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Evolutionary Multi-Objective Optimal Control of Combined Sewer Overflows 

 

 

Abstract 

 

This paper presents a novel multi-objective evolutionary optimization approach for the active 

control of intermittent unsatisfactory discharges from combined sewer systems. The 

procedure proposed considers the unsteady flows and water quality in the sewers together 

with the wastewater treatment costs. The distinction between the portion of wastewater that 

receives full secondary treatment and the overall capacity of the wastewater treatment works 

(including storm overflow tanks) is addressed. Temporal and spatial variations in the 

concentrations of the primary contaminants are incorporated also. The formulation is different 

from previous approaches in the literature in that in addition to the wastewater treatment cost 

we consider at once the relative polluting effects of the various primary contaminants in 

wastewater. This is achieved by incorporating a measure of the overall pollution called the 

effluent quality index. The differences between two diametrically opposed control objectives 

are illustrated, i.e. the minimization of the pollution of the receiving water or, alternatively, 

the minimization of the wastewater treatment cost. Results are included for a realistic 

interceptor sewer system that show that the combination of a multi-objective genetic 

algorithm and a stormwater management model is effective. The genetic algorithm achieved 

consistently the frontier optimal control settings that, in turn, revealed the trade-offs between 

the wastewater treatment cost and pollution of the receiving water. 

 

Keywords: Optimal control, combined sewer system, effluent quality index, integrated 

wastewater  management, water pollution control, wastewater treatment cost  



3 

 

1  INTRODUCTION 

 

Combined sewer systems carry both sanitary wastewater and stormwater. However, the 

capacity of sewers is limited and this results in occasional flooding of some areas and 

intermittent unsatisfactory discharges to the receiving water known as combined sewer 

overflows (Rodriguez et al. 2012). Even though new combined sewer systems are no longer 

constructed because of greater environmental awareness and more effective regulation in 

recent years, the existing networks still operate in many cities. Therefore, controlling the 

operation of the existing systems is self-evidently a possible way of alleviating the problem of 

pollution due to the intermittent unsatisfactory discharges from combined sewer systems. The 

causes, adverse consequences and mitigation measures of pluvial flooding are discussed in 

Susnik et al. (2014). A review of the optimization of the design of sewer systems is available 

in Karovic and Mays (2014). The description of a combined sewer overflow chamber and its 

modelling is available in Chen et al. (2013). Details on the effectiveness of best management 

practices are available in Kaini et al. (2012). Best management practices are measures that 

contribute to improve or safeguard the condition of receiving water bodies.  

Most of the previous approaches in the literature utilised control measures for 

combined sewer overflows based on the volume of wastewater discharged from the sewer 

system without considering water quality (Beraud et al. 2010, Cembrano et al. 2004, Darsono 

et al. 2007, Joseph-Duran et al. 2014). However, Lau et al. (2002) showed that, in isolation, 

the frequency and volume of discharges cannot be considered as accurate indicators of the 

receiving water quality because the biochemical oxygen demand, ammonia and dissolved 

oxygen concentrations lacked a strong relationship with the frequency and volume of 

discharges. Similarly, Rauch et al. (1998) concluded that a  reduction in the volume of the 

wastewater discharges does not necessarily improve water quality in the  receiving water. 

These findings have raised doubts about the benefits of purely volumetric approaches to the 
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control of intermittent unsatisfactory discharges or combined sewer overflows (CSOs). 

On the other hand, Fu et al. (2008 and 2010) addressed the water quality in the 

receiving water by treating several water quality indices (e.g. biochemical oxygen demand 

and the concentration of dissolved oxygen) as separate objectives to be optimized. However, 

the approach leads to complications because on the whole the water quality measures are 

highly interrelated. Also, while the effects of combined sewer discharges on the receiving 

water have been considered previously (Fu et al. 2010, Lacour and Schutze 2010, Petruck et 

al. 1998, Vanrolleghem et al. 2005, Weinreich et al. 1997) the associated trade-offs were not 

addressed directly. For example, the wastewater treatment costs corresponding to alternative 

control settings were not considered (Darsono and Labade 2007, Fu et al. 2010). A major 

disadvantage of single-objective optimization (Cembrano et al. 2004, Darsono et al. 2007, 

Rauch et al. 1999b) is that it provides only one optimal solution to the problem. Single 

objective optimization methods can be useful if the trade-off between the objectives is not 

important. The multi-objective approach, on the other hand, considers the integrity of all the 

objectives and, therefore, reduces somewhat the requirement to consider the relative 

importance of each objective beforehand. In other words, all objectives are considered 

together to obtain the Pareto-optimal solutions in a single run of the optimization procedure. 

Furthermore, some previous studies used simplified hydraulic models (Meirlaen et al. 

2002, Vanrolleghen and Meirlaen 2002, Vanrolleghem et al. 2005) due to the complexity of 

the problem and the fact that accurate hydraulic models are computationally very demanding 

and time consuming to use. Self-evidently, simplified hydraulic models sacrifice accuracy to 

varying degrees and, in any case, the development of such models can be challenging, 

expensive and time consuming (Vanrolleghem et al. 2005). Therefore, we used the fully 

dynamic rainfall-runoff hydraulic simulation model SWMM 5.0 (Rossman 2009) that also 

accounts for the water quality in the wastewater collection network. SWMM 5.0 is a 
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simulation model for urban and sub-urban areas in which gradually varying unsteady flows 

are routed using the mass conservation and momentum equations. The equations are solved 

using the finite difference method to obtain the flow rates in the sewers and water levels at the 

junctions. Also, for water quality routing, the sewers and tanks are modelled as continuously 

stirred tank reactors in which mass conservation is used to calculate the concentrations of the 

chemical species leaving a conduit or tank at the end of each flow routing time step (Rossman 

2006). 

We developed a multi-objective optimization approach that considers the unsteady 

flows and water quality in the sewer system together with the resulting variations in the cost 

of treating the fraction of the wastewater that reaches the wastewater treatment works. The 

optimization model accounts for both full secondary treatment and the partial treatment 

provided by storm overflow tanks. The aims were to minimize the pollution of the receiving 

water and the wastewater treatment cost. The temporal and spatial variations in the 

concentrations of suspended solids and other primary contaminants were considered in the 

optimization model. Therefore, unlike previous approaches, we considered at once the 

combined effects of the various pollutants by means of the effluent quality index that is a 

measure of the rate of pollution. Due to the complexity of the problem, only the combined 

sewer system was considered in the optimization model. The additional challenges that the 

dynamic response of the receiving water introduces have not been addressed yet in the 

proposed model. We used the stormwater management model SWMM 5.0 (Rossman 2009) 

for the hydraulic simulations. Two contrasting control strategies were considered i.e. 

minimization of the pollution load to the receiving water or, alternatively, minimization of the 

wastewater treatment cost. The overall aim was to investigate the potential benefits of active 

system control and the effectiveness of the proposed approach. Initial results that are based on 

a realistic interceptor sewer system are included for demonstration purposes and to help 
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identify possible priority areas for future improvement. 

 

2  MODEL FORMULATION AND SOLUTION 

Two opposing aims were considered in the multi-objective optimization model. The first was 

to minimize the pollution load to the receiving water while the second was to minimize the 

cost of treating the wastewater at the wastewater treatment plant downstream. Minimization 

of the pollution load to the receiving water aims primarily to manage the pollution load from 

the combined sewer overflows by spatial and temporal control of the flows in the entire 

interceptor sewer system. This is done by taking advantage of any spare capacity in the 

sewerage system including the sewers, the wastewater treatment works and any on-line or off-

line storage. Inevitably this leads to variations in the flow regime at the wastewater treatment 

works. To account for this we included the wastewater treatment cost in the optimization 

model as an objective that is to be minimized.  

 Figure 1 shows an interceptor sewer system. For the i
th

 overflow chamber at time t, hi,t  

is the water level; Hsi is the spill level; Ii,t is the inflow rate from the catchment; Oi,t is the rate 

of discharge to the receiving water; qi,t is the volumetric through-flow rate in the sewer; and 

Qi,t is the volumetric flow rate from the combined sewer overflow chamber to the interceptor 

sewer. The constraints that address the continuity of flow are as follows. 
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At the interceptor sewer node i, qmax,i is the capacity of the interceptor sewer; AT,i is the water 
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surface area in the overflow chamber and is assumed to be constant; th ti ∆∆ ,  approximates 

the time rate of change of the water level in the overflow chamber. Eqs. 3b represent 

conditions in which discharge to the receiving water occurs, i.e. when the water level in the 

overflow chamber is above the spill level HS,i (Figure 1). Eqs. 3a apply when the water level is 

below the spill level and therefore discharge to the receiving water does not occur. The term 

on the left hand side of Eqs. 3 represents the rate at which the volume of water in the overflow 

chamber is changing. Eq. 1 defines the feasibility of the volumetric flow rates in the 

interceptor sewer system. Eq. 2 defines the continuity of the flows at the nodes of the 

interceptor sewer system. Eqs. 3 define the continuity of the flows of the combined sewer 

overflow chambers.  

 The decision variables of the optimization problem are the combined sewer overflow 

settings. More specifically, the decision variables are the respective orifice and other settings 

that control the flows from the sub-catchments to the interceptor sewer. For simplicity we 

assumed that the flow from the overflow chamber to the interceptor sewer takes place by 

means of an orifice in the overflow chamber. Thus the decision variables here are the Qi,t 

values, the time-varying volumetric flow rates from the overflow chambers to the interceptor 

sewer. Inherently, the hydraulic simulation model SWMM 5.0 accounts for Eqs. 2 and 3 that 

are thus satisfied automatically. The concept of constraint dominance in Deb et al. (2002) was 

used to address Eqs. 1. The procedure is not described here as it is well established. 

 

2.1 Pollution load evaluation 

The effluent quality index is a parameter that considers the effects of several important 

wastewater contaminants in aggregate and includes the total suspended solids, chemical 

oxygen demand, five-day biochemical oxygen demand, total Kjeldahl nitrogen and 

nitrates/nitrites. The effluent quality index has been used previously as a performance and 
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sensitivity index for wastewater treatment (Copp 2002, Kim et al. 2006, Lee et al. 2006). 

Additional information on the effluent quality index is available in Mussati et al. (2002) and 

Rathnayake and Tanyimboh (2012a). This parameter is particularly useful as it aims to 

quantify the total amount of pollution as shown in Eq. 4. 
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E is the effluent quality index that represents the effective pollution rate (for example, in 

kg/day with the units of the terms in Eq. 4 selected accordingly); ti and tf respectively 

represent the start and end of the period during which the wastewater discharge takes place; 

Qw is the volumetric flow rate of the wastewater; CTSS, CCOD, CNOX, CBOD and CTKN are the 

concentrations of total suspended solids, chemical oxygen demand, nitrates/nitrites, five-day 

biochemical oxygen demand and total Kjeldahl nitrogen, respectively.  

 Various catchment characteristics e.g. land-use i.e. residential, commercial, agricultural, 

etc. influence the concentrations of the various contaminants in the run-off from rainfall. For 

example, Duncan (1999) described the composition of stormwater run-off for different land-

uses. Also, the pollutographs for various contaminants have been derived empirically in 

previous studies  (Li et al. 2007,  Yusop et al. 2005). We carried out a detailed and extensive 

investigation of the properties of the relevant pollutographs and thus developed pollutographs 

for the interceptor sewer system discussed in the next section (Rathnayake and Tanyimboh 

2012a, Rathnayake 2013). The objective function for the pollution load was taken as  
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The subscripts t and i represent the time steps and overflow chambers, respectively; Nt is the 

number of time steps; Ni  is the number of overflow chambers; Ei,t is the pollution load 

contributed by overflow chamber i during time step t; F1 is the total pollution load to the 

receiving water for the entire duration of the storm.  Eq. 5 accounts for the changes in the 
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concentrations of the contaminants in the wastewater throughout the duration of a storm.  

 

2.2 Wastewater treatment cost 

A wastewater treatment plant typically has an overall capacity that may be approximately 

about twice the secondary treatment capacity. Any excess flow above the secondary treatment 

capacity is held in stormwater detention tanks which have a role similar to primary 

sedimentation tanks. If the total volume of wastewater exceeds the overall capacity of the 

plant, then the stormwater detention tanks fill completely and overflow to the receiving water 

(Metcalf and Eddy 2004). We developed a generic indicative cost model for wastewater 

treatment (Rathnayake and Tanyimboh 2012a,b; Rathnayake 2013) based on various models 

and data in the literature (Friedler and Pisanty 2006, Hernandez-Sancho and Sala-Garrido 

2008, United Nations 2003). For example, Friedler and Pisanty (2006) observed that the 

operation and maintenance cost, as a proportion of the total treatment cost, rises as the design 

flow rate increases and has the general form of an “S shaped” curve. The generalised 

approximation to the wastewater treatment cost was taken as 

C =  

dw

f

w QQaQ 3; ≤  (6a) 

dwddw

f

d QQQedQcQbQ 63; ≤≤+−+  (6b) 
 

dwd

f
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where C (€/year) is the cost; Qw (m
3
/s) is the volumetric flow rate of the wastewater; and Qd 

(m
3
/s) is the dry-weather flow, i.e. the average daily flow rate to the wastewater treatment 

plant under dry-weather conditions (IWEM 1993); a to f are empirical coefficients, where a = 

1.642×10
6
, b = 1.8912×10

3
, c = 1.13, d = 3.38, e = 7.584×10

3
 and f = 0.659. The cost model 

in Eq. 6 is for the total operating cost that includes wastewater treatment, personnel, energy, 

maintenance, etc. Eq. 6 can be replaced easily with any suitable alternative cost function. The 

objective function for the cost of wastewater treatment was taken as 
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where Ct is the wastewater treatment cost for time step t and F2 is the total cost for the entire 

duration of the storm. 

 

2.3 Optimization problem and solution 

The optimization problem can be summarized as follows. Minimize f = (F1, F2)
T
 subject to the 

system constraints. The conservation of mass and energy and other system equations were 

satisfied by the hydraulic simulation model SWMM 5.0. However, the constraints for the 

capacity of the interceptor sewer  i.e. Eqs. 1 were addressed using the binary constraint-

tournament method in the Non-dominated Sorting Genetic Algorithm (NSGA) II (Deb et al. 

2002). We wrote a routine in the C computer programming language to link the optimization 

and simulation models.  

NSGA II is a computationally fast and elitist multi-objective evolutionary optimization 

algorithm that has been applied successfully in many practical problems in various disciplines 

(Tabari and Soltani 2013, Takbiri and Afshar 2012) including urban wastewater systems (Fu et 

al. 2010). Additional applications include a memetic algorithm with local search and cultural 

learning (Barlow and Tanyimboh 2014) and recently introduced penalty-free methods for 

water distribution systems (Siew and Tanyimboh 2012, Siew et al. 2014, Saleh and 

Tanyimboh 2013, 2014). The above-mentioned enhanced implementations have been shown 

to be particularly effective in terms of the computational efficiency and quality of the 

solutions. However, in view of the complexity of the problem addressed here, and as a first 

attempt, we used the binary constraint-tournament method (Deb et al. 2002). 

 It was assumed without loss of generality that wastewater from the combined sewer 

overflow chamber to the interceptor sewer is controlled by a rectangular orifice at the bottom 

of the chamber. For the purposes of the optimization a number of relatively small time steps 
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were defined to cover the entire duration of the storm. For the first time step the heights of the 

orifices were generated randomly to create the initial population of solutions. Then, a 

hydraulic simulation was carried out. The results of the hydraulic simulation were used to 

calculate the pollution load and the wastewater treatment cost. For subsequent  time steps the 

optimized orifice heights from the preceding time step were taken as the initial conditions.  

 

3  PRACTICAL APPLICATION 

A realistic generic interceptor sewer system derived from modifications to the interceptor 

sewer system described in Thomas et al. (1999, 2000) and Thomas (2000) that is based on the 

interceptor sewer system in Liverpool, UK, was used for illustration purposes, for a storm 

duration of 2.5 hours. A schematic diagram of the interceptor sewer system is shown in Figure 

1c. We extended the system's capacity and operational complexity by adding two storage 

tanks, i.e. tanks 8 and 9, at overflow chambers 2 and 5, respectively. These new tanks were 

assumed to operate on-line; i.e. they start to fill as the volumetric flow rate in the interceptor 

sewer approaches the maximum through-flow rate. The wastewater in the on-line tanks 

returns later to the interceptor sewer when the flow from the upstream section plus the inflow 

from the subcatchment is less than the capacity of the sewer.  

Referring to Figure 1c, the maximum flow rate for sewers C1 to C3 is 3.26 m
3
/s and 

for C4 to C7, 7.72 m
3
/s. The diameter for sewers C1 to C3 is 1.66 m and for C4 to C7, 2.44 m. 

Depths of overflow chambers T1 to T7 and storage tanks T8 and T9 are 5.42, 6.91, 7.95, 8.04, 

8.18, 8.47, 9.26, 6.91 and 8.18 m, respectively. The volumes of overflow chambers T1 to T7 

and storage tanks T8 and T9 are 1533, 940, 400, 1365, 2685, 1415, 1370, 940 and 2685 m
3
, 

respectively. Orifices O1 to O7 are rectangular. The widths are 1.25, 1.7, 1.5, 2.08, 2.65, 1.8 

and 1.65 m, respectively. Orifices O1 and O5 are 1.45 m high and the rest are 0.625 m high. 

Additional data (e.g. sewer invert levels, slopes, etc.) are available in Thomas (2000), 
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Rathnayake and Tanyimboh (2012a) and Rathnayake (2013).  

The various sub-catchments have stormwater run-off hydrographs the details of which 

are available in Thomas (2000) and references therein (Thomas et al. 1999, 2000; etc.). The 

present demonstration is for the average dry-weather flow for sanitary wastewater in 

conjunction with a single storm. Due to the relatively short duration of the storm, and as in 

Thomas (2000), we did not consider the diurnal variations in the flow rate of sanitary 

wastewater. The surface water run-off hydrographs and temporal and spatial variations in the 

concentrations of contaminants (Eqs. 4 and 5) are available in Rathnayake (2013). Figure 2 

shows run-off hydrographs and suspended solids concentrations for sub-catchments 1 to 3. 

For the computational solution we allowed 10,000 function evaluations (i.e. hydraulic 

simulations) for each time step. The population size was 100; crossover probability was 1.0; 

distribution index (see Deb et al. 2002) for both crossover and mutation was 20; and mutation 

rate was 0.6. The sensitivity analysis carried out suggests the results are stable with respect to 

the mutation rate (Rathnayake 2013). The time interval used in the finite difference solution 

of the hydraulic equations in SWMM 5.0 was 30 seconds while the time interval specified for 

each time step in the optimization was 15 minutes. After the first time step in the 

optimization, the optimal solutions for the minimum pollution load and the minimum 

wastewater treatment cost were available. The respective orifice heights for the above-

mentioned solutions were used as two alternative starting points for the second time step in 

the optimization. The optimal orifice heights for the second time step (i.e. t = 15 to 30 

minutes) were obtained from their respective Pareto-optimal fronts. This sequence was 

repeated for all successive time steps until the end of the storm. This gave two sets of time-

varying orifice heights, for the minimum pollution load and minimum treatment cost, 

respectively. It was not possible to start the hydraulic simulation model SWMM 5.0 at any 

time other than t = 0, due to restrictions in the software. Consequently, the simulation for each 
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successive time step started at time t = 0 and continued until the end of the time step. 

Therefore the execution time of the optimization algorithm was increased significantly. We 

used a Pentium 4 desktop personal computer (2.7 GHz Core 2 Duo processor, 4 GB RAM). 

 

4  RESULTS AND DISCUSSION 

An optimization run with 10,000 function evaluations in each time step for the minimum 

pollution load and minimum treatment cost options for a storm of 2.5 hours with ten time 

steps took about 76 minutes and 18 minutes, respectively. Table 1 shows that the orifices for 

the minimum treatment cost option are essentially closed in practical terms. The exception is 

orifice 1 for time steps 1 and 2. The orifice closures reduce effectively the size of the sewer 

system that is simulated for the fitness assessments and, consequently, the hydraulic 

simulations require less time. The Pareto-optimal fronts obtained for ten different randomly 

generated initial populations were essentially the identical; Figure 3a shows the Pareto-

optimal front at time t = 15 minutes. Solution AT1(S) gives the minimum pollution load  

whereas solution BT1(S) gives the minimum treatment cost. Figures 3b and 3c illustrate the 

progress of the optimization. It can be seen the algorithm convergences quickly at about 2000 

function evaluations.  

At time t = 30 minutes, the solution for the minimum pollution load was obtained by 

executing the optimization from time t = 0 to 30 minutes, with the control settings from 

Solution AT1(S) (Figure 3a) as the initial condition. Similarly, for the minimum treatment cost 

option, the optimization was run from time t = 0 to 30 minutes, with the control settings from 

Solution BT1(S) (Figure 3a) as the initial condition. The optimized solutions achieved have 

significant differences in terms of the treatment cost and pollution load, i.e. €11,000/year and 

7.1 million kg/day for the minimum treatment cost option compared to €6.8 million/year and 

4.6 million kg/day for the minimum pollution option. As mentioned previously the orifices for 
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the minimum treatment cost option are essentially closed (Table 1). This minimizes the flow 

to the interceptor sewer and the treatment plant which keeps the treatment costs low. This low 

cost is achieved at the expense of a high pollution load to the receiving water. For the 

minimum pollution load option more wastewater reaches the interceptor sewer and the 

treatment plant which reduces pollution.  

On completion of the optimization, the respective sets of orifice settings obtained for 

orifices 1 to 7 were used to conduct full hydraulic simulations to check the solutions achieved. 

Figure 5 shows the volumetric flow rates in the conduits at the end of each time step for the 

minimum pollution option; the dashed lines represent the respective capacities. The maximum 

flow rates did not exceed the capacities, i.e. the solutions obtained may be considered 

feasible. Furthermore, conduits 4 to 7 have higher flow rates than conduits 1 to 3. This is 

consistent with the normal expectation that downstream sewers would carry more wastewater 

than those upstream. The results show a consistent spatial progression of increasing flow rates 

for conduits 1 to 7. 

Figure 5 shows the wastewater volumes in the overflow chambers and storage tanks 

for the minimum pollution option; the dashed lines represent the respective capacities. 

Wastewater volumes above the dashed lines represent the combined sewer overflows. It may 

be noted that storage tanks 8 and 9 remain full throughout, except at the start of the storm. 

This suggests the model is effective as it seems to utilise the available storage in full. Figure 6 

shows the overflow volumes. Much higher volumes can be seen between 0:30:00 and 1:30:00 

hours. During this time interval high inflows from stormwater run-off enter the combined 

sewer system (Rathnayake 2013), with a corresponding increase in the spillage volumes. 

However, the volumes for the overflow chamber 7 reveal an interesting pattern. All other 

chambers have low volumes at 02:30:00 hours. This is expected also, due to the reduced 

stormwater flow rates near the end of the storm. However, overflow chamber 7 at the most 
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downstream end of the sewer system has relatively constant rates of discharge during the 

entire storm as it carries combined wastewater from the entire catchment.  

Figure 7 shows the cumulative pollution loads, wastewater treatment costs and 

combined sewer overflows, for both the minimum pollution load and minimum treatment cost 

options. It is noted that the minimum pollution load option at the end of any time step has a 

lower pollution load than the minimum treatment cost option (Figure 7a). Conversely, the 

minimum treatment cost option has lower treatment costs throughout the storm than the 

minimum pollution load option (Figure 7b). Figure 7c illustrates an interesting result. Until 

01:30:00 hours, the two control options have roughly comparable spillage volumes. However, 

Figure 7a shows the corresponding pollution loads are significantly different during this time 

period. This demonstrates clearly that a volumetric optimization approach that does not 

address the water quality aspects explicitly may not be sensitive enough to control the sewer 

system satisfactorily. Besides the wastewater treatment cost, the proposed optimization model 

has an objective function that addresses water quality explicitly. The effluent quality index 

considers at once five major water pollution parameters. This represents an advance on 

previous approaches (Fu et al. 2008 and 2010; Vanrolleghen et al. 2005). Using one objective 

function for the overall pollution, difficulties associated with optimization problems with 

many objectives are avoided (Saxena et al. 2013; Sinha et al. 2013). 

At the end of the storm, the combined sewer system discharged 17.72 million kg/day 

of pollution to the receiving water and the treatment cost was Є41.526M/year for the 

minimum pollution load option. By contrast 26.53 million kg/day of pollution was discharged 

to the receiving water and the treatment cost was Є1.74M/year for the minimum treatment 

cost option. These figures illustrate the potential for active system control, for the system 

considered here. However, further investigation and improvements to the optimization model 

may be beneficial, including further verification based on field data. This inevitably poses 
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many challenges related to issues such as land-use, rainfall run-off and pollution wash-off 

characteristics and the cost objective function. Also, the response of the receiving water and 

details of the wastewater treatment plant were not addressed. 

 

5  CONCLUSIONS 

A novel multi-objective evolutionary optimization approach for control of combined sewer 

overflows that considers unsteady sewer flows, pollution load to the receiving water and 

wastewater treatment costs was developed. It can handle temporal and spatial variations in 

water quality in the rainfall run-off from different sub-catchments and considers various 

contaminants including suspended solids, nitrates/nitrites and ammonia at once. The decision 

variables of the optimization problem are the time-dependent combined sewer overflow 

settings. The optimization model was applied to a realistic interceptor sewer system. The 

results demonstrate the benefits of the multi-objective optimization. The non-dominated 

solutions provide a range of alternative control options that offer choice and flexibility to the 

sewer system controllers to enable the best control settings based on the environmental 

regulations, costs and other relevant factors to be chosen. Verification through simulations in 

SWMM 5.0 of the control options identified further indicates that the solutions found are both 

feasible and effective. With further developments in the technology to measure flows and 

water quality parameters and send feedback to a control location, this dynamic optimization 

model is proposed as a contribution in the active control of integrated urban wastewater 

systems. 
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Figure 1   Interceptor sewer system. (a) Flows at interceptor sewer node (b) Overflow 

chamber. Hs,i is the spill level; hi,t is the depth of water in the chamber at time t. 

(c) Layout of the interceptor sewer system with overflow chambers and storage 

tanks. 

Figure 2 Rainfall run-off hydrographs with suspended solids concentrations for three sub-

catchments. (a) Sub-catchment 1 (Rimrose). (b) Sub-catchment 2 (Strand Road).  

(c) Sub-catchment 3 (Millers Bridge). 

Figure 3   Convergence rate and Pareto-optimal solutions for the period 0-15 minutes. (a)   

Pareto-optimal front. The vertical scale is logarithmic. (b) Progress of the 

treatment cost. The vertical scale is logarithmic. (c) Progress of the pollution 

load. 

Figure 4   Volumetric flow rates in interceptor conduits for minimum pollution load control 

option. The dashed horizontal lines represent the respective capacities. 

Figure 5   Wastewater volumes in storage tanks and overflow chambers for minimum 

pollution control option. The excess volumes superimposed above the dashed 

horizontal lines that represent the respective capacities of the chambers are the 

overflows shown in Figure 6. 

Figure 6   Combined sewer overflows for minimum pollution load control option 

Figure 7   Cumulative pollution loads, wastewater treatment costs and overflow volumes. 

(a) Cumulative pollution loads. (b) Cumulative treatment costs. (c) Cumulative 

combined sewer overflow volumes. 
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Table 1 Combined sewer overflow settings for the minimum treatment cost and pollution load 

options 

Time steps 
Time slots 

(minutes) 

Optimized orifice heights for the orifice numbers indicated (cm) 

1 2 3 4 5 6 7 

1 0-15 
41.98

a 

(5.02)
b 

0 

(0) 

21.84 

(0) 

24.08 

(0) 

0 

(0) 

0.02 

(0) 

0 

(0) 

2 15-30 
21.06 

(1.40) 

13.45 

(0.02) 

0 

(0) 

12.34 

(0) 

1.64 

(0) 

18.11 

(0) 

0 

(0) 

3 30-45 
39.63 

(0) 

0 

(0) 

1.18 

(0) 

0.03 

(0) 

0 

(0) 

6.58 

(0) 

26.63 

(0) 

4 45-60 
40.58 

(0.01) 

0 

(0) 

0.03 

(0) 

0.34 

(0) 

0.01 

(0) 

16.45 

(0) 

14.85 

(0) 

5 60-75 
14.34 

(0) 

0.05 

(0) 

13.85 

(0) 

0.04 

(0) 

0.25 

(0) 

15.00 

(0) 

11.56 

(0) 

6 75-90 
25.05 

(0) 

0.56 

(0) 

11.37 

(0) 

1.81 

(0) 

14.70 

(0) 

55.49 

(0) 

0 

(0) 

7 90-105 
29.32 

(0) 

0.01 

(0) 

9.17 

(0) 

0.10 

(0) 

20.87 

(0) 

0.00 

(0) 

0 

(0) 

8 105-120 
38.41 

(0.03) 

0.02 

(0) 

3.53 

(0) 

0.03 

(0) 

19.67 

(0) 

5.01 

(0) 

0.39 

(0) 

9 120-135 
41.71 

(0) 

0.93 

(0) 

0.77 

(0) 

0.06 

(0) 

21.89 

(0) 

0.67 

(0) 

0 

(0) 

10 135-150 
19.07 

(0.07) 

0.01 

(0) 

62.39 

(0) 

4.95 

(0) 

15.17 

(0) 

0.33 

(0) 

0 

(0) 
a
 Values for the minimum pollution load option are in normal type. 

b
 Values for the minimum wastewater 

treatment cost option are italicised in parentheses. For the minimum wastewater treatment cost option, except 

for orifice 1 during the first two time steps the orifices are closed for practical purposes. 
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(c) 

 

Fig. 1  Interceptor sewer system. (a) Flows at interceptor sewer node (b) Overflow chamber. 

Hs,i is the spill level; hi,t is the depth of water in the chamber at time t. (c) Layout of the 

interceptor sewer system with overflow chambers and storage tanks. 
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(a) Sub-catchment 1 (Rimrose) 

 

(b) Sub-catchment 2 (Strand Road) 

 

(c) Sub-catchment 3 (Millers Bridge) 

Fig. 2  Rainfall run-off hydrographs with suspended solids concentrations for three sub-

catchments 
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(a)   Pareto-optimal front. The vertical scale is logarithmic. 

 

(b) Progress of the treatment cost. The vertical scale is logarithmic. 

 

 
(c) Progress of the pollution load  

 

Fig. 3  Convergence rate and Pareto-optimal solutions for the period 0-15 minutes 
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Fig. 4  Volumetric flow rates in interceptor conduits for minimum pollution load control 

option. The dashed horizontal lines represent the respective capacities. 
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Fig. 5  Wastewater volumes in storage tanks and overflow chambers for minimum pollution 

control option. The excess volumes superimposed above the dashed horizontal lines that 

represent the respective capacities of the chambers are the overflows shown in Figure 6. 
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Fig. 6  Combined sewer overflows for minimum pollution load control option 
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(a) Cumulative pollution loads 

 

(b) Cumulative treatment costs 

 

(c) Cumulative combined sewer overflow volumes 

Fig. 7  Cumulative pollution loads, wastewater treatment costs and overflow volumes 


