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Abstract

A model for availability growth is developed to capture the effect of sys-

temic risk prior to construction of a complex system. The model has been

motivated by new generation offshore wind farms where investment decisions

need to be taken before test and operational data are available. We develop

a generic model to capture the systemic risks arising from innovation in evo-

lutionary system designs. By modelling the impact of major and minor in-

terventions to mitigate weaknesses and to improve the failure and restoration

processes of subassemblies, we are able to measure the growth in availabil-

ity performance of the system. We describe the choices made in modelling

our particular industrial setting using an example for a typical UK Round

III offshore wind farm. We obtain point estimates of the expected avail-

ability having populated the simulated model using appropriate judgemental

and empirical data. We show the relative impact of modelling systemic risk

on system availability performance in comparison with estimates obtained
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from typical system availability modelling assumptions used in offshore wind

applications. While modelling growth in availability is necessary for mean-

ingful decision support in developing complex systems such as offshore wind

farms, we also discuss the relative value of explicitly articulating epistemic

uncertainties.

Keywords: availability growth, systemic risk, offshore wind farm, condition

monitoring

1. Introduction

Our model is motivated by the need to support risk management deci-

sions in offshore wind, where there is considerable innovation as the industry

expands [20]. Empirical evidence indicates that availability performance of

new farms has been below expectations during early operational life, with

operating targets only being achieved after growing availability through the

implementation of effective fixes over, typically, the first four years of oper-

ation [2]. However, responsive remedial action to improve availability not

only impacts on income generation, but it also implies that extra capital

expenditure is being incurred during periods when only operational expen-

diture had been planned. This contributes to the problem of lack of equity

in the UK offshore wind energy market [40, 11] since projects are in compe-

tition for capital with other investment opportunities, and hence have to be

competitive in terms of risk and return.

In a bid to increase capacity and reduce Operation &Maintenance (O&M)

costs, the Cost Reduction Task Force [20] recommends the use of innovative

designs of high-yield, high-reliability turbines. However, new generation tur-
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bines are technically immature systems that are to operate further from the

UK shore and in deeper waters than earlier versions. Hence, these new sys-

tems are subject to high physical stresses and are potentially vulnerable to

systemic weaknesses in design, operation, installation and manufacturing.

Therefore, paradoxically, the bid to decrease cost and accelerate offshore

wind deployment actually increases some investor risks. Of course, as man-

ufacturers and operators gain better understanding of operation and the en-

vironment, technical issues can be resolved through a series of interventions

such as design upgrades, modified operational processes or changes in main-

tenance activities. However, commercial organisations, private investors and

governments are required to make investment decisions prior to construc-

tion, before operating experience is accumulated. Our model is designed to

be used in this setting. By modelling the availability growth process, we are

positioned to inform the modelling of future income streams and capital and

maintenance costs.

The value of growing reliability during system design and development is

widely acknowledged [51]. Nevertheless, there has been no reported use of

reliability growth analysis in an offshore context. Instead, modelling effort

has focussed upon estimating availability performance under operational and

maintenance strategies assuming that the wind farm is operating in steady-

state [43, 39, 4, 3, 41, 12, 25, 16]. Only [3] and [16] consider departures from

steady state by considering ageing; that is, late rather than early life. It

is not possible to investigate growth using the existing availability models

through sensitivity analysis since the models structures do not allow for this.

Hence, the existing models used in offshore wind do not address the issue of
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growing performance, which is an important modelling challenge if effective

and efficient risk management decisions are to be made.

Here we develop a model for availability growth to address the particu-

lar challenges that the offshore wind sector faces. Though our model has a

general formulation meaning and it should have applicability to other sys-

tems for which availability, rather than just reliability, is a key performance

measure. We formulate a model to represent systematic failures triggered

by weaknesses in, for example, design, manufacture and/or installation. The

model, when appropriately combined with stochastic processes representing

random failure and restoration events, provides a measure of availability. We

assume that major interventions to address systemic weaknesses are made

at discrete time points associated with what we term an innovation. By the

term innovation we include, for example, re-design of system parts, major

changes to installation processes, new vessel options for routine maintenance.

In an offshore wind context, such innovations are likely to be scheduled to

allow for the logistic delays in accessing the farm. Between innovations we al-

low for learning effects, since it is not unreasonable to expect maintainers and

operators to continuously adapt their procedures and processes to improve

the execution of routine tasks. The creation of an availability growth model

allows us to explore the impact of different scenarios arising from systemic

weaknesses in equipment, and to examine the cost-effectiveness of mitigation

strategies.

In offshore wind, as for many other system development processes, the

design is evolutionary implying that the current generation is related to the

previous one [37, 53]. For example, technology is largely based on modified
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onshore and early offshore wind turbines. In some areas, such as cable in-

stallation, there has been significant learning through method adaptation [1].

Offshore wind foundations are designed on the basis of principles applied in

oil & gas, and installation of these structures is performed using mainly oil &

gas vessels and procedures [47]. Nevertheless, innovation is necessary for new

generation farms - such as the UK Round III sites - to deal with increased

water depth and distance from shore [1]. Innovation is the driver of change

between generations of product or process design, but is also of itself a major

risk to future performance.

Typically a new system evolutionary design needs to meet an availability

performance target at least equal to that achieved by the previous genera-

tion. On the basis of operational experience from earlier generation systems

and analogous systems, it is possible for suitably qualified experts to make

assessments of potential failure modes, make useful assessments of their im-

pact (e.g. in terms of shortening lifetimes), and advise on potential mitiga-

tion strategies. By using the existing methodologies for expert judgement

processes for this type of problem [49, 23, 7], we have structured our model

through discussion with domain experts and practitioners.

In developing our model we draw upon the existing body of knowledge

for reliability growth modelling and the limited consideration of availability

growth. For example [9, 10, 26, 42, 17] are amongst many authors who pro-

pose models for reliability growth that is typically positioned during product

development, where the goal is to improve reliability by identifying and re-

moving weaknesses. The effect of modifications in such models is represented

as a learning curve [15, 10] but models also exist that allow for the repre-
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sentation of a series of discrete modifications through, for example, struc-

tural changes in the failure intensity [44, 17]. Beyond the classical reliability

growth methods for both hardware and software systems in development,

there are also models proposed for supporting reliability growth during de-

sign [51] and through life [50]. These models tend to be framed from the

perspective of the owner of the design blueprint.

To model availability -rather than reliability- growth, the premise of mod-

elling needs to be extended to represent interventions that intend not only

to remove the sources of potential failures, but also to reduce the restoration

time. There is limited mention of such models in the literature. For exam-

ple, the models found in [48, 29] assess availability growth for software rather

than hardware, but this is achieved exclusively through a fault removal pro-

cess - implying that there are no interventions associated with the restoration

process. Hence, these papers essentially apply reliability growth models to

situations where restoration durations are assumed constant.

Our context requires us to draw on existing thinking about reliability

growth to develop a model for availability growth that can be used not only

by those with design responsibility, but also by those involved in financing

and operating the system. We seek to model availability during early opera-

tional life of a system because this is the period during which many teething

problems are surfaced in use and because of the limited nature of Original

Equipment Manufacturer (OEM) warranties, unavailability in early life has

an impact on both OEM and system operator. Our modelling approach is

distinctive because we provide a single framework which integrates the effect

of interventions intended to improve reliability with the effect of interven-
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tions intended to reduce restoration times, in order to estimate availability

during specified time horizons. We explicitly include in the model the effect

of condition monitoring, as this would allow us to predict the likely impact

of investing in this type of maintenance strategy on system availability. The

model output is an indicator of availability-informed capability that captures

the effect of partially operating turbines on farm energy generation. Reduced

output might occur, for example, when operators de-rate degraded turbines

to accommodate logistic delays in gaining access for maintenance.

In this article we describe the formulation of the growth model and illus-

trate its application to an offshore wind farm example. We believe this article

makes both a methodological and a contextual contribution. Methodologi-

cally we introduce a new model for system availability growth that extends

current knowledge of reliability growth modelling. Contextually we show the

effects of systemic risk on offshore wind farm availability, thereby addressing

a shortcoming of the existing availability models proposed for operational

and maintenance decision support in this industry. As presented in this arti-

cle, our model only considers aleatory uncertainty; that is, natural variability

between different systems, for example the stochastic time to failure of each

wind turbine. When considering the behaviour of future systems, which is

when this model will be particularly useful for decision support, there are

clearly also state-of-knowledge (i.e. epistemic) uncertainties. For example,

in the application example given here, the design modifications are modelled

as perfectly removing anticipated weaknesses. But assuming perfect fixes can

be naive and by extending the model to include representation of state-of-

knowledge uncertainties, we can better model the efficacy of innovations on
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performance. The modelling required to represent state-of-knowledge uncer-

tainty in this setting is quite substantial and goes beyond the objectives of

the present article. In [54] we explain how the availability growth model can

include representation of state-of-knowledge uncertainty, as well as aleatory

uncertainty, and examine the implications of uncertainty assessment for more

effective systemic risk reduction to better support dialogue between the fi-

nancial and engineering stakeholders in the offshore wind sector.

This article is structured as follows: Section 2 introduces our general ra-

tionale for availability growth modelling, while Section 3 presents the math-

ematical foundations of our model. Section 4 provides an example that ex-

plains how we might scope, populate and use the model for a real context

based on a typical UK Round III wind farm and examines the impact of

appropriately modelling growth. Section 5 concludes by reviewing the limi-

tations as well as benefits of our approach and identifies areas of further work,

including a discussion of the relative value of modelling state-of-knowledge

uncertainties.

2. Modelling Rationale

Technical availability is the key modelling criterion of the system (i.e. the

offshore wind farm). The system is assumed to be operating fully or partially

(i.e. uptime performance) or not (i.e. downtime performance). System per-

formance depends on the performance of constituent subassemblies. Uptime

performance reaches target levels when the actual reliability of subassemblies

is as planned. Likewise, target downtime performance is achieved when there

are no prolonged downtimes of subassemblies due to, for example, logistics
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Figure 1: Conceptual framework for availability growth model. Oval nodes represent

triggers and rectangular nodes represent interventions.

or weather-induced delays.

Figure 1 presents a visual representation of our modelling rationale show-

ing the factors that may increase the chance of below-target uptime and/or

downtime performance and subsequently impact on system availability. The

factors have been identified through conversations with relevant engineers

and categorised according to their effect on failure or restoration processes.

2.1. Factors Influencing Uptime

Inadequacies in the design, manufacturing defects or operational errors

are factors that can lead to premature wear-out, increased vulnerability to

external shocks, or both. Collectively we call these factors Triggers since

they are sources of systemic risk that can reduce subassembly reliability. We
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define three classes of trigger as follows.

Design inadequacies are issues with system design caused either by an

inappropriate blueprint for the specified operating conditions, or by design

environmental parameters that poorly reflect actual operating conditions.

Consider offshore wind transformers which can be placed in the bedplate

exposing them to vibration. Levels of vibration are not fully understood be-

cause new generation turbines are larger and operate further from shore. This

introduces risk of design inadequacy. We anticipate that upscaling offshore

wind subassemblies can introduce more general issues with the design. For

example, it has been observed that larger gearboxes tend to be less reliable

than smaller ones [46].

Manufacturing faults occur when a shortcoming in the production process

control and quality management of the manufacturer allows for defects to

remain and be realised in operation. For example, offshore wind turbine

blades are prone to manufacturer faults as they require a particularly labour-

intensive manufacturing process, increasing the potential for human error

during manufacturing.

Operational errors relate to human error during repair or installation.

For offshore wind farms in particular, installation error can be an important

driver of early-life reliability. Activities such as the connection of transmis-

sion cables, for example, are prone to this type of issue: a combination of

tight deadlines, schedule pressures and task complexity introduce the poten-

tial for faults and errors during installation that can lead to decreased cable

reliability.
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2.2. Factors Influencing Downtime

In general, restoration depends on factors such as difficulties in acquiring

resources and gaining access to site. For example, harsh wind and wave

conditions can render an offshore wind farm site inaccessible for extended

periods of time delaying maintenance activities and extending restoration

times. Offshore wind sites can also experience considerable logistic delays.

Operations like gearbox replacement require expensive specialised jack-up

vessels which are typically hired. So, repair is associated with procedures

such as booking and transferring the vessel between sites, which can result

in additional delay.

We model such weather-induced delay as a random variable, which we call

waiting time. Waiting time represents the period between when maintenance

crew and resources are ready and when the trip to the site commences. The

uncertainty on waiting time is determined conditionally on the failed sub-

assembly, since the type of failure determines the period over which weather

conditions need to be favourable, and on the time of the year, because wait-

ing times are longer in the winter months - at least in the UK. We estimate

the waiting time distributions using historical wind and wave data using an

algorithm developed in [13].

2.3. Interventions

The model aims to capture the integrated effect of all factors affecting sub-

assemblies on system availability, and to predict the evolution of availability

as technical, operational, and organisational interventions are implemented.

We classify Interventions in terms of their effect on availability. As in Ansell

et al. [5], we separate interventions into innovations, which have a major
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effect on performance, and minor adjustments, which result in less radical

improvement.

We define Innovations to be radical actions that change the basic un-

derlying properties of the system. For example, redesigns to address design

issues typify an innovation that affects subassembly reliability. We allow for

the chance of achieving target reliability to differ between a new generation

design and an upgrade. Innovations also relate to asset-management deci-

sions where, for example, employing different operational strategies, such as

fix on failure or charter contracts etc., might result in different logistic delays.

Equally purchasing a new vessel might affect weather waiting times.

We define Minor Adaptations to be interventions that impact on the sys-

tem in a more gradual manner relative to the effect of innovations. Typically,

Minor Adaptations are related to learning and the accumulation of experi-

ence with the system and its operation. For example, as time progresses,

maintenance crews can become more effective conducting low-level mainte-

nance activities such as inspections, calibrations etc. and so may be less

likely to make an error during large-scale maintenance operations such as

replacements.

We also identify a third class of intervention that requires separate con-

sideration in our model. We name this third class Maintenance Strategy.

It represents the influence of maintenance on the condition of subassemblies

and, thus, on the pattern of failures. Maintenance Strategy encompasses both

the type of intervention (i.e. preventive maintenance, corrective maintenance

or condition monitoring) and the effect of intervention on the system condi-

tion (i.e. perfect or imperfect repair). For example, maintenance actions such
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as carbon brush replacement have a minor effect on turbine condition and

are modelled as imperfect repair, implying the subassembly state after main-

tenance is either as it was just before failure, or somewhere in between this

and as good as new. Major maintenance activities, such as hub replacements,

restore the subassembly to its original condition, and are modelled as perfect

repairs. Our model allows for the modelling of different levels of imperfect

maintenance; however, we note that it is not primarily designed to optimise

maintenance logistics, as this would go beyond the level of discrimination of

the model.

3. Availability Growth Model Mathematical Formulation

3.1. A Parametric Model for the Hazard Rate of a Subassembly

To represent subassembly failure behaviour we classify underlying failure

mechanisms broadly into shocks and wear-out. Shocks are external single

stress events whereas wear-out relates to accumulated damage. We assume

that subassemblies go initially through a wear-out free period where shocks

dominate, which ends when wear-out begins. It is not expected for subassem-

blies to age prematurely, and target reliability profiles assume that wear-out

occurs after early life.

We refer to the initial shock-dominating period as Stage 1, and to the

succeeding wear-out and shock period as Stage 2. Let Sj be the time the

subassembly leaves Stage j, for now considered fixed. The lifetime of the

system is broken down into distinct intervals [S0, S1) and [S1, S2) where S0 =

0, S2 = ∞. Let U(t) denote the system stage at time t viz.

U(t) = j ⇔ Sj−1 ≤ t < Sj , for j = 1, 2 (1)
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First, we define the failure behaviour of the subassembly distinctly over

the different lifetime stages. For j = 1, 2, let Tj be the elapsed time from

Sj−1, the time the subassembly leaves Stage j − 1, until its first failure from

a mechanism relevant to Stage j. We assume Tj is a continuous random

variable with cumulative distribution function Fj . Given that U(t) = j, the

system has (conditional) hazard rate function, or Force of Mortality (FOM),

given by

mj(tj) =
P (tj ≤ Tj < tj +∆tj)

P (Tj > tj)
=

fj(tj)

1− Fj(tj)
, where tj = t− Sj−1. (2)

Furthermore, let random variable W1 with distribution function G1 represent

the time when wear-out starts having an effect. A subassembly enters Stage

2 only if the onset of wear-out precedes a shock failure. Figure 2 presents a

visual representation of this reasoning.

Figure 2: Lifetime stages of a subassembly until time to first failure T . Tj is the elapsed

time from Sj−1, the time the subassembly leaves Stage j − 1, until its first failure from

a mechanism relevant to Stage j (j = 1, 2). Stage 1 is a shock-dominating period. Stage

2 is a period of both shocks and wear-out mechanisms. W1 is the time that elapses from

start of operation until the subassembly starts to wear (leaves Stage 1).

Let random variable T with distribution function F represent the lifetime

of the system, measured from the start of operation until the first failure.
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Assuming shocks and the onset of wear-out act as independent competing

risks, we can write

T = min{T1,W1}+ T2I(T1>W1) (3)

where IA is the indicator variable of the event A. Now, the (unconditional)

hazard rate of the subassembly given by

h(t) =
P (t ≤ T < t+∆t)

P (T > t)
=

f(t)

1− F (t)
. (4)

can be defined conditionally as

h(t) = h(t|Ht−) = mj(t− Sj−1) (5)

where Ht− is the relevant system data observed until just before time t, such

as the lifetime stage, as well as wider operation and maintenance information.

Later this will be specified in more detail.

Shock failures, which dominate Stage 1 of the subassembly lifetime, oc-

cur at random and are represented by a constant hazard rate. Using an

exponential distribution for F1 implies that m1(t1) = ρ is constant. Wear-

out mechanisms appear when the subassembly enters Stage 2, in addition to

shock failures, implying that m2(t2) = ρ+ h(t2) where h(t2) is the wear-out

hazard and can be represented by a monotonically increasing function - with

time, or any other proxy of damage accumulation.

The choice of an increasing hazard rate function to represent wear-out

depends on the level of knowledge of the underlying degradation mecha-

nisms and the available data. Our model structure allows degradation to be

modelled explicitly or implicitly, depending on the application. When degra-

dation data are available allowing internal failure mechanisms to be traced,
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then a degradation model can be used. See, for example [32]. If sufficient

degradation data to allow model specification are not available, we represent

wear-out failure using parametric models for the lifetime distribution. For

illustration in this article we assume a Weibull model to represent wear-out

failures, implying that m2(t2) = ρ+ ηβ(t2 − s1)
β−1.

Our parametric model bears similarities with other approaches. For ex-

ample, we break down the time to signal into smaller segments (i.e. shock

and wear-out dominated periods) to model system lifetime in more detail

than the Delay Time model [8, 52] and we relax the assumption made by

[6] that the times at which the system enters a lifetime stage are always

observable by the operator.

Figure 3 illustrates the hazard rate for a subassembly entering Stage 2 at

time S1 = s1. A subassembly achieving at least target reliability will have

relatively lower rate of shock failures ρ, an onset of wear-out s1 outside the

early life window, and relatively slower rate of increase in the wear-out hazard

rate, as shown in Figure 3(a). If the subassembly performs below target then

it is subject to more frequent random failures (ρ′ > ρ) throughout the whole

early life and premature, more severe wear-out (s′1 < s1); see Figure 3(b).

3.2. Condition Monitoring of Subassemblies Subject to Wear-out

Condition Monitoring (CM) can indicate incipient failure by tracking

measurable wear-out indicators associated with the underling degradation

process and releasing a signal prior to failure; see Figure 4. For example,

wear-out of offshore wind turbine gears and bearings can increase the gen-

eration rate of particles above a certain size in gearbox oil [24]. Upon the

observation of the CM signal, operators can respond by, for example, de-
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(a) Target (b) Below target

Figure 3: Subassembly hazard rate: a subassembly with below-target reliability (b) has

more frequent shock failures than in (a) and premature and/or more severe wear-out.

rating a damaged turbine, to extend its residual life and allow time to plan

maintenance actions. We include CM explicitly within the availability growth

model because it allows us to predict the likely impact of investing in CM on

farm availability.

To capture the effect of CM on a subassembly’s failure behaviour, we

extend the hazard model presented in Section 3.1 to include the wear-out

indicator. We assume the CM indicator starts evolving when the subassembly

enters Stage 2 at time S1 (i.e. it begins to wear). Given that the signal

threshold is passed after time W2, counted from S1, then time S2 = S1 +

W2 is when the subassembly enters Stage 3. T3 denotes the subassembly’s

lifetime given that a CM signal is observed. Therefore, the CM signal further

partitions the subassembly lifetime, as shown in Figure 5, into

0 ≡ S0 < S1 < S2 < S3 ≡ ∞. (6)

Since the degradation and indicator processes are associated, the time to

the CM signal, W2, and the conditional lifetime of the subassembly in Stage

17



Figure 4: Degradation process and indicator process curves: the two processes are corre-

lated; the indicator process reaches the critical threshold before the degradation process,

giving a signal prior to actual failure.

2, T2, should both depend on the same underlying degradation process. Let

W2 have distribution G2. We can write F2(t2) = F2(t2|θθθ) and G2(w2) =

G2(w2|θθθ) where θθθ is the vector of the degradation model parameters. Given

θθθ, T2 and W2 are conditionally independent random variables, then within

an independent competing risks framework, the subassembly lifetime in (3)

can be written as

T = min{T1,W1}+min{T2,W2}I(T1>W1) + T3I(T2>W2) (7)

where IA is the indicator variable of event A. Note that if upon observation

of the CM signal at time S2, an operator chooses not to act (e.g.to de-rate

the turbine comprising the degrading subassembly) then random variable T3

has the same distribution as T2.

To apply the availability model, the anticipated effectiveness of CM (i.e.

the more correlated F2(·) and G2(·), the more effective the CM) and the

18



Figure 5: Lifetime stages of a subassembly subject to condition monitoring until time

to first failure T . Tj is the elapsed time from Sj−1, the time the subassembly leaves

Stage j − 1, until its first failure from a mechanism relevant to Stage j (j = 1, 2). Stage

1 is a shock-dominating period. Stage 2 is the period when both wear-out and shocks

mechanisms are present, but before the release of a CM signal. Stage 3 is the period when

both wear-out and shocks mechanisms are present, after the observation of a CM signal.

W1 is the time that elapses from start of operation until the subassembly starts to wear;

W2 is the time that elapses from the onset of wear-out until the CM signal is observed.

operating practice in response to the CM signal should be indicated. For

example, a particular CM system may give a signal far in advance of failure,

upon which operating performance is reduced to partial operation through

some planned intervention.

3.3. Intensity of Events

The hazard rate given in (2) describes the subassembly lifetime in terms

of its time to first failure. Since offshore wind subassemblies are repairable

systems, we use a marked point process {Tn, Jn}n≥1 to describe their alter-

nating behaviour between failure and repair, where Jn = 1 when a failure

occurs at Tn and Jn = 0 otherwise (n = 0, 1, 2, . . .). Let N(t) and M(t) be

the number of failures and restorations in (0, t] respectively, where t is cal-

endar time. The conditional intensity of the marked point process is defined
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as

ι(t|Ht−) =







λ(t|Ht−) : subassembly operates just before time t

µ(t|Ht−) : subassembly does not operate just before time t = 0

where

λ(t|Ht−) = lim
∆t→0

Pr(failure in [t, t+∆t)]|Ht−)

∆t
(8)

and

µ(t|Ht−) = lim
∆t→0

Pr(restoration in [t, t +∆t)]|Ht−)

∆t
. (9)

Ht− is the history of the subassembly until, but not including, time t. History

represents the information about a subassembly’s past life that needs to be

captured to support model computations. For simplicity, from this point

forward we use ι(t), λ(t) and µ(t) instead of ι(t|Ht−), λ(t|Ht−) and µ(t|Ht−)

respectively.

The intensity λ(t), or the Rate of Occurrence of Failures (ROCOF), is

the outcome of the interaction of the inherent reliability characteristics of the

subassembly, described by the hazard h(t), with the maintenance type (i.e.

corrective or preventive) and effect (i.e. perfect or imperfect repair). The

hazard defines the baseline condition of the subassembly, while the mainte-

nance type and effect determine how this is controlled during operation. In

our model, the effect of maintenance is captured via the concept of virtual

age v(t) [27]. We have

λ(t) = h(v(t)), t > 0 (10)

where v(t) is equal to the cumulative uptime denoted with x(t), where

x(t) =

N(t)+M(t)
∑

k;Jk=1(Jk=0)

Tk − Tk−1. (11)
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For a new system v(t) = 0. Therefore, perfect maintenance essentially resets

the virtual age of the turbine to zero, whereas minimal repair sets its value

to the one it had just before failure. Several models have been developed for

cases where repair effect lies between perfect and imperfect, e.g. [14], and

might provide alternative formulations for the availability model.

Whereas virtual age v(t) describes the effect of maintenance actions and

repair, the effect of routine maintenance, such as oil changes, cleaning and

lubrication, is captured implicitly by assuming that the pattern implied by

the intensity in (10) assumes that such actions are undertaken properly. It is

interesting to note that under the assumption of minimal repair, the hazard

rate h(·) and the failure intensity λ(·) have the same mathematical formu-

lation, even though they represent different quantities. It also emerges that

the history Ht− in (10) not only includes a subassembly’s lifetime stage, but

also its virtual age, as defined on the basis of information on the time and

type of the last maintenance.

The repair intensity µ(t) can be expressed by a relationship similar to (10)

where h(·) relates to the maintenance time distribution and v(t) accounts for

the amount of continuous time the system is under repair (i.e. cumulative

downtime) as measured from the last failure event and excluding any logistic

or weather delays.

3.4. Effect of Interventions

3.4.1. Innovations

Since innovations are planned large-scale operations intended to have a

radical effect on system performance, we model them discretely at times

S1, S2, . . . , Sm, which are assumed to be known a priori. Within the UK
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offshore wind energy context this is a reasonable assumption, since interven-

tions such as design upscaling and subassembly re-fitting typically take place

during the summer months, to take advantage of the relatively less severe

weather conditions on site. Therefore, innovations partition the early life

(0, T ] of the system as

0 =< R1 < R2 < . . . < Rm = T.

Let ιi(t) and hi(t), t > Ri, denote the conditional intensity and hazard func-

tion respectively of a system after the i-th innovation (i = 0, 1, ...). Similarly

to (10), the failure intensity and hazard function are associated through

equation

λi(t) = hi(v(t)), t > 0. (12)

We assume the (i+1)-th innovation has an effect on the basic behaviour

of the subassembly, as expressed via hi(·). Innovations intend to bring the

below-target reliability back to the target level and shift the subassembly

profile from the one portrayed in Figure 3(b) to the one in Figure 3(a). This

is achieved by making modelling choices to either reduce the shock failure

rate (ρi < ρi+1), or delay wear-out (Si
1 < Si+1

1 ), or decrease the wear-out

rate. For the latter case, the wear-out rate can be modified by modulating

the scale parameter of the lifetime distribution. For example, [38] make

a similar assumption when capturing enhancements in a software reliability

context. [17] assumes that innovations impact the scale parameter of the Non

Homogeneous Poisson Process model, whereas the shape parameter after

intervention remains the same. In the context of accelerated life testing,

[32, 35] allow a change in stress level to impact the location of the log-

lifetime (i.e. the scale parameter of the lifetime distribution), rather than
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the failure mechanism as expressed via the shape parameter of the lifetime

distribution. However, these assertions are typically formed on the basis of

statistical analysis, and the assumption that increased stress impacts only on

one parameter is not always appropriate - see [31, 33] and references therein.

To impose the orderings implied by the effect of innovations on shocks

and wear-out, we intentionally use a simple version of the model and assume

the following mathematical relationships:

ρi+1 = φiρ
i, Si+1

1 = (1 + φi)S
i
1 and ηi+1 = φiη

i (13)

where ηi is the scale parameter of the lifetime distribution of a system sub-

jected to i innovations and 0 < φi ≤ 1 is a fix-effectiveness parameter. One

can produce a more elaborate model by defining as many fix-effectiveness pa-

rameters as the number of parameters affected by the innovation, or simplify

the model further by assuming that φi = φ for every i. Regardless of the

choice, determining the intensity in (10) requires information on the number

of innovations undertaken to be included in history Ht− .

As an example, consider a subassembly subject only to wear-out with

hazard rate

h0(v(t)) = ηβ(v(t))β−1, (14)

and, suppose that the subassembly is subject only to corrective maintenance

with minimal repair and negligible restoration times. These assumptions

imply that v(t) = t and that

λ(t) = hi(t) = φi−1ηβtβ−1 for some 1 ≤ i ≤ m. (15)

Figure 6 shows these assumptions result in a stepwise change in the sub-

assembly intensity.
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Figure 6: Innovations (φ = 0.9) occur every two time periods. The lifetime of the system

is represented by a Weibull distribution with shape parameter β = 1.5 and scale param-

eter η = 0.5. The system is subject to corrective maintenance with minimal repair and

restoration times are assumed negligible.
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3.4.2. Minor Adaptations

Recall that the hazard in (10) expresses the failure behaviour of a sub-

assembly subject to routine maintenance. As experience accumulates and

operators learn, maintenance practices are adjusted and procedures are im-

proved. These changes, referred to as minor adaptations, can have an almost

continuous positive effect on system performance as expressed by the failure

or restoration intensities. We model this effect in terms of function ϕ(·).

The failure intensity of a subassembly after the i-th innovation and sub-

ject to minor adaptations is now given by

λ(t) = hi(v(t))ϕ(t). (16)

A number of formulations for ϕ(t) can be used to represent this ‘learning

effect’ due to minor adaptations. Here, we choose a function that is bounded

and non-increasing function of t to represent the decreasing chance of failure

resulting from learning, and we have

ϕ(t) = 1−
t

t+ γ
. (17)

Since learning is the result of accumulated operating experience, it is

reasonable to assume that minor adaptations depend on calendar time t,

and the history Ht− should include this information to allow determination

of the failure intensity. In Figure 7 one can see how the failure intensity of

the subassembly used in the simple example described previously is modified

due to minor adaptations, before any innovations take place.

3.5. Estimation of System Availability Performance

A performance indicator we call availability-informed capability is derived

as an output of the mathematical model. Our capability measure aims to

25



Figure 7: Effect of learning on failure intensity when minor adaptations occur continu-

ously. In this example: system lifetime is represented by a Weibull distribution with shape

parameter β = 1.5 and scale parameter η = 0.5, and the system is subject to corrective

maintenance only with minimal repair and negligible restoration times.
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capture the effect of partial performance of subassemblies on the system

output, in particular the effect of partial operation of wind turbines on the

energy output from the farm. Since the power generated by a farm is the

aggregate of the power generated by individual turbines, the availability-

informed capability is defined as the fraction

Cfarm(t) =

n
∑

i=1

Pi(t)

n
∑

i=1

POi(t)
(18)

where Pi(t) is the average output power of turbine i at time t (calculated

by applying the power curve of a turbine to a reference wind speed distri-

bution at hub height), given the turbine’s operating condition, and POi(t)

is the average output power of turbine i at time t assuming it is fully op-

erational. Therefore the average farm availability-informed capability over

some interval (τ1, τ2) is given by

C(τ1,τ2) =
1

τ2 − τ1

∫ τ2

τ1

Cfarm(t)dt. (19)

A full explanation of this performance indicator and a discussion of why it

is regarded as a meaningful measure of production capability in the context

of financial analysis of offshore wind farms is given in [54].

A capability estimate is computed by representing the mathematical

model as a point process simulation. The flowchart in Figure 8 provides

the high level logic of the simulation of events through time and shows the

types of events simulated and the relationships between them. For example,

exposure to the triggers of systemic risk, shown by the shaded nodes, influ-

ences the failure events of subassemblies by modulating the hazard function,
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as does the condition of the subassembly (i.e. the virtual age) that gets mod-

ulated by maintenance. History represents the combined information about,

for example, the number of past innovations and calendar time.

4. Example

We now illustrate the application of the availability growth model for

a new generation offshore wind farm. Unlike other availability modelling

approaches used in an offshore wind context, our model allows for the repre-

sentation of both the gradual effect of minor adaptations, introduced through

the accumulation of operating experience, as well as the more radical effect

of innovations, such as the replacement of subassemblies with inherent weak-

nesses with improved versions. In our example we compare model outputs

under two scenarios: when systemic risk due to design weaknesses is con-

sidered (i.e. growth is explicitly modelled) and when this type of risk is

omitted (i.e. as in current availability models for offshore wind). The aim

of this comparison is to demonstrate the consequence of failing to represent

systemic risks, as well as the subsequent availability growth resulting from

restorative action, in estimating farm technical performance, energy output

and hence expected financial return.

Our example is based on a typical large-scale Round III UK offshore wind

farm and our modelling has been developed in collaboration with wind energy

experts. Specifically, we translated the conceptual framework shown in Fig-

ure 1 into a process to support the customisation of the general model for the

particular context as follows: firstly, we defined the system and its critical

subassemblies, for which the model was to be built and scoped the avail-
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Flow between iterations Flow between iterations 

Figure 8: High-level logic of simulation of events through time. Solid lines represent relationships between variables; Dotted

lines represent interventions to grow availability; Grey nodes denote triggers of systemic risk.
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ability growth model; secondly, we articulated the reliability and restoration

targets for the system subassemblies based upon the achievable performance

of similar relevant parts which have accrued operational experience; thirdly,

we considered the causes and effects of failure so that we appropriately model

the triggers on the uptime performance, as well as the impact of interventions

on uptime and downtime performance.

4.1. Scoping the Wind Farm System Model

Our UK round III wind farm, currently at pre-construction stage, will

comprise 150 5MW turbines. The turbines have novel design features and

are larger scale than earlier versions. Eight subassemblies (i.e. gearbox, gen-

erator, frequency converter, transformer, main shaft bearing, blades, tower,

foundations, collection cable and transmission cable) have been identified

as critical through discussion with subject experts, because they are con-

sidered to be subject to high technical and physical risk. We model each

of the critical subassemblies explicitly and treat the remaining non-critical

subassemblies as one modelling group.

Availability-informed capability is to be estimated for the first five years

of operation, which is the UK warranty period. The farm is intended to start

operation in the summer months. Engineering experts have identified the

gearbox and the frequency converter as being at high risk because these are

the subassemblies more likely to have design weaknesses. Therefore, in the

modelling we examine scenarios associated with the prevalence of systemic

risk associated with such design weaknesses and the impact of intervention

strategies both on availability levels and financially in terms of energy pro-

duction loss.
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We set the target reliability for offshore turbines to equal that achieved

by mature onshore turbines since this is consistent with engineering require-

ments. Analysis of relevant data shows that onshore turbines achieve a failure

rate of 3.81 failures/year. This failure rate includes failures of any subassem-

bly and severity, and can be broken down to rates for specific subassemblies

[22]. We use a turbine breakdown similar to that used in onshore analyses,

which allows us to set the target reliability for each offshore subassembly

equal to the level achieved by its onshore counterpart. Table 1 gives values

for the target failure rates for the critical subassemblies, whereas the target

failure rate for the non-critical group is the sum of the rates of the non-critical

subassemblies comprising the group [22].

Following [41, 18], we categorise the effects of failure into minor, moderate

and major. Restoration durations depend on the failure severity and are

taken to be 6 hours, 1 day and 2 days for a minor, moderate and major

failure respectively. The proportion of failures of different severities for each

of the critical subassemblies is also shown in Table 1 and, again, is based

on the experience from onshore farms which is considered requisite for our

offshore context in this example.

Our farmmaintenance strategy includes preventive and corrective actions.

The turbines will be subject to bi-annual overhauls during which subassem-

blies are refurbished and for modelling purposes we treat this as re-setting

the subassembly virtual age to 50% of its value prior to the refurbishment.

Condition monitoring (CM) will be installed on the gearboxes and will pro-

vide continuous data giving information about the state of the subassembly

with an average run length between signal and occurrence of failure of ap-
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Subassembly Target Failure Rate
Failure Apportionment

Major Moderate Minor

Gearbox 0.228f/yr 0.09 0.27 0.64

Generator 0.266f/yr 0.10 0.26 0.64

Frequency Converter 0.456f/yr 0.04 0.18 0.78

Transformer 0.076f/yr 0.04 0.16 0.8

Main Shaft Bearing 0.038f/yr 0.25 0.15 0.6

Blades 0.114f/yr 0.04 0.21 0.75

Tower 0.114f/yr 0.01 0.19 0.8

Foundations 0.038f/yr 0.01 0.19 0.8

Non-critical group 2.47/yr 0.01 0.19 0.8

Collection Cable 1 × 10−6f/km/yy

Transmission Cable 1 × 10−6f/km/yr

Table 1: Subassemblies target and apportioned failure rates. Source: data from [22, 41, 18].

proximately 1.5 months. Finally, minor adaptations are assumed to improve

subassembly reliability in a gradual manner. The minor adaptation param-

eter γ has been chosen on the basis of providing a reasonable learning curve

effect based on historical experience from related farms.

Observation of the CM signal will allow operators to de-rate the turbine

to limit its output in order to extend its life until the next scheduled mainte-

nance and to reduce the chance of a hard failure. If the fault signalled by the

CM cannot be rectified remotely, then the affected subassemblies join the list

of jobs awaiting repair. More generally, corrective repair will be conducted

on a first come, first served basis and will be constrained by the available

maintenance resources and the logistical accessibility. Weather delays are de-

termined as described in [13] for subassembly failure types. For example, the

average waiting time for a major gearbox failure is 9 days during the sum-

mer months and 18 days during the winter months. The condition to which

an affected subassembly returns after maintenance depends on the severity

of failure determined previously. A minimal failure is treated with minimal

repair and the subassembly is returned to an as-bad-as-old condition, while
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moderate and major failures result in repairs that are believed to return the

subassembly to 85% and 60% of what its condition was just before failure

respectively.

As mentioned, the major concerns about the new turbine to be installed

in our wind farm are the design weaknesses in the gearbox and the frequency

converter. These weaknesses, should they exist, will be prevalent in all tur-

bines in the farm, therefore they will trigger all similar subassemblies to wear

prematurely and will therefore be a source of systemic risk. To represent sys-

temic weaknesses in the model, it is necessary to determine the reliability of

subassemblies, in terms of hazard functions, given the presence of triggers.

In our example we used a structured expert judgement elicitation process to

obtain point value estimates of the parameters for the hazard-induced haz-

ard functions of each critical subassembly. Note that the expert judgement

information was obtained as part of a larger exercise reported in [55]. Ta-

ble 2 shows the point values used in this application for the scenario where

systemic risk due to design weaknesses is to be explicitly modelled.

Gearbox Frequency Converter

Shocks λ = 0.019 -

(Exponential)

Wear-out Onset µ = 0.335 µ = 0.992

(Normal) σ = 0.01 σ = 0.01

Signal η = 15 -

(Weibull) β = 1.5 -

Full Operation η = 5.15 η = 2.2

(Weibull) β = 1.19 β = 1.2

Partial Operation η = 5 -

(Weibull) β = 1.5 -

Table 2: Point estimates of parameters based on expert judgement to reflect the effect of

premature wearout due to design inadequacy of gearbox and frequency converter. The

CM indicator relates to gearbox degradation. Unit of time is a year.
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Our example aims to highlight the importance of representing systemic

risks in farm availability performance - which is a novel feature of our growth

model. Therefore we now examine the scenario where upgrades intended to

address design weaknesses of the gearbox and frequency converter designs

are rolled out across the turbines in the farm in Year 2 (i.e. a trigger exists)

and compare it to a baseline scenario where there are no systemic weaknesses

(i.e. the trigger does not exist).

4.2. Findings

Our modelling provides performance profiles for the farm over the first

five years of operation, starting in summer of Year 0, for both scenarios. The

model has been developed as a modular simulation in Matlab, making it

feasible to replace or to extend modelling features. Monte Carlo simulations

based on the computational model logic shown in Figure 8 are used to cal-

culate the aleatory uncertainty on the availability-informed capability on a

two-weekly basis using N = 100 runs. This is a limited number of simulation

runs but the choice was made as a practical trade-off between simulation

runtime and estimation accuracy. Further, since our primary goal here is to

examine patterns in availability performance profiles, we have shown only

the 50% quantiles in the model output plots.

Figure 9 illustrates the 50% quantile of bi-weekly availability-informed ca-

pability profiles under the two scenarios. When systemic design weaknesses

are not considered explicitly in the analysis, Figure 9(a) shows that perfor-

mance is below the typical target of 97% capability for the first quarter of

Year 1, before gradually improving due to the effects of minor adaptations

to achieve an availability of around 99%. However, as Figure 9(b) shows, the
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systemic effects of design inadequacies can reduce early farm performance

to a level below 90% capability. Our results show that the predicted farm

performance deteriorates prematurely during the first two years of operation

until innovations in the form of the design upgrades are undertaken during

the summer months of Year 2. Following the successful mitigation of systemic

risk, performance increases gradually. Figure 10 shows the equivalent esti-

mated failure intensity rate for the farm for our two scenarios. The common

learning effects due to minor adaptations of, for example, procedures lead to

pattern of reduction in the failure intensity under Scenario 1. The impact of

systemic risk due to the design weaknesses appears as an increasing failure

intensity over the first two years of operation before decreasing substantially

over the last half of Year 3 when the full effects of the design modification

combined with the minor adaptations are achieved across the farm.

By applying the wind speed distribution on the power curve of a turbine,

the total farm energy production and associated revenue can be estimated.

Table 3 provides the results under our two scenarios. If the energy price is

£155 per MWh, and without modelling triggers of systemic risk, then the

expected revenue over the first 5 years of operation is computed to be 1, 760

million pounds. However when systemic risk is properly accounted for in the

analysis, the farm generates a revenue of 1, 722 million pounds over the same

period. This implies that failing to model growth in availability, but instead

assuming that steady-state performance can be achieved from the outset, can

lead to an overestimation of farm revenue in the range of 38 million pounds

even before taking into account the cost of innovations. In this example these

costs would be those accrued in the re-design and re-fitting of 150 problematic
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frequency converters and gearboxes.

The example shows clearly what kind of impact systemic risks can have

on wind farm financial performance. Current modelling of offshore wind farm

availability does not take account of growth due to the risks associated with

innovation, leading to overoptimistic planning and high costs of mitigation.

Simply having awareness of this type of problem during planning and con-

tracting can focus minds on maintaining options to deal with the nature of

this issue.

Scenario
Early Life Output

Energy (GWh) Revenue (million £)

No Triggers 11,355 1,760

Triggers 11,109 1,722

Table 3: Expected farm output over early life assuming average wind speed under two

scenarios and an energy price of £155 per MWh.

5. Conclusions and Further Work

We have presented an availability growth model for a system, such as an

offshore wind farm, where innovations might be made during early opera-

tion to improve performance and estimates of availability are required prior

to entry into service. Importantly, this includes exploration of mitigation

strategies for the initial period of operation, should availability problems

emerge, and should influence logistics planning and options on service pro-

vision. While our availability growth model has been motivated by, and its

application illustrated for, the offshore wind problem, the generic structure

of the model means that it can be adapted to other domains where commer-

cially unproven technology or processes are used. The model presented is
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designed to provide insight into the effectiveness of interventions on growth

in system performance by providing availability estimates under different sce-

narios. Our example for a typical UK Round III wind farm highlights the

importance of being able to meaningfully assess farm performance over early

life when systemic risks due to design, maintenance and operational weak-

nesses may still exist. The model provides a means of measuring the impact

of systemic risk on availability performance and can be used to quantify the

financial implications of underestimating performance relative to target.

The model, as presented here, considers only aleatory uncertainties and

allows the exploration of different scenarios with decision makers. This is

useful for dealing with managers in industry as it allows them to explore

the implications of issues that they are aware of, but are not currently mod-

elling. A more sophisticated mathematical approach which uses epistemic

uncertainties to create a more formal rational decision-making model frame-

work is developed in a further paper [54]. However, this further approach

inevitably requires that decision makers “buy-in” to the expert uncertainty

assessments which have to be gathered from a variety of different stakehold-

ers. Since the availability growth scenario approach presented here already

enables decision makers to explore key problems without having to commit

to a more conceptually sophisticated and complex approach, it is genuinely

useful both to deal with those problems where the more complex approach

would probably not make a difference, and also to motivate them to go on

to the more complex approach when it is needed. Our point of view in this

regard is consistent with that expressed by I.J. Good [21] who said that a ra-

tional decision maker should take account of the cost of the decision analysis
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(to all parties) as well as the direct costs and benefits of the decision.

Our current model code is based on the set of assumptions described.

While reasonable for our example domain, they might need to be developed

for other application areas. Further, the implementation of sensitivity or

uncertainty analysis would require further consideration of the simulation

model computation so that appropriate numbers of simulation runs can be

efficiently generated to provide suitably accurate results. For example, fu-

ture work could involve the use of metamodels such as emulators [36, 28] to

approximate the simulation model and to speed up computation.

Our example provides insight into how the general growth model can be

customised for a particular system by articulating the modelling choices. For

example, the classification of subassemblies to critical and non-critical, as well

as the specific triggers considered, was achieved using the structured judge-

ment of wind energy experts, and can be modified to reflect the systemic risks

relevant to a particular situation. Similarly, the condition monitoring charac-

teristics, which we represented by the timing of the signal relevant to failure

and the operational response, can be modified to represent actual mainte-

nance of a given system. To build a meaningful model for decision makers

requires engagement with relevant engineering experts to both qualitatively

structure the model and to quantify selected parameters. We have developed

a scientific protocol to support collection and preparation of data details of

which are provided in [55]. Ongoing work includes further engagement with

stakeholders experienced in offshore wind farm engineering, technology and

operations to conduct validation studies of the availability growth model and

supporting data management processes.
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(a) Scenario 1: without systemic risk
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(b) Scenario 2: with systemic risk

Figure 9: Estimated early-life availability-informed capability for simulated scenarios: (a)

No recognised gearbox and frequency converter design weaknesses; (b) design inadequacy

weaknesses result in deteriorating farm performance over the next two years; performance

reaches target levels once issues are removed through implementation of innovations.
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(a) Scenario 1: without systemic risk
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(b) Scenario 2: with systemic risk

Figure 10: Estimated early-life failure intensity rate denoted by ROCOF for simulated

scenario:(a) No recognised gearbox and frequency converter design weaknesses; (b) design

inadequacy weaknesses result in increasing rate over the next two years before reducing

after effect of innovation.
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