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The effect of nanoparticle chain formation

on dielectric anisotropy of nematic composites

M.A. Osipov1 and M.V. Gorkunov2
1Department of Mathematics, University of Strathclyde, Glasgow G1 1XH, Scotland, UK

2Shubnikov Institute of Crystallography of Russian Academy of Sciences, Moscow 119333, Russia

A general theory of the dielectric constant of nematic liquid crystal mixtures is presented including
the particular case of nematics doped with polar nanoparticles. The results are used to estimate
the contribution of chains of polar nanoparticles to the static dielectric anisotropy and birefringence
of the nematic composite taking into account contributions from chains of different lengths. The
dependence of the dielectric anisotropy on the dipolar interaction strength is considered in detail
and it is shown that formation of polar chains of nano-particles enables one to explain a significant
increase of the dielectric constant of the composite as observed experimentally.

PACS numbers: 64.70.mf, 61.30.Cz, 42.70.Df

I. INTRODUCTION

There has been significant recent interest in novel liq-
uid crystal (LC) nano-composites, i.e., LCs doped with
metal, dielectric or semiconductor nanoparticles (NPs) of
scales of 2–10 nm (i.e. close to the size of typical meso-
genic molecules). It has been shown that doping of a ne-
matic LC with even a small NP volume concentration can
affect almost all important nematic phase properties, e.g.
decrease the threshold and switching voltages as well as
switching times of LC displays (see, for example, Refs. 1–
5). Suspensions of different NPs in various nematic LCs
have been investigated by many authors. In particu-
lar, nematics doped with ferroelectric NPs enhance di-
electric and optical anisotropy, increase the electro-optic
response [6, 7] and improve the photorefractive proper-
ties of LC composites [8]. Nematic suspensions of para-
and ferromagnetic particles are promising candidates for
magnetically tunable structures, and doping of ferroelec-
tric LCs with metal and silica NPs can improve spon-
taneous polarization and dielectric permittivity, as well
as decrease the switching times [9, 10]. Metal NPs have
been also used to widen the temperature range of LC blue
phases [11], which are important for applications, and en-
hance random lasing in the dye-doped LC medium [12].

It has also been shown experimentally (see, for ex-
ample, Refs. 9 and 13) that the dielectric anisotropy
of nematic LCs doped with strongly polar (ferroelec-
tric) NPs is dramatically increased. Indeed, a very
small molar fraction of ferroelectric NPs (of the order
of 10−3) accounts for a contribution to the relative di-
electric anisotropy of the order of 5− 6, i.e., comparable
with the anisotropy of the nematic host. Preliminary
estimates indicate that the increase is too strong to be
explained without taking into account possible aggrega-
tion of NPs and formation of polar chains. There exists
some experimental evidence that quantum dots may also
form long chains in nematic LCs [14] even though such
NPs are nonpolar. Aggregates of NPs in general, and
polar chains in particular, would be expected to modify
all major properties of nematic nano-composites, includ-

ing their dielectric and optical properties. Nematic LCs
with polar chains should also be very sensitive to exter-
nal electric fields which may be used for alignment and
switching at very low applied voltage.

Aggregation of NPs in the nematic phase may occur
if the inter-particle interaction potential is not strong
enough to induce demixing but is still much stronger than
the interaction between mesogenic molecules. Strongly
anisotropic interaction between NPs, including, in par-
ticular, the dipole-dipole one, will lead to the formation
of polar chains. It has been shown [13] that the equilib-
rium chain length strongly depends on the contact inter-
action potential normalized by the temperature. Long
chains of NPs may occur only if the contact interaction
is of the order of 10kBT [15] which is satisfied, for exam-
ple, for ferroelectric NPs [9, 13]. Such long polar chains
should make a significant contribution to the dielectric
anisotropy of nematic composites.

The theory of LCs doped with NPs is still at a rudi-
mentary stage. Lopatina and Selinger [10] showed phe-
nomenologically that dipole-dipole interactions between
ferroelectric NPs can significantly increase the isotropic-
nematic (I-N) phase transition temperature. Gorkunov
and Osipov [16] used molecular theory to make a detailed
analysis of the effect of both anisotropic and isotropic
NPs on the properties of the I-N transition. The the-
ory developed in Ref. 16 has been later used to de-
scribe the effect of external electric field on nematic nano-
composites [17]. A molecular theory of nematic LCs
doped with spherical NPs has also been developed in
Ref. 18. Very recently, a detailed theory of the phase
separation effects in nematic LCs doped with isotropic
NPs has been presented by the authors [19]. In this pa-
per, we develop a general theory of the dielectric and op-
tical properties of polar nematic mixtures and estimate
the contribution of polar NPs and chains of NPs to the
nano-composite dielectric anisotropy and birefringence.

The paper is arranged as follows. In Section II a
general molecular-statistical theory of the dielectric sus-
ceptibility of many component nematic mixtures is pre-
sented taking into consideration separately the high and
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low frequency limits. In Section III, a contribution of
chains of strongly polar ferroelectric NPs to the dielectric
anisotropy of the composite nematic phase is calculated
taking into account statistics of chains of various length.
The numerical and analytical results are presented to il-
lustrate the dependence of the dielectric anisotropy on
the concentration of NPs and on the strength of their
dipole-dipole interaction. Theoretical results are then
used to explain the existing experimental data. Finally,
Section IV contains a discussion.

II. GENERAL THEORY OF THE DIELECTRIC

SUSCEPTIBILITY OF MANY COMPONENT

NEMATICS

A. Microscopic polarization and the electric field

The microscopic polarization PM of a many compo-
nent LC consists of the contributions from all the fluctu-
ating molecular and particle dipoles:

PM (r, t) =
∑

i,α

pi,αδ(r− ri), (1)

where pi,α is the total dipole of the i-th molecule/particle
of the component α located at the point ri. In the gen-
eral case, the dipole pi,α is the sum of the permanent
molecular dipole p0

i,α and the dipole pin
i,α induced by the

local electric field.
The microscopic polarization is related to the micro-

scopic electric field EM by the following well known equa-
tion:

curl curlEM +
1

c2
∂2EM

∂t2
= − 1

c2
∂2PM

∂t2
. (2)

The general solution of Eq. (2) can be expressed in the
operator form [20]:

EM = E0 +

∫

F̂ (r− r′, ω)PM (r, ω)dr′, (3)

where E0 is an external (homogeneous) electric field and

the operator kernel F̂ (r− r′, ω) reads [20]:

F̂ (R, ω) =
4π

3
δ(R)−

[(

1 +
iωR

c
− ω2R2

3c2

)

(Î − 3u⊗ u)− 2ω2R2

3c2

]

×

eiωR/cR−3, (4)

where u = R/R.
One notes that in practice the distance R = r − r′ is

limited by the correlation radius ξ which is always smaller
then the wavelength of light λ. Thus ωR/c ≪ 1 and then

the kernel F̂ (R, ω) is reduced to the simple form of the
dipole-dipole propagator:

F̂ (R, ω) =
4π

3
δ(R) + (3u⊗ u− Î)R−3. (5)

B. High frequency permittivity of a nematic

composite

At sufficiently high (optical) frequencies, the polariza-
tion is mainly determined by induced dipoles created by
the electric field. Orientational fluctuations of permanent
dipoles make a minor contribution because the character-
istic times of such fluctuations are much larger than the
inverse optical frequency [21]. Then the molecular dipole
in Eq. (1) can be expressed approximately as

pi,α = β̂α(θi, ω)E
M (ri, ω), (6)

where β̂α(θi, ω) is the polarizability of the molecule
i of the component α, the variable θi describes the
molecule orientation, and the field EM (ri, ω) acting on
the molecule i, is a sum of the external field E0(ri, ω)
and the electric field created by the dipoles induced in
all other molecules:

EM (ri, ω) = E0(ri, ω) +
∑

j,α

F̂ (ri − rj , ω)pj,α. (7)

These equations can be used to obtain the closed equa-
tion for the microscopic field:

EM (r, ω) = E0 −
∫

Ĥ(r− r′, ω)γ̂(ω)EM (r′, ω)dr′, (8)

where

γ̂(ω) =
∑

α

∫

β̂α(θ, ω)ρα(θ, r)dθ. (9)

is a microscopic polarizability, and ρα is the microscopic
number density of the molecules of type α:

ρα(θ, r) =
∑

i

δ(r− ri)δ(θ − θi). (10)

Here the operator kernel Ĥ = F̂ when |r − r′| > D and

Ĥ = 0 when |r − r′| < D, where D is the molecular
diameter.
The macroscopic polarization P in the media is the

statistical average of the microscopic polarization P =
〈PM 〉, where 〈...〉 denotes the ensemble average. The
polarization can also be expressed as P = χ̂E, where
E = 〈EM 〉 is the macroscopic electric field and χ̂ is the
dielectric susceptibility tensor of the medium.
Writing Eq. (8) in the operator form as EM = E0 −

Ĥγ̂EM , one can readily express the microscopic field by
the external electric field E0:

EM = (1 + Ĥγ̂)−1E0, (11)

which determines the microscopic polarization as

PM = γ̂(1 + Ĥγ̂)−1E0. (12)

and yields the average polarization

P = 〈γ̂(1 + Ĥγ̂)−1〉E0. (13)
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A relationship between the external field E0 and the
average field E can be obtained using Eqs. (3,5,12). Sub-
stituting Eq. (5) into Eq. (3) one obtains:

EM = E0 −
4π

3
PM −

∫

Ĥ(r− r′, ω)PM (r, ω)dr′. (14)

Expressing PM in terms of E0 (using Eq. (12)) in the
third term in Eq. (14) and combining the two terms pro-
portional to E0, one obtains:

EM +
4π

3
PM = (1 + Ĥγ̂)−1E0, (15)

where we have taken into account that Î − Ĥγ̂(1 +

Ĥγ̂)−1 = (1 + Ĥγ̂)−1.
Upon averaging, Eq. (15) yields:

E0 = 〈(1 + Ĥγ̂)−1〉−1

(

E+
4π

3
P

)

. (16)

Finally, substituting Eq. (16) into Eq. (13) one obtains
the following relationship between the average polariza-
tion and the average electric field in the nematic medium:

P = 〈γ̂(1 + Ĥγ̂)−1〉〈(1 + Ĥγ̂)−1〉−1

(

E+
4π

3
P

)

, (17)

which yields for the permittivity tensor:

(ε̂− 1)(ε̂+ 2)−1 =
4π

3
α̂, (18)

where

α̂ = 〈γ̂(1 + Ĥγ̂)−1〉〈(1 + Ĥγ̂)−1〉−1. (19)

Thus the general equation for the high frequency per-
mittivity of the nematic doped with NPs has the form
of the generalized Clausius-Mossotti equation in which
the average polarizability of a single molecule is replaced
by the effective renormalized polarizability that depends
both on intermolecular interactions and correlations and
on interactions and correlations between NPs and neigh-
boring mesogenic molecules. One notes also that Eq. (18)
is a generalization of the corresponding equation for
isotropic fluids.
In Eq. (19), the fluctuating quantity is the weighted

microscopic polarizability γ̂ which depends on the orien-
tation and position of both mesogenic molecules and the
NPs. The renormalized polarizability α̂ can be expanded
in powers of the polarizability fluctuation ∆γ = γ − 〈γ〉
where 〈γ〉 is the average polarizability:

α̂ = 〈γ〉 − 〈∆γK̂∆γ〉+ ..., (20)

where K̂ = (1 + Ĥ〈γ̂〉)−1Ĥ,
Taking into account that γ̂ is a weighted sum of po-

larizabilities of all components of the mixture (including

mesogenic molecules, NPs and chains of NPs of different
length) given by Eq. (9), one obtains:

α̂ =
∑

α

〈β̂α〉ρα −
∑

α,β

λ̂α,βραρβ + ..., (21)

where 〈β̂α〉 is the average polarizability of the component
α and

λ̂α,β =

∫

gα,β(R, θ, θ′)β̂α(θ)K̂(R, ω)β̂β(θ
′)dRdθdθ′.

(22)
Here gα,β(R, θ, θ′) are the pair correlation functions be-
tween the molecules of the components α and β, and
K̂(R, ω) is the kernel of the operator K̂. The higher or-
der terms in Eqs. (20) and (21) depend on higher order
correlation functions.
Relatively simple explicit expressions for the permit-

tivity can be obtained in the molecular field approxima-

tion, when one neglects the correlation corrections λ̂α,β .
In this case, Eq. (18) can be written in the following
form assuming that the composite nematic phase con-
tains mesogenic molecules, NPs and chains of NPs of
various lengths n:

(ǫ̂− 1)(ǫ̂+ 2)−1 =

4π

3

(

〈β̂m〉ρm + 〈β̂np〉ρnp +
∞
∑

n=2

〈β̂n〉ρn
)

, (23)

where 〈β̂m〉, 〈β̂np〉 and 〈β̂n〉 are the average polarizabil-
ities of mesogenic molecules, NPs and chains of NPs of
length n, respectively, and ρm, ρnp and ρn are the corre-
sponding number densities.
In a uniaxial nematic composite, all the components

are distributed uniaxially around the same nematic di-
rector vector n. Introducing the long axes of the
molecules am and the unit vectors of the chain direc-
tions an, one can write their momentary polarizabili-

ties as β̂α = βα⊥Î + ∆βαaα ⊗ aα, express the averages
〈aα⊗aα〉 = Î(1−Sα)/3+Sαn⊗n using the correspond-
ing scalar nematic order parameters Sα and obtain the
averaged polarizability tensors as

〈β̂α〉 = β̄αÎ + Sα∆βαn⊗ n, (24)

where the isotropic polarizabilities read β̄α = βα⊥ +
∆βα(1− Sα)/3.
Now assuming that moderate anisotropies ∆βα give

rise to a relatively small anisotropy of the composite per-
mittivity ∆ε, one expands Eq. (23) and write

∆ε =
4π

9
(ε⊥ + 2)2

(

∆βmρmSm +
∞
∑

n=2

〈∆βn〉ρn
)

, (25)

while the isotropic part of the composite permittivity sat-
isfies the generalized Clausius-Mossotti relation

ε⊥ − 1

ε⊥ + 2
=

4π

3

(

βm⊥ρm + βnpρnp +

∞
∑

n=2

βn⊥ρn

)

, (26)
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which includes also the contribution from the isotropic
non-aggregated NPs.
One notes that Eqs. (25) and (26) are not expected to

be quantitatively precise because the neglected correla-
tion corrections may be significant. At the same time,
these equations can be used to estimate the dependence
of the refractive indices of the nematic composite on the
concentration of NPs, their aggregation and ordering pro-
vided that the effective polarizability of a NP in the ne-
matic solvent is known.

C. Low frequency dielectric constant of a strongly

polar nematic composite

Low frequency dielectric constant of the nematic phase
composed of strongly polar molecules is mainly deter-
mined by the orientational fluctuations of permanent
molecular dipoles while the molecular polarizability gives
a much smaller contribution. Indeed, the static dielectric
constant of a strongly polar nematic can be of the order
of 100 while a typical contribution from the molecular
polarizability is of the order of 3 [21]. In this case, the
macroscopic polarization can be expressed as a sum of
averaged molecular dipoles of all components α of the
mixture in the unit volume:

P =
∑

α

ρα〈µα〉, (27)

where µα is the permanent molecule/particle dipole of
the component α.
In the static case, the average dipole can be expressed

as:

〈µα〉 =
∫

µαfα(θ)dθ, (28)

where fα(θ) is the one-particle distribution function
which can be written in the following form in the mean-
field approximation

fα(θ) = Z−1 exp [−βUMF,α(θ)− (µα ·E)] . (29)

Here UMF,α(θ) is the mean-field potential for the com-
ponent α, θ specifies the orientation of the parti-
cle/molecule, β = 1/kBT and E is the external electric
field.
The mean-field potential can be written in the form:

UMF,α(θ1) =
∑

β

∫

Vα,β(θ1, θ2)fβ(θ2)dθ2, (30)

where Vα,β(θ1, θ2) is the pair interaction potential be-
tween the components α and β.

Let us now assume that both mesogenic molecules and
NPs are uniaxial and their permanent dipoles are par-
allel to the corresponding long axes. This is also valid
for rigid chains of spherical dipolar NPs. In this case,

the pair interaction potential V depends on the unit vec-
tors a1 and a2 in the direction of the long axes of the
molecules “1” and “2”, respectively, and on the inter-
molecular vector r12, i.e. V (1, 2) = V (a1, r12,a2). The
pair potential can now be written as a sum of the non-
polar and the polar parts, V (1, 2) = Vnp(1, 2)+Vdd(1, 2),
where the nonpolar potential Vnp(1, 2) is an even function
of a1 and a2 and where the polar potential Vdd(1, 2) is
the electrostatic dipole-dipole interaction potential which
can be expressed as:

Vdd(1, 2) = µ1 · F̂ (r12) · µ2, (31)

where the dipole-dipole propagator can be written in the
form (see Eqs. (4) and (5)):

F̂ (r12) =
4π

3
δ(r12) + Θ(r12 −D)(Î − 3u⊗ u)r−3

12 , (32)

where u = r12/r12 and where Θ(r12 −D) is a step func-
tion which is equal to unity if r12 > D and vanishes oth-
erwise. One notes that the first term in Eq. (32) takes
into account a singularity of the dipole-dipole potential
at the origin (see a detailed discussion of the averaging
of the dipole-dipole potential in Refs. 15 and 22).
Substituting Eq. (32) into Eqs. (31) and (30) and tak-

ing into account that the second term in Eq. (32) vanishes
after integration over all u, one obtains the final expres-
sion for the mean-field potential:

UMF,α(θ) = U (0)
α (θ) +

4π

3
(µα ·P), (33)

Finally this mean-field potential can be substituted into
the orientational distribution function (29) and expand-
ing it in powers of the small electric field E and filed-
induced polarization P one obtains:

fα(θ) ≈ f (0)
α

(

1 +
4π

3

µα ·P
kBT

− µα ·E
kBT

)

, (34)

where the nonpolar distribution function f
(0)
α is deter-

mined by the nonpolar part U
(0)
α (θ) of the mean field

potential, that is f0,α = Z−1
0 exp

[

−βU
(0)
α (θ)

]

.

Substituting Eq. (34) into Eqs. (28) and (27) one ob-
tains the following linear equation for the macroscopic
polarization P:

Pi =
∑

α

ρα
kBT

〈µα,iµα,j〉0
(

4π

3
Pj + Ej

)

, (35)

where the averaging 〈µα,iµα,j〉0 is performed with the

nonpolar orientational distribution function f
(0)
α . As a

result, one obtains the following expression for the di-
electric polarizability tensor χ̂:

χ̂ =
χ̂0

1− 4π
3 χ̂0

(36)
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where

χ̂0 =
∑

α

ρα
kBT

〈µα ⊗ µα〉0. (37)

Taking into account that the dipole µα is parallel to the
long axis a of the corresponding molecule one obtains:

χ̂0 =
∑

α

ραµ
2
α

kBT
〈a⊗ a〉0 =

∑

α

ραµ
2
α

kBT

[

Sα(n⊗ n− Î/3) + Î/3
]

. (38)

Here Sα is the nematic order parameter of the compound
α in the mixture.

III. CONTRIBUTION OF NANOPARTICLE

CHAINS TO THE DIELECTRIC ANISOTROPY

OF A NEMATIC COMPOSITE

One notes that the dielectric properties of the compos-
ite essentially depend on the densities ρm of NP chains
of length m. The latter can be evaluated using the ex-
isting theory of chain formation in the system of polar
spheres presented, for example, in Ref. 15. According to
this theory, the distribution of chain lengths is expressed
as:

φm = vρm = em(U0+ν)e−U0 , (39)

where φm is the volume fraction of chains of lengthm, v is
the NP volume and U0 is the contact energy determined
by the dipole-dipole interaction between NPs:

U0 = ln

(

πσ3e2λ

18vλ3

)

. (40)

Here λ = µ2/kBTσ
3 has to be sufficiently larger than

unity, σ is the NP diameter, and the NP volume v has
been introduced for dimensional correctness.
In Eq. (39), ν is the Lagrange multiplier (chemical po-

tential) which is determined from the conservation rule
for NPs:

ρ =

∞
∑

m=1

mρm, (41)

where ρ is the molar fraction of all NPs which typically
is controlled in experiments.
Substituting Eq. (39) into Eq. (41) and performing the

summation one obtains:

ρ = v−1 eν

(1− eU0+ν)2
. (42)

Accordingly,

1− eU0+ν =
−1 +

√
1 + 4η

2η
, (43)

where η = vρeU0 . Thus the value of the chemical poten-
tial ν is mainly determined by the order of η.
Finally, one can readily obtain the following expression

for the number density of chains of length m:

ρm = v−1e−U0

(

1− −1 +
√
1 + 4η

2η

)m

. (44)

In principle, the order parameters Sm are different for
different m but this difference is not huge. Thus for a
crude estimate, we can assume that Sm = S where S is
the order parameter of the host nematic.

A. High-frequency dielectric anisotropy

Generally, the NP contribution to the composite per-
mittivity (25) and (26) is twofold: both aggregated and
non-aggregated NPs affect ε⊥ while only those NPs which
are aggregated into chains contribute to ∆ε.
To sum over chains of different lengths in Eq. (25) one

needs to know the quantity 〈∆βn〉 which can be eval-
uated as the average dielectric anisotropy of a chain of
n spheres (with the permittivity εnp) immersed into a
medium with the permittivity ε⊥. Although the exact
solution of such problems can be performed only numer-
ically, upon assuming a few realistic approximations one
can obtain useful analytical estimates [23]. Thus taking
into account the strongest dipole interactions between
NPs and restricting to the nearest-neighbor contributions
(already the next-nearest ones are at least eight times
smaller) and introducing the single NP dielectric polariz-
ability β1 = 1/8 σ3(εnp−ε⊥)/(εnp+2ε⊥) one can express
the dipole moment of an l-th NP in the chain of the total
length m as

pl = β1E+ β1T̂l,l−1pl−1 + β1T̂l,l+1pl+1, (45)

where

T̂l,l±1 = (3ul,l±1 ⊗ ul,l±1 − 1) σ−3, (46)

is the non-singular part of the dipole-dipole propagator,
ul,l±1 are the unit vectors between the centers of the ad-
jacent NPs and the following natural condition is satisfied
T̂1,0 = T̂m,m+1 = 0 at the chain ends.
As shown below, the effect of chain formation on high-

frequency permittivity is rather moderate, and one can
solve the system (45) by iterations. While in the zeroth
order (neglecting the NP interactions) one obtains merely
pl = β1E and the chain remains dielectrically isotropic,
the next iteration yields:

pl = β1

(

1 + β1T̂l,l−1 + β1T̂l,l+1

)

E. (47)

Since the average chain direction is controlled by
the overall composite nematic director n, the averaged
nearest-neighbor propagator reads

〈T̂l,l±1〉 = S(3n⊗ n− 1) σ−3, (48)
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FIG. 1. The effect of chain formation on the birefringence of
the nematic composite: dependences of the factor δη given
by Eq. (54) on the NP coupling strength for the NP density
ρ∗ = 0.1, 0.01 and 0.001 as indicated on the lines.

where we have again assumed that all the scalar nematic
order parameters in the composite are equal.
Evaluating the average chain dipole moment as

〈Pm〉 =
∑m

l=1〈pl〉 one obtains the following expression
for the overall average chain polarizability tensor

〈β̂m〉 = mβ1Î +
2

σ3
(m− 1)β2

1S(3n⊗ n− 1). (49)

The anisotropy of this polarizability is given by:

〈∆βm〉 = 6

σ3
(m− 1)β2

1S. (50)

Accordingly, the chain contribution to the composite
permittivity anisotropy (25) is given by

∆εch =
π

24

[

(ε⊥ + 2)(εnp − ε⊥)

εnp + 2ε⊥

]2

Sσ3
∞
∑

m=2

(m− 1)ρm.

(51)
Substituting the number densities (44) an using the sum-
mation rule

∞
∑

m=2

(m− 1)xm =
x2

(1− x)2
(52)

one can express the dielectric anisotropy in terms of the
dimensionless NP density ρ∗ = ρσ3 and the parameter λ:

∆εch =
π

24

[

(ε⊥ + 2)(εnp − ε⊥)

εnp + 2ε⊥

]2

Sρ∗δη. (53)

where the function

δη = 2 +
1

η
− 4η

(
√
1 + 4η − 1)2

(54)

effectively describes the dependence on the NP chain
formation as η is also expressed in terms of the non-
dimensional parameters as η = πρ∗e2λ/(18λ3).
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FIG. 2. The effect of chain formation on the birefringence
of the composite: dependences of the factor ρ∗δη in Eq. (53)
on the NP concentration for the coupling strength λ varying
from 2 to 10 as indicated on the lines.

Representative profiles of the factor δη as functions
of the NP coupling strength, which controls the chain
formation, are presented in Fig. 1. One notes that for
weaker coupling this factor is very small, as most of
the NPs remain single here and do not contribute to
the anisotropy. For stronger coupling, the average chain
length increases which leads to a pronounced increase of
the anisotropy. The saturation at δα ≈ 1 for strongly
interacting NPs means that in this limit practically all
NPs belong to long chains and contribute equally to the
anisotropy. Evidently, for higher total NP concentrations
this saturation occurs at smaller λ.

The chain contribution to the composite birefringence
as a function of the NP concentration is illustrated by
Fig. 2 for different values of the dipole-dipole interaction
strength. One notes that it is practically a linear function
when the NP coupling is strong enough, i.e., when all the
NPs are aggregated in long chains.

Generally, the high-frequency anisotropy is weak as the
factor δα < 1 is multiplied in Eq. (53) by a number of
other small factors. Thus for the dielectric NPs with εnp
of the same sign and order of magnitude as ε⊥, the factors
in the square brackets are of the order of unity, while
S < 1 and ρ∗ ≪ 1. On the other hand, the variation
of δα by three orders of magnitude for low ρ∗ = 0.001
in Fig. 1 suggests that this anisotropy can be employed
as a sensitive tool for quantitative assessment of the NP
chain formation in nematic composites.

B. Low-frequency dielectric anisotropy

Let us consider the nematic composite in which the
permanent dipoles of NPs are sufficiently large and larger
than those of the mesogenic molecules. Then the main
contribution to the low frequency dielectric constant of
the nano-composite stems from the NPs and their chains
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FIG. 3. Anisotropy of the low-frequency composite dielectric
susceptibility as a function of NP coupling strength for NP
densities ρ∗ = 0.001 (a) and ρ∗ = 0.01 (b). Solid lines 1 −

6 depict results of partial summation in Eq. (56) neglecting
chains with m higher than 1 − 6 correspondingly. Solid line
7 represents the dependence (58), and the dashed line shows
the anisotropy in the absence of chain formation.

and can be written using Eq. (38) as:

ε̂ ≈ 1 + 4πχ̂0 =

1 + 4π
∑

m=1

ρmµ2
m

kBT

[

Sm(n⊗ n− Î/3) + Î/3
]

, (55)

where µm is the total dipole of the chain of length m, ρm
is the number density of chains of length m and Sm is
the corresponding nematic order parameter.
One may assume that for short rigid chains of polar

NPs, the total dipole µm = mµ where µ is the perma-
nent dipole of a single NP. This assumption is obviously
not valid for long flexible chains. However, the concen-
tration of such chains is exponentially small and we will
see below that for realistic values of the NP dipole only
short chains (m = 1− 4) make a significant contribution
to the dielectric constant of the composite. In this ap-
proximation Eq. (55) yields the dielectric susceptibility
anisotropy:

∆χ =
µ2

kBT

∑

m=1

m2ρmSm. (56)

Neglecting the effect of weak external electric field on
the chain formation statistics, one can substitute here
the number densities (44), set for simplicity Sm = S,
and perform the summation over chains of all lengths
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FIG. 4. Anisotropy of the low-frequency composite dielectric
susceptibility as a function of the NP concentration for the
NP interaction strength λ varying from 2 to 10 as indicated
on the lines.

using the summation rule

∞
∑

m=1

m2xm =
x(1 + x)

(1− x)3
. (57)

Then the low-frequency dielectric anisotropy (56) can be
expressed explicitly in terms of ρ∗ and λ:

∆χ = 4ρ∗λS
4η2 + 5η + 1− (3η + 1)

√
1 + 4η

(

−1 +
√
1 + 4η

)3 . (58)

In Fig. 3, the dielectric anisotropy given by Eq. (58) is
presented for different NP molar fractions as a function
of the parameter λ which describes the strength of the
dipole-dipole interaction between NPs. For comparison
we also present the corresponding variation ∆χ̃ = λSρ∗

of the dielectric anisotropy of the composite without any
chains, as well as the results of the partial summation
in Eq. (56) which show the relative scale of contribu-
tions from chains of different lengths. One can see that
the chain formation can modify the dielectric properties
by orders of magnitude when the NP interaction (deter-
mined by the permanent dipole) is sufficiently strong. At
the same time, for weak interaction, the effect of chains is
practically negligible and the NPs respond to the electric
field independently. For moderate interactions, there ex-
ists a noticeable area of λ, where the formation of short
chains (dimers and trimers) contributes to ∆χ consider-
ably, while the effect of longer chains is practically absent.
One can readily see in Fig. 3 that a contribution from

monomers and dimers (similar to that from monomers
and n-mers for n = 3, 4, 5) first increases with the in-
creasing dipolar strength λ, then reaches a maximum
and finally begins to decrease. The decreasing stage cor-
responds to the range of λ which correspond to the for-
mation of longer chains which make a predominant con-
tribution to the dielectric anisotropy. In this range, the
contribution from dimers, trimers etc. decreases due to
a decrease of the corresponding number densities. The
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increasing stage corresponds to the range of smaller λ
where the corresponding short chains make a predomi-
nant contribution.
Finally, the variation of the dielectric anisotropy as

a function of the NP concentration for different values
of the dipole-dipole interaction strength is presented in
Fig. 4. Evidently, the increase of the NP concentration by
an order of magnitude results in the increase of the dielec-
tric anisotropy by several orders of magnitude depending
on the value of the parameter λ. Thus one can readily
see (compare also with Figs. 3a and 3b) that the ex-
perimentally observed increase of the dielectric constant
[9, 13] at very low NP number density ρ = 10−2 − 10−3

can be explained by the effect of chain formation only if
the dipole-dipole interaction strength is sufficiently high
which is the case for ferroelectric NPs with large sponta-
neous polarization.

IV. DISCUSSION

In this paper we have presented a general statistical
theory of the dielectric susceptibility of nematic liquid
crystal mixtures, including nematics doped with polar
NPs, which in principle enables one to take into ac-
count intermolecular and interparticle correlations. At
this stage, a general theory can only be developed for
the limiting cases of high and low frequency. The general
theory has been used to obtain an approximate explicit
expression for the sum of contributions from NP chains
of all lengths to the birefringence and to the anisotropy
of the static dielectric constant and to study the depen-
dence of the dielectric anisotropy on the NP concentra-
tion and the dipole-dipole interaction strength which is
mainly determined by the value of the NP permanent
dipole.
Strongly polar NPs are expected to form chains or,

at least, dimers and trimers, which can make a signifi-
cant contribution to the dielectric constant of the nematic
composite. In fact a contribution from chains of strongly
polar NPs can be orders of magnitude larger than that
of single NPs. In the case of ferroelectric NPs with large

spontaneous polarization [9, 13, 18, 24] the dipole-dipole
interaction at the contact distance between NPs is large
enough and this enables one to explain why doping of a
nematic LC with a very low concentration of NPs (with
number density of the order of 10−3) may result in a sub-
stantial increase of the dielectric anisotropy comparable
to the anisotropy of the nematic host itself [9, 13]. In
the case of moderate dipole-dipole interaction between
NPs, the dielectric anisotropy is mainly determined by
short chains including dimers, trimers, etc., which still
make a much larger contribution than individual NPs.
The dependence of the dielectric anisotropy on the con-
centration of NPs has also been evaluated numerically.
The general theory developed in this paper has also

been used to evaluate a contribution of long chains to
the birefringence of the composite nematic phase. The
birefringence has been evaluated as a function of the NP
concentration and the dipole-dipole interaction strength.
As shown in Section III, the behavior of the birefringence
at low non dimensional molar fraction of NPs (e.g. at
ρ∗ = 0.001) can be used for a quantitative assessment of
the chain formation in nematic composites.
Finally, one notes that the formation of dimers of mag-

netic dipolar spherical NPs in an isotropic fluid at ex-
tremely low concentration of NPs accounts for the exper-
imentally observed birefringence induced by the external
magnetic field [25]. In such a fluid, the macroscopic mag-
netic anisotropy is determined by the orientational order-
ing of dimers of magnetic NPs induced by the external
field, and theoretical estimates of dimer concentration
can be used to explain the experimentally observed de-
pendence of the birefringence on the external magnetic
field [25].
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