prediction times.

PRISM enables the specification of the following
probabilistic state-based models [6]: continuous and discrete
time Markov chains, Markov decision processes, probabilistic
timed automata, and stochastic multi-player games. Among
these models, Continuous-Time Markov Chains (CTMC) is the
formalism that best suits our needs. The use of CTMC limits
the probabilistic behavior to the exponential distribution.
Although this can be seen as a limitation from the prognostics
engineering side, this property makes CTMC efficient for the
verification of formal requirements. Other more powerful
formalisms (e.g., Stochastic Activity Networks [9]) enable the
specification of the stated requirements, but there is no
probabilistic model-checking approach for these models.

A CTMC model is defined as a 5 tuple C = (S, sinit, R, L, E)
where [10],

 S is a finite set of states.

 sinit א S: is the initial state.

 R: S x S Թ≥0, is the rate matrix, where R(s, s’) is the
rate of transitioning form state s to s’.

 L: S 2AP is a labelling with atomic propositions.

 E μ S s Թ ≥0 is the exit rate function

The transition rate matrix assigns rates to each pair of states
and these rates are used as parameters for the exponential
distribution. The transition between the state s and s’ occurs
when R(s, s’) > 0 and the probability of the transition from s to
s’ in t units is: Pr(t) = 1 – exp(-R(s, s’)∙t). A timed path of C is a
finite or infinite sequence (s0t0,s1t1,…,sntn) where ti א Թ >0 for
each i ≥ 0. Alternatively, it is possible to approximate
deterministic distributions in CTMC via the Erlang
distribution.

B. Reactive Modules and Formal Property Specification

PRISM is based on the reactive modules formalism [6]. A
CTMC model is represented as the parallel composition of a
number of (possibly) interactive modules, where each module
contains variables and commands.

A command in PRISM includes actions and guards
specified as: [action] guard probability: update. Actions
force events of different modules to synchronize and guards
specify conditions that must be satisfied to execute the
command. In addition, rewards are defined by associating real
values to the states or transitions of the PRISM modules.

The verification of CTMC models is done using the
Continuous Stochastic Logic (CSL) [10]. CSL formulas are
interpreted over the states of the CTMC model to check if the
stated formula is satisfied. PRISM enables the specification of
timing, occurrence, and ordering of events as well as transient
and steady-state probabilities. These formulas represent
properties that the model must satisfy which can be interpreted
as prognostics design requirements.

The main operators for property specification are: P for the
specification of the probability that the observed execution of

the model satisfies a given specification; S to compute steady
state probabilities; and R to express reward-based properties.

The P operator is used in conjunction with temporal
operators defined over a state or a path of the CTMC model.

The main operators for temporal state or path specifications
are: G for properties that needs to be satisfied globally; F for
properties that become true eventually, X for properties that
become true in the next state, and U for properties that are not
satisfied until another property is true.

The S operator is used to reason about the steady-state
operation and it has no timed variants. As for the R operator it
is possible to combine it with F for reachability properties, C
for cumulative properties, and I for instantaneous properties.

 All these operators have time bounded extensions [10].
Table I displays some examples of formal properties expressed
in CSL and their informal meaning. For the formal reasoning
over the CTMC model see [10].

TABLE I. EXAMPLES OF CSL PROPERTIES

IV. VERIFICATION OF PROGNOSTICS REQUIREMENTS

VIA PROBABILISTIC MODEL-CHECKING

The design of prognostics applications includes different
challenges throughout the design process. To design
prognostics applications systematically a design methodology
is needed which integrates prognostics model selection and
verification in the design process [1]. The prognostics model
selection enables the systematic selection of prognostics
algorithms based on strategic decision points. After the model
selection, it is necessary to verify if the prognostics model
meets the design requirements.

We have identified two possibilities to verify prognostics
models using probabilistic model-checking: (a) specify the
prognostics algorithm using a state-based specification and
express prognostics requirements as a part of the model; or (b)
define a generic and reusable prognostics pattern using a state-
based specification and use prognostics results extracted from
any prognostics model to update transitions between states. We
focus on the second alternative to implement a technique-
independent verification framework. The implementation of
this technique requires regular updating of the state-based
specification model using prognostics results.

The goal of the proposed verification approach is the
verification of prognostics requirements at independent and
dependent design layers. When designing a prognostics system,
we differentiate three design layers (L): L1: data-gathering
hardware; L2: prognostics software model; and L3: RUL

prediction of the asset. Requirements for each of these design
stages will be different. However, their inter-dependencies
need to be taken into account (i.e., L1L2L3).

Throughout the paper we will assume that L1 fails in
omission failure mode, i.e., hardware fails to provide the data
when required. This failure will prevent the prognostics
software model (L2) from making predictions and accordingly,
intelligent condition-based maintenance actions cannot be
undertaken for the asset under study (L3).

Fig. 1 shows the generic pattern for prognostics parameter
specification. Dashed connections and states indicate
dependencies between modules. The data gathering module
depends on the application-specific hardware. Depending on
whether the data gathering architecture has failed or not, it will
affect the prediction module. In Fig. 1 this is represented with
an equivalent failure and repair rate of the hardware system
failure (そHW_PHM, たHW_PHM). In reality, these failure and repair
rates will be computed using reliability analysis techniques
such as Fault Tree analysis [11].

The prediction module will transit between prediction
(Pred) and failed states (HW down) according to the
deterministic prediction instants of the prognostics module (Tp)
and failure rates of the data gathering architecture respectively.

The asset module transits among working (W), failed (F),
and maintenance (M) states. If there is no prognostics
information, the maintenance time TM is defined by the default
preventative maintenance: TM = TPrev, where TPrev designates the
preventive maintenance rate. However, if prognostics
predictions are performed, TM is defined with the RUL
estimation of prognostics. Typically it will be defined by a
safety factor SF so that TM = RUL-SF.

The failure of the data-gathering architecture causes the
failure of the prediction block and accordingly, prognostics
predictions cannot be performed without real up-to-date data.

Fig. 2 shows the overall verification approach. The core of

CSL Meaning

1 P=? [F<t prop1] Prob. of prop1 is true eventually before t

2 P=? [G[t1,t2] prop1]
Prob. globally prop1 is true within the

time instant [t1,t2]

3 P=? [prop1 U<=t prop2]
Prob. of prop2 not being true until prop1

is not true in the interval [0,t]

4 R{“oper”}=? [C<t] Expected cumulative operational time

5 R{“time”}=? [F prop] Time accumulated until prop is satisfied

Fig. 1. State-based prognostics system specification.

the proposed approach is the prognostics system specification
depicted in Fig. 1. For the specification of the data-gathering
architecture, the Minimal Cut Set (MCS) is defined [11] in
conjunction with the specification of failure and repair rates of
components. The MCS defines the minimal and sufficient
combination of component failures that cause the failure of the
hardware architecture. As for the prognostics algorithm
specification, prediction time Tp, RUL estimation, and default
preventive maintenance period Tprev are taken into account.
Finally, for the specification of the asset behavior, failure and
repair rates of the asset under study are considered (そAsset, たAsset
respectively). Note that the failure rate of the asset will
determine the ground truth estimation.

The state-based specification in Fig. 1 is specified in
PRISM and requirements over this model are specified using
CSL in the same modelling formalism. The final outcome of
the proposed framework is the probabilistic argumentation of
whether the prognostics application meets design requirements.
If these are not satisfied, the prognostics algorithm prediction
needs to be reconsidered – assuming that the data gathering
architecture is a fixed design decision.

V. CASE STUDY

Transformers are the most expensive asset in the power

system, and critical to meeting network performance targets.

Therefore condition monitoring and prognostics of

transformers can lead to a cost-effective maintenance strategy.

A. Data Gathering Architecture

A common data-gathering architecture for transformers
uses temperature and current sensors. It may comprise a
redundant data gathering scheme, employing a High Frequency
Network (HFN) where available (e.g., critical substations),
supported by the lower frequency SCADA network. The
SCADA platform includes a Remote Terminal Unit (RTU), in
the substation reporting to the central Master Station (MS).
Both SCADA and higher frequency data are then archived,
using a system such as a PI Historian (cf. Fig. 3).

Fault Tree analysis of the architecture in Fig. 3 identified
the combination of component failures that lead the system to
failure. This is the Minimal Cut Set (MCS) function:

MCS = PI 員 (T1咽T2) 員 (I1咽I2) 員 [HFN咽(MS員Net員RTU)]

where PI indicates the failure of the PI Historian, Ti and Ii
indicate the failure of the ith temperature and current sensor
respectively, Net indicates the failure of the network, and HFN,
MS, and RTU indicate the failure of the identified components.
For the analysis we have used hypothetical failure and repair
rates (cf. Table II).

TABLE II. FAILURE AND REPAIR RATES OF HARDWARE COMPONENTS

Component そ (m-1) µ (m-1)

PI Historian 0.001 0.25

Temp. sensor, current sensor, MS, RTU, HFN 0.01 0.25

Network 0.0001 0.25

B. Transformer Prognostics Model

Transformer aging involves deterioration of the paper
insulation due to temperature. One model which relates
temperature to rate of change of paper degradation is found in
IEEE Standard C57.91, which defines an aging acceleration
factor. This can be rearranged to give a particle filter process
model, by converting it into a recurrence relation for remaining
paper life [12]:

Lt = Lt-1 - exp(15000/383-15000/(273+eHt
)) + ut

where t is the time index in hours, Lt is RUL at time t, eHt
 is

hotspot temperature at time t, and ut is process noise.

Based on this model we have performed predictions at
different time instants (Tp) obtaining RUL estimations shown
in Fig. 4.

Ideally the probabilistic model-checker would have the
possibility to model the PDF obtained with the particle filter
because it includes uncertainty information [13]. However,
given that there is no possibility to model these PDFs directly,
we adopt the following approximation そ≈1/RUL [14]; that is,
we use the mean RUL with maximum and minimum deviation
as the failure rate parameters of the exponential distribution.

The RUL prediction results (in months) are as follows: Tp1

(36m) = 992.5 ± 2.89 m; Tp2
(40m) = 987 ± 2.64 m;

Fig. 2. Probabilistic model-checking of prognostics systems.

Fig. 3. Prognostics data-gathering architecture.

Tp3
(44m) = 984.3 ± 2.76 m; and Tp4

(48m) = 979.3 ± 3.05 m.

See [12] for more details of the particle filter model.

C. Prognostics Requirements Verification

Focusing on the verification of the hardware, these are the
analyzed requirements: “Probability that eventually the data
gathering system fails in [0, T]” implemented via property #1
in Table I; “Probability that the MCS occurs for more than T
time units in order to avoid intermittent failures”; analyzed via
property #2 in Table I; and “Probability that the first failure of
the HW architecture occurs in the [T, T+Ttransient] period”
verified via property #3 in Table I. Fig. 5 shows the results.

As Fig. 5 confirms, the difference between transient and
permanent failures is evident, i.e., transient failures lead to
higher failure probabilities. Besides, we can see that the first
failure occurrence is more likely to occur in the first half of the
time interval. These results can trigger redesign decisions – for
instance, if the designer needs to postpone the first failure
occurrence, different hardware modules will be needed to
satisfy the design requirements.

With probabilistic model-checking we can evaluate other
properties of interest such as maximum operation time of the
data gathering architecture. This is defined using PRISM filter
command as follows [6]: filter(max, R{"time"}=? [F
MCS],!MCS); which informally means: maximum time to
failure (MCS) starting from an operative state (!MCS). This
property gives as a result of 92.72 months using the values in
Table II.

As for the metrics of the prognostics prediction module, we

will focus on false positive and negative metrics. Recall that
we have assumed that the data-gathering hardware architecture
fails in omission failure mode. Accordingly, the effect of the
omission failure on the particle filtering and prognostics
metrics needs to be taken into account.

The hardware omission failure provokes the incorrect RUL
prediction of the particle filtering model. Namely, the RUL
prediction will not include the aging that has occurred during
the data outage. Therefore, this failure will have a direct effect
on false negative metric. That is, it will increase the false
negative rate because the particle filter will predict an RUL
which does not take into account data outage periods.

In PRISM rewards can be used to define False Positive
(FP) and False Negative (FN) metrics. Assuming that asset=1
identifies failed state, asset=2 identifies maintenance state,
pred=2 identifies HW down state in the prediction module (cf.
Fig. 1), and CIX identifies the confidence interval of the event
X, where X = {FP, FN}; we define the following conditions

FN = (asset=1)咽 (RUL+Tp > そAsset - CIFN) 員 (pred=2)

FP = (asset=2)咽 (そAsset - (RUL+Tp)) > CIFP)

When reward equations (3) and (4) are satisfied by the
PRISM reactive modules they will be increased by a unit. For
the asset under study we have used the following reliability
figures (in months)μ そAsset = 1/1038 m-1 (transformer failure
rate); たm = 0.1 m (maintenance time); たAsset = 1 m (repair time);
CIFP = 10 m; CIFN = 4 m, and SF = 4 m (safety factor).

After specifying false positive and false negative rewards in
PRISM using the property #4 in Table I, Fig. 6 shows the
obtained results. If the designer has a threshold for an
acceptable rate of FP and FN events this would lead to
identifying if these values are acceptable or not.

For the FP events we have used different prediction results
from Fig. 4 including their deviation. After the prediction at the
time instant Tp = Tp2

-dev, the prognostics predictions become

accurate enough to avoid false positive event occurrences.

For the FN event we have used the mean RUL prediction value
at Tp1

. Fig. 6 (b) shows the difference between the metric with

and without the hardware omission failure effect. The
incorporation of the hardware omission failure enables
accounting for the uncertainties that may arise in the
prognostics application environment.

The failure of the data gathering hardware architecture
causes the failed prognostics prediction, which in turn leads to
a non-updated maintenance schedule at the asset level. We
have defined a penalty function using rewards which includes
the effect of downtimes (i.e., asset in failed state sums 1 while
in maintenance state sums 0.5), FP, and FN events multiplied
by the probability of failure of the asset under study.

Fig. 7 shows the effect of different failure rates of both the
transformer and data gathering hardware failures. Apart from
the uncertainty arising from the application context, the
specification of the failure rate of the asset (or ground truth)

Fig. 4. Transformer RUL prediction at different prediction times Tp.

Fig. 5. HW requirements verification.

has uncertainties too. The ground truth is estimated either
under some specific conditions or it is an average failure
behavior. Therefore, when using it as a reference failure model,
uncertainty estimations should be included. In this case study
uncertainty in the ground truth value makes little difference.

VI. CONCLUSIONS & FUTURE WORK

In this paper we have investigated the use of probabilistic
model-checking for the formal verification of prognostics
system requirements.

The main limitation for the specification of prognostics
results is the lack of mechanisms to model any probability
density function. This would allow the inclusion of the
uncertainty information of the prognostics results and
evaluation of other prognostics metrics.

However, the advantages offered by the proposed
framework are worth considering: (a) a single integrative
framework including hardware/software behavior; (b) formal
specification of the system behavior and design requirements
for an exhaustive formal verification; and (c) mechanisms to
automate the quantification of prognostics metrics and compare
prognostics approaches with respect to design requirements.

Future work for the formal verification of prognostics
requirements will include the analysis of other probabilistic
techniques to overcome the stated limitations and automating

the connection between prognostics and formal models.

REFERENCES

[1] J. I. Aizpurua and V. M. Catterson, "Towards a methodology for design
of prognostics system," presented at the Annual Conference of the
Prognostics and Health Management Society 2015, San Diego, 2015.

[2] T. Liang, M. E. Orchard, K. Goebel, and G. Vachtsevanos, "Novel
metrics and methodologies for the verification and validation of
prognostic algorithms," in Aerospace Conference, IEEE, 2011, pp. 1-8.

[3] A. Saxena, J. Celaya, E. Balaban, K. Goebel, B. Saha, S. Saha, et al.,
"Metrics for evaluating performance of prognostic techniques," in Int.
Conf. on Prognostics and Health Management.2008, pp. 1-17.

[4] S. Sankararaman, "Are current prognostic performance evaluation
practices sufficient and meaningful?," presented at the Annual Conf. of
the Prognostics and Health Management Society, Texas, 2014.

[5] C. Baier and J.-P. Katoen, Principles of model checking: MIT press
Cambridge, 2008.

[6] M. Kwiatkowska, G. Norman, and D. Parker, "PRISM 4.0: verification
of probabilistic real-time systems," presented at the Proceedings of the
23rd international conference on Computer aided verification, 2011.

[7] B. J. Taylor, M. A. Darrah, and C. D. Moats, "Verification and
validation of neural networks: a sampling of research in progress," in
Intelligent Computing: Theory and Applications, 2003, pp. 8-16.

[8] J. Schumann, K. Y. Rozier, T. Reinbacher, O. J. Mengshoel, M. Timmy,
and C. Ippolito, "Towards real-time, on-board, hardware-supported
sensor and software health management for unmanned aerial systems,"
Int. Jour. of Prognostics and Health Management, vol. 6, 2014.

[9] W. Sanders and J. Meyer, "Stochastic Activity Networks: Formal
Definitions and Conceptsڅ," in Lectures on Formal Methods and
Performance Analysis. vol. 2090, ed: Springer, 2001, pp. 315-343.

[10] J.-P. Katoen, M. Kwiatkowska, G. Norman, and D. Parker, "Faster and
Symbolic CTMC Model Checking," in Process Algebra and
Probabilistic Methods. Performance Modelling and Verification. vol.
2165, ed: Springer, 2001, pp. 23-38.

[11] W. E. Vesely, M. Stamatelatos, J. B. Dugan, J. Fragola, J. Minarick, and
J. Railsback, "Fault tree handbook with aerospace applications," NASA
Office of Safety and Mission Assurance, 2002.

[12] V. M. Catterson, "Prognostic modeling of transformer aging using
Bayesian particle filtering," in Electrical Insulation and Dielectric
Phenomena (CEIDP), 2014 IEEE Conference on, 2014, pp. 413-416.

[13] S. Sankararaman, "Significance, interpretation, and quantification of
uncertainty in prognostics and remaining useful life prediction,"
Mechanical Sys. & Signal Processing, vol. 52–53, pp. 228-247, 2, 2015.

[14] D. Banjevic and A. K. S. Jardine, "Calculation of reliability function and
remaining useful life for a Markov failure time process," IMA Journal of
Management Mathematics, vol. 17, pp. 115-130, April 1 2006.

Fig. 6. Prognostics prediction module metrics: (a) false positive; (b) false negative.

Fig. 7. Asset penalty function.

