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In this work we study mechanisms of solvent-mediated ion interactions with charged surfaces in ionic liquids by molecular dynamics 

simulations, in an attempt to reveal the main trends that determine ion�electrode interactions in ionic liquids. We compare the interfacial 

behaviour of Li+ and K+ at a charged graphene sheet in a room temperature ionic liquid, 1-butyl-3-methylimidazolium tetrafluoroborate, and its 

mixtures with lithium and potassium tetrafluoroborate salts. Our results show that there are dense interfacial solvation structures in these 

electrolytes that lead to a formation of high free energy barriers for these alkali metal cations between the bulk and direct contact with the 

negatively charged surface. We show that the stronger solvation of Li+ in the ionic liquid leads to the formation of significantly higher interfacial 

free energy barriers for Li+ than for K+. The high free energy barriers observed in our simulations can explain the generally high interfacial 

resistance in electrochemical storage devices that use ionic liquid-based electrolytes. Overcoming of these barriers is the rate-limiting step in 

the interfacial transport of alkali metal ions and, hence, appears to be a major drawback for a generalised application of ionic liquids in 

electrochemistry. Some plausible strategies for future theoretical and experimental work for tuning them are suggested.  

Introduction 

The Solutions of metal ions in room-temperature ionic liquids 

(ILs) are an important class of novel electrolytes for appli-

cations in electrochemical energy storage, electrodeposi-

tion and catalysis.
1�7 IL solutions of alkali metal ions (Li+ at 

the first instance) are of particular interest for the devel-

opment of high energy and power density batteries.
8�11 

These are needed for efficient energy storage for intermit-

tent power generation.
6 However, despite the very intensive 

research in this area there is still a set of open questions 

related to the non-trivial interfacial behaviour of ILs
12 and 

mechanisms of ion solvation in ILs.
13,14 Indeed, it has been 

shown that interfacial behaviour of ions in the Electrical 

Double Layer (EDL) determines some properties of IL-

based electrochemical systems,
15�20 such as their interfacial 

resistance.
8,21,22 Also, ILs are known to form long-range cor-

related interfacial structures (solvation layers) at charged sur-

faces,
12,23�30 and the role of these structures in mechanisms 

of dissolved ion interactions with the electrodes has not 

been entirely understood yet.
31

 

It has been shown that the processes of Li
+ preferential solva-

tion in the bulk of an electrolyte and its desolvation at the 

electrolyte�electrode interface make overall significant effect 

on interfacial and interphasal processes
§
 at negatively 

charged electrodes in Li-ion cells with non-aqueous electro-

lytes.
32�40 Due to its small size and, consequently, large sur-

face charge density, the Li
+
-ion is strongly solvated in most 

commonly used polar solvents
35,38�44 as well as in ILs.

44�48
 To 

make direct contact with a surface, dissolved ions need to 

break up their solvation shells and the high energy penalty 

associated with this process for strongly solvated ions like 

Li+ makes a considerable contribution to activation barriers 

for different interfacial processes in electrochemical sys-

tems. 
33 In a series of works by Xu and co-workers, it has 

been shown that the activation barriers associated with 

the interfacial desolvation of Li
+
 in polar organic electrolytes 

can be as high as 40�50 kJ mol
о1

.
35,38�40

 

Ishihara et al. recently reported experimental activation en-

ergies of lithium ion transfer reactions at the interface be-

tween Li4Ti5O12 and organic electrolytes as well as ILs.
18,49 

They found the activation energies for lithium ion transfer 

at the ILs�Li4Ti5O12 interface to be ~70 kJ mol
о1

, that is 

higher than the activation energies for lithium ion at the 

interface between Li4Ti5O12 and conventional organic electro-

lytes (~60 kJ mol
о1

).
49 These values of the activation energies 

in ILs reported by Ishihara et al. correlate with experi-

mental values of activation energies of Li
+ transport 

through a solid electrolyte interphase in different IL�

electrode systems that vary from 70 to 80 kJ mol
о1

.
50,51 

Interestingly, in the work of Ishihara et al. the activation en-

ergies for different ILs were reported to be almost the same, 

regardless of the ion composition of a particular IL.
18

 

Ishihara et al. attribute the large values of the activation ener-

gies to the formation of multilayered structures at the IL�

electrode interface.
18 This hypothesis is supported by the re-

sults of several recent molecular modelling studies,
52�55

 where 

it was shown that the formation of interfacial solvation layers 

at a charged surface in IL can lead to high free-energy barriers 

for dissolved ions to come into a direct contact with the elec-

trode surface. It has been suggested that the formation of 

these high free-energy barriers is due to a competition be-

tween the IL ions and the dissolved ions for the favourable 

electrostatic interactions with the surface.
53�55 Indeed, even 

in the case of favourable electrostatic interactions between a 

counter-ion and the electrode, there is a significant energy 

penalty for passing the dense interfacial solvation structure 

and partial desorption of IL ions from the point of contact 

between the ion and the surface.
53,54

 

Overall, our analysis of the published experimental and theoreti-

cal/modelling data on the subject discussed above led us to a 

conclusion that there are several processes that contribute to 

formation of the free energy barriers for dissolved metal ions 

to come into direct contact with negatively charged elec-
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trodes in ILs. For an IL-based electrochemical system with a 

flat non-polarisable electrode that is impenetrable for ions, 

these processes can be roughly classified into three main cate-

gories: 

1. Penetration through the dense solvation structures at the IL�

electrode interface and the consequent restructuring of the 

interfacial solvation layers near the point of the ion�

electrode contact. 

2. Desorption of IL ions from the point of contact between 

the ion and the electrode surface. 

3. Desolvation of the metal ion (release of IL anions from its 

solvation shell) at the electrode surface. 

In this work, we use fully atomistic molecular dynamics simula-

tions to reveal molecular scale details of solute alkali metal 

ion�electrode interactions in ILs with a focus on the inter-

facial free energy barriers. To understand the role of ion 

solvation in the formation of the interfacial free energy barri-

ers we compare behaviour of Li
+ and K

+ at a negatively 

charged graphene surface in pure 1-butyl-3-methylimidazolium 

tetrafluoroborate, [BMIm][BF4], and its mixtures with Li[BF4] 

and K[BF4] salts. It is known that the addition of Li
+ has 

an effect on interfacial solvation structures in ILs.
19,55,56 To the 

best of our knowledge, the interfacial behaviour of K + has not 

been studied but is important for the emerging K-ion electro-

chemical energy storage technologies. Recent work on carbon 

electrodes for K-ion batteries demonstrates that rechargeable 

K-ion batteries might be an alternative to widely used Li-ion 

batteries.
57

 Accordingly, in order to provide a better rationaliza-

tion of the interfacial behaviour of Li
+
 and K

+
 ions as well as to 

show the effect of the cation size on free energy barriers we 

studied the ion�electrode interactions at different mole frac-

tions of alkali metal salts by means of analysing potentials of 

mean force (PMFs) as a function of the distance between a 

probe metal ion and the electrode (z), i.e. the free energy 

ƉƌŽĮůĞƐ ;ȴAij(z)). Graphene was chosen as the electrode ma-

terial because of (i) its atomically flat surface and, hence, 

the possibility to use it as a tentative model to study fun-

damentals of IL interactions with surfaces
25,58,59 as well as to 

verify theoretical/modelling results,
52�55 and (ii) overall high 

interest to IL�graphene systems for electrochemical applica-

tions.
59�67

 

Technical Details 

The systems studied consisted in total of 300 [BMIm][BF4], 

Li[BF4] or K[BF4] ionic pairs, and two rigid graphene slabs 

each with the area of 3.408 nm × 3.4433 nm separated by 

adjustable distance, e.g. 8.5 nm for [BMIm][BF4]. All simula-

tions of the systems were carried out using the Gromacs 4.6 

software
68,69 

in an NVT ensemble with a temperature of 350 

K maintained with a V-rescale thermostat.
70 Ions were 

packed into the simulation cell with Packmol
71 and using 

the density values obtained in isobaric-isothermal simulations 

of every system. At the same time, a single probe ion (Li
+ 

or K
+
) was introduced at different distances from the elec-

trode (z from 0.15 to 2.9 nm in steps of 0.05 nm) in order 

to generate a series of configurations along the z coordinate 

perpendicular to the surface, and the number of anions was 

increased by one to achieve the overall charge neutrality of 

the simulation cell. Thereafter each system was pre-

equilibrated (dt = 0.1 fs for 0.1 ns), electrodes charged (dt = 

2 fs for 2 ns), annealed at 1000, 900 and 800 K to produce 

three replicas (dt = 2 fs for 0.3 ns) and simulated with a de-

fined value of the relative dielectric constant of the medi-

um (dt = 1 fs for 1 ns). In the later runs, data on the force 

acting on the probe ion were collected in order to calcu-

late the free energy profiles (see below). Simulations at two 

relative dielectric constant (ɸr) values of 1 and 1.6 were 

performed to make a comparison to alternative preparation 

and simulation approaches used in our previous works.
54,55

 

Within the current approach, all simulations were per-

formed using NaRIBaS scripting framework, 
72 and with the 

total duration of more than 1000 ns which is by one and two 

orders of magnitudes longer than in Refs. 54 and 55, respec-

tively. The more systematic approach allowed us to find free 

energy minima that were not resolved and apparently cannot 

be seen with the probability method used in Ref. 55. 

In this work, we present results of simulations performed with ɸr = 1.6 

and the OPLS-AA force field with atomic charges taken from Ref. 

73. The use of relative dielectric constant is equivalent to scal-

ing atomic charges by a factor of 0.79 to account for the high-

frequency electronic polarizability. It has a minor effect on the 

number density distribution of ions as well as on the calcu-

lated free energy profiles probably because the electronic 

polarization leads only to perturbative effects of the Cou-

lomb coupling in what structure and thermodynamics are 

concerned. 

In the runs with charged surfaces, the charges on the carbon sites 

on the electrode surface were chosen to give surface charge 

densities of ±1 e nm
о2 and zero. The left-hand and right-hand 

surfaces carried equal and opposite charges. Note that 

1 e nm
о2 = 16 µC cm

о2
. The long-range electrostatic interactions 

were treated by the particle mesh Ewald method with a cor-

rection to give a pseudo-2d condition.
74,75

 

Analysis 

The free energy profiles were determined from the mean forc-

es on the probe ions at different distances using the meth-

odology described in Refs. 52�54. These were averaged 

over all three replica runs for a given surface charge at 

every distance z. The free energy profiles were then de-

termined by integrating the average force with respect to 

the distance using Simpson�s rule. Error bars shown in Fig-

ure 2 were calculated from the variance between the replica 

runs. We emphasize that these measurements are equilibrium 

measurements and do not contain direct information about 

the dynamics of barrier crossing. 

The measurement of average total densities and number 

densities of cations and anions as a function of distance from 

the surface is straightforward. Numbers of ions, total masses 

and orientations were averaged in bins lying between z о ɷz/2 

and z + ɷz/2, with ɷz = 0.02 nm. The radial distribution func-

tions (RDF) were calculated using the g_rdf function from the 

Gromacs analysis toolbox.
76 Spatial distribution functions 
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around the probe were calculated using a Gromacs analysis 

tool � g_spatial.
76 Finally, contour plots for the cylindrically 

averaged charge density distributions were made in the (R, z) 

plane, where R
2 = x

2
 + y

2
. These Cylindrical Density Functions 

(CDFs) rely on the symmetry of the system and represent 

cross sections through the 3D spatial distribution functions. 

A detailed description of the CDFs and their application to 

slab geometry is provided in Refs. 14 and 54. 

Results and Discussion 

Ion salvation in the bulk 

To characterise the strength of lithium and potassium ions 

solvation in bulk [BMIm][BF4] and its mixtures with the alkali 

metal salts, we calculated the Li
+
�BF4

о
 and K

+
�BF4

о
 PMFs ȴA(r) 

using the classical formula for particle�particle PMFs in an iso-

tropic liquid solution:
77

 

ȴAij(r) = оkBT ln gij (r), (1) 

where gij(r) is the RDF for the ions of type i and j, kB is the 

Boltzmann constant and T is the temperature. 

The calculated Li
+
�BF4

о
 and K

+
�BF4

о
 PMFs for different mole 

fractions of  corresponding salts are shown in Figure 1. 

This figure also shows Li
+
�Li

+
 and K

+
�K

+
 PMFs that help to 

understand spatial correlations between the ions in their bulk 

solutions in the IL at finite concentrations. 

The particle�particle PMFs can be considered as a solvent aver-

aged free energy surface along the reaction coordinate of an ion 

exchange reaction.
13,14,78 

Therefore, in the spirit of the 

Samoilov�s concept of ion solvation (originally developed for 

ions in water),
79�81 we characterise the desolvation free energy 

barriers for a metal cation M
+ solvated by IL anions A

о by an activa-

tion energy EMA which can be calculated from the corresponding 

ȴAM A(r) as 

EMA = ȴAMA(rmax) о ȴAMA(rmin), (2) 

where the rmax and rmin are the positions of the highest positive 

maximum and the lowest negative minimum of the PMF. 

Both Li
+
 and K

+
 are preferentially solvated in [BMIm][BF4] and 

its mixtures with the alkali metal salts as reflected in the 

deep negative first minima on the Li
+
�BF4

о
 (о9 kJ mol

о1
) 

and K
+
�BF4

о
 (о6 kJ mol

о1
) PMFs in Figure 1. However, Li

+
 is 

more strongly solvated than K
+
 due to its smaller size and, 

consequently, larger surface charge density that leads to 

strong electrostatic interactions between Li
+
 and IL ani-

ons.
55,82 The activation energy for Li

+
 in the pure [BMIm][BF4] 

is in the range of 15 kJ mol
о1 (25 mol%) to 19 kJ mol

о1 

(0 mol%), which is significantly higher than the activation en-

ergy for K
+ in the pure [BMIm][BF4] � from 11 kJ mol

о1 (25 

mol%) to 14 kJ mol
о1 (0 mol%).

§§
 For both ions, the activation 

energy decreases with the increase of the corresponding 

metal salt mole fraction. We attribute this decrease to the 

partial screening of the metal cation�BF4
о
 electrostatic inter-

actions by other metal cations in the system. Interestingly, 

the depths of the first minima on the Li
+
�BF4

о
 and K

+
�BF4

о
 

PMFs do not change much with the change of salt mole 

fraction; that means that at the distance of direct contact the 

local interactions between a metal ion and IL anions are not 

affected by other metal cations in the system. 

The PMFs on Figure 1 show large oscillations at short dis-

tances that is a result of local charge density waves in the 

solvation shells of the ions (so-called overscreening ef-

fect),
27,83,84 a phenomenon that is common for ions dis-

solved in polar liquids
77,78,84�87 and ILs.

13,14,82 Due to the 

large overscreening, the Li
+
�Li

+
 and K

+
�K

+
 PMFs show strong 

correlations between the metal cations dissolved in 

[BMIm][BF4] as reflected by the relatively deep negative 

minima on these PMFs. The positions of the minima corre-

spond to the formation of solvent-separated co-ion pairs,
88 

an effect that has been observed before in concentrated 

solutions of alkali metal ions in ionic liquids and their mix-

tures with organic solvents.
47,82,89 Due to the strong binding 

of the BF4
о
 anions to the metal cations, they form a dense 

solvation shell around a dissolved metal cation and the total 

negative charge of the anion shell overcompensates the 

positive charge of the solvated ion; as a result, another 

metal cation is attracted to the anionic solvation shell of its 

neighbour co-ion.  

Ion-Electrode free energy profiles 

Figure 2 shows metal ion�electrode PMFs for all the studied 

electrolytes at the negatively charged graphene surfaces. All 

these PMFs possess at least two main minima. On each plot 

the first minimum, from left, corresponds to the direct con-

tact of the ions with the surface at the distances <0.25 nm 

for Li
+
 and <0.35 nm for K

+
. The second minimum is located 

further from the electrode and corresponds to the solvent-

separated contact. One obvious observation from this figure is 

that there are high free energy barriers for both Li
+
 and K

+
 to 

come into a direct contact with the negatively charged surface. 

Also, judging by the positive difference between the first and 

second minima on these PMFs, the most preferential location 

of the metal cations is not at the direct contact with the sur-

face but rather at the distance of 0.7�1 nm from the surface 

that more or less coincides with the second interfacial layer 

of the IL.
53�55 However, details are different for these ions. 

Firstly, for the same mole fraction, the height of the free 

energy barrier for Li
+
 is significantly higher than for K

+
. Sec-

ondly, the height of the first Li
+
�electrode free energy barri-

er increases with the increase of Li
+
 mole fraction in the 

mixture; at the same time, the height of the first K
+
�

electrode free energy barrier decreases with the increase of K
+
 

mole fraction in the mixture. Thirdly, for the same mole 

fraction, the values of the activation energy (estimated as the 

difference between the amplitude of the highest maxima and 

the lowest minima on the PMFs) obtained for Li
+
 (52�62 kJ 

mol
о1

) are markedly higher than the activation energies for 

K
+
 (33�53 kJ mol

о1
). 

We note that the calculated values of the activation energy 

for Li
+
 are close to the reported experimental value (47 kJ 

mol
о1

) of the activation energy for Li
+
 transfer through the 

interface between 1-hexyl-3-methylimidazolium tetra-

fluoroborate, [HMIm][BF4], and lanthanum lithium titanate 
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electrode.
22 We also note that the activation energies for 

Li
+
 in direct contact with the electrode calculated in our 

simulations are in the range of experimental activation en-

ergies for lithium ion transfer at different IL�electrode inter-

phases reported in the literature (70�80 kJ mol
о1

).
18,50,51

 

The 20�30 kJ mol
о1 difference between these values can be 

attributed to the experimental phenomena of intercalation of 

ions, formation of interphases at the electrodes and differ-

ences in the structure of IL ions.
33�35,38�40

 Another source of 

the discrepancy between our modelling data for the free en-

ergy barriers and the experimental data is the approximate 

nature of the approach used in this work, i.e. classical mo-

lecular dynamics simulations with partial point charges. 

A more accurate description would probably be provided by 

using ab initio molecular dynamics methods,
90 but they are 

computationally very demanding, especially in the case of 

the complex systems such as those considered here; work in 

this area is highly challenging.
65

 We also note that simple 

point charge models such as the one used here have 

proved extremely useful in modelling liquids
77,85,91�95 Although 

they can in principle be improved by including terms such as 

site dipoles, site quadrupoles and atomic polarisabilities,
96�98 

they describe the essential physics of the liquid and so give 

at least qualitative, if not completely quantitative, results 

at an acceptable cost in computational resources. 

With regards to the nature of the interfacial free energy 

barriers, we note that preferential interactions between the 

large IL cations and the graphene surface lead to overcharging 

the negative surface charge density by an excessive positive 

charge brought there by the IL cations � so-called effect of 

interfacial overscreening in ILs.
27,53,99�103 As a result, the 

repulsive interactions between the excessive positive charge 

in the cationic layer impedes the metal ions from coming 

into direct contact with the surface. The effect seems to be 

general for dissolved cationic species in ILs at least of the 

size of metal ions.
53�55

 As ca be seen in Fig. 4, ion size induces 

ƐŝŐŶŝĮĐĂŶƚ ĐŚĂŶŐĞƐ ŝŶ ƚŚĞ ƐŽůǀĂƚŝŽŶ ŽĨ ƚŚĞ ƐĂůƚ ĐĂƚŝŽŶƐ ŶĞĂƌ ƚŚĞ 
graphene surface. The weaker solvation of less densely 

charged K
+
 cations by IL anions is probably the main reason for 

the lower barriers of this cation relative to those of Li
+
. Alt-

hough the electrostatic interaction is probably the dominant 

term in free energy barrier, dispersion interactions and entro-

py are also important.  

Figure 3 ƐŚŽǁƐ ƚŚĞ PŽŝƐƐŽŶ ĞůĞĐƚƌŽƐƚĂƚŝĐ ƉŽƚĞŶƚŝĂůƐ ;ȴ੮) as a 

function of distance from a negatively charged electrode for 

various mole fractions of Li
+
 and K

+
 ions. One can see the oscil-

lations associated with the ion layering, and also notice a re-

ŵĂƌŬĂďůǇ ůŝƚƚůĞ ĐŚĂŶŐĞ ŝŶ ƚŚĞ ȴ੮(z)-ƉƌŽĮůĞƐ ĂƐ Ă ĨƵŶĐƚŝŽŶ ŽĨ 
mole fraction. The overscreening is demonstrated by the over-

ƐŚŽŽƚŝŶŐ ŽĨ ƚŚĞ ĮƌƐƚ ƉŽƚĞŶƚŝĂů ŵĂǆŝŵƵŵ ĐŽŵƉĂƌĞĚ ƚŽ ƚŚĞ ďƵůŬ 
value. We note that as the Poisson potentials shown in Fig-

ure 3 are constrƵĐƚĞĚ ĨŽƌ ĂŶ ŝŶĮŶŝƚĞƐŝŵĂů ƉƌŽďĞ ǁŚŝĐŚ ĚŽĞƐ 
not perturb its surroundings while the Li

+
 and K

+
 ions certainly 

do so, it is not possible to make a detailed comparison with the 

free energy curves shown in Figure 2. 

 

Changes of the local solvent structure at the interface 

To obtain more detailed insights into the molecular origin of 

the high free energy barriers, we examined the local solvent 

structure around the alkali metal ions at different ion dis-

tances from the electrode. 

Figure 4 shows the PMFs and CDFs for charge distribution 

around the alkali metal ions in 25 mol% mixtures of correspond-

ing metal salts with [BMIm][BF4] (qualitatively, the behaviour of 

PMFs and CDFs for other salt mole fractions is the same). The 

CDFs were calculated for the ions used as probes in the PMF 

calculations. The CDFs are shown for different characteristic 

positions near the electrode surface as illustrated by the cor-

responding ion�electrode PMFs. Points 1 (Li
+
) and 5 (K

+
) corre-

spond to the positions of the first ion�electrode PMF minima; 

points 2 (Li
+
) and 6 (K

+
) correspond to the positions of the 

first PMF maxima; points 3 (Li
+
) and 7 (K

+
) correspond to the 

position of the second PMF minima; points 4 (Li
+
) and 8 (K

+
) 

correspond to the positions of the second PMF maxima. 

Comparison of the CDFs for Li
+
 and K

+
 explain the difference in 

the height of the interfacial free energy barriers for these ions. 

Indeed, Li
+
 is so strongly solvated by the IL anions that it brings 

its negatively charged solvation shell to the interfacial IL layer 

near the electrode. CDF for the point 2 shows that, at the 

position of the barrier, the Li
+
 is still fully solvated by the IL 

anions and, therefore, the structure of the interfacial layer is 

significantly perturbed. That means that there are high ener-

gy penalties associated with (i) restructuring of the interfacial 

layer, and (ii) partial desolvation of Li
+
 at the position of its direct 

contact with the negatively charged surface. Both processes 

consequently lead to the formation of the high free energy 

barrier for Li
+
 to come to the electrode surface. 

In turn, analysis of the K
+ CDFs reveals that the mechanisms of 

penetration of this cation through the IL interfacial layer are 

different: the CDF for the point 6 shows that K
+ is already 

partially desolvated at this point and the free energy barrier 

is mainly due to unfavourable interactions of the K
+
 with the 

first cationic layer of the IL, rather than due to the energy 

cost for the K
+
 desolvation at the interface. 

We note that the CDFs for points 1 and 5 show that both 

alkali metal ions remain still partially solvated by the IL 

anions even at the positions of their direct contact with 

the electrode. Consequently, the unfavourable electrostatic 

interactions between these anions and the negatively 

charged electrode lead to overall positive values of the 

PMFs for the first minima. This effect is particularly visible 

for the Li
+
. As one can see from the density distributions of 

the BMIm
+
 and BF4

о
 ions ( Figure 4, bottom), the strong 

interactions between Li
+
 and BF4

о
 lead to a considerable 

concentration of BF4
о
 anions in contact with the cathode 

reflected by a peak on the corresponding density profile 

around 0.4 nm. 

The CDFs and their comparison with the density distributions 

for the IL ions also explain why the lowest values of the 

PMFs correspond to the ion positions at the distances far 

from the interface. These distances (0.7�1 nm) correspond to 

the region next to the first IL cationic layer. The IL anions in 
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the solvation shell of the alkali metal ions favourably interact 

with the excessive positive charge accumulated in the first layer 

due to the effect of overscreening in ILs.
27

 

This phenomenon produces very large decreases of alkali met-

al ion transport rates at the electrified interface. Indeed, 

as a first approximation, a simple formula can be used to 

estimate the average time for ion transport through the 

electrolyte�electrode interface ti as
104,105 

ti ן ʏ exp(EA/kBT), (3) 

where ʏ is a pre-exponential factor and EA is the activation en-

ergy of ion transport through the interfacial layer. Similarly to 

Eq. 3, the interfacial resistance Ri of the electrolyte�

electrode interface can be estimated as 
22,104,105  

Ri ן ʌ exp(EA/kBT), (4) 

where ʌ is a pre-exponential factor. 

By Eq. 3, at the temperature of the simulations the interfa-

cial free energy barriers obtained would induce an increase 

of the average time for cation transport close to the inter-

face by 8 to 9 orders of magnitude for Li
+
 and 4 to 8 or-

ders of magnitude for K
+
. Consequently, by Eq. 4 these bar-

riers would induce similar increase of the interfacial re-

sistance. That gives a flavour of the importance of this 

phenomenon for ion transport in these dense ionic media, 

probably the most serious drawback for the IL-based elec-

trolytes.
27,33

 

Then, the high interfacial free energy barriers may dramati-

cally reduce the efficiency of the redox reactions in ILs, pre-

venting the effective use of these electrochemically inert sol-

vents. In order to keep them as alternative solvents in 

high-voltage advanced electrochemical devices, work must be 

done to reduce the height of these barriers considerably. 

The task seems to be a realistic one because the experi-

ments by Sagane et al. have shown that the interfacial re-

sistance and the interfacial activation energy for Li
+
 transfer 

through the IL�lanthanum lithium titanate interface depend 

on both cation and anion composition of the IL electro-

lyte.
22 Also, the results of Seki et al. show that performance 

characteristics of a lithium battery with an IL-based electro-

lyte can be optimised by varying the lithium salt concen-

tration.
106

 

In this sense, this work provides a useful guide for future 

theoretical and experimental work by demonstrating that it is 

the specific form of the solvation of ions in ILs what induces 

the interfacial free energy barriers. Hence, the height of the 

barriers as well as the difference between free energy differ-

ence minima on both sides of the barrier can be tuned by 

selecting ILs and additives that significantly modify the 

structure of the polar nano-regions of the electrolyte and 

the interface without notably reducing electrochemical sta-

bility. 

 

 

 

 

 

Conclusions 

The simulation results presented here reveal detailed mecha-

nisms of ion interactions with negatively charged graphene 

surface in bulk IL and its mixtures with metal salts for two 

characteristic alkali metal ions, Li
+
 and K

+
. Our main findings 

can be summarised as follows: 

• Dense interfacial solvation structures in the IL solu-

tions lead to the formation of high free energy bar-

riers for dissolved cations between the bulk and 

contact with the electrode. The effect is general for 

dissolved cationic species in ILs (at least of the size 

of these metal ions), slowing down ion transport in 

the region close to the electrode. In addition to the 

effects of the free energy barriers, the transport rate 

will be affected by the local viscosity 

• Strong interactions between Li
+
 and IL anions in the 

Li
+
-ion solvation shell significantly increase the height 

of the free energy barriers compared to K
+
 due to the 

large energy penalty for desolvation of Li
+
. 

• Both Li
+
 and K

+
 remain partially solvated by the IL an-

ions even at the point of direct contact with the neg-

atively charged surface. That leads to positive values 

of the free energy minima that correspond to the 

direct contact of the ions with the electrode and a 

shift of the preferential positions of the ions from 

the electrode surface towards the IL solvent. 

Batteries and supercapacitors are important complements to 

the use of sustainable, but intermittent, sources of power such 

as wind and waves. Ionic liquids promise to be �green� elec-

trolytes for batteries but often suffer high electrochemical 

resistance. The high interfacial free energy barriers ob-

served in our simulations can explain this generally high inter-

facial resistance in electrochemical systems utilising IL-based 

electrolytes with alkali metal ions.
33 

We think that further 

optimisation of IL-based electrolytes for energy applications 

can be done by rational interface-focused strategies based on a 

combination of molecular-scale computational and experi-

mental methods. 
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Notes and references 
§
 Hereinafter we refer to the term interphase as a complex wide 

layer that forms from the decomposition products from the electro-
lyte, and to the term interface as the boundary layer between the 
electrode and the electrolyte with a thickness of several molecular 
diameters, i.e. the EDL. 

§§
 Note, the systems with a single probe metal ion have a non-zero 

mole fraction of 1/300, which we round to 0 mol%. 
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Fig. 1  Calculated Li+�BF4
о (TOP) and K+�BF4

о (BOTTOM) PMFs for different mole 

fraction of Li[BF4] and K[BF4] salt in [BMIm][BF4], respectively, as shown on the legend. 

The figure also shows Li+�Li+ (TOP) and K+�K+ (BOTTOM) PMFs for 10% and 25% 

mole fractions to illustrate spatial correlations between the ions in the mixture. 

Fig. 2 Alkali metal ion�electrode PMFs for the electrolytes containing Li+ (LEFT) 

and K+ (RIGHT) at the negatively charged graphene surface. The legends indicate the 

ion mole fraction in [BMIm][BF4]. 

Fig. 3 Poisson electrostatic potentials for the electrolytes containing Li+ probe 

(LEFT) and K+ probe (RIGHT) ions at the negatively charged graphene surface. The 

legends indicate the ion mole fraction in [BMIm][BF4]. 

Fig. 4 Alkali metal ion�electrode PMFs (A,C), BMIm+ and BF4
о number density 

profiles (B, D) and CDFs for charge distribution around the alkali metal ions in 25 mol% 

mixtures of corresponding metal salts with [BMIm][BF4] near the negatively charged 

graphene surface. The CDFs are shown for different characteristic positions near the 

electrode surface as illustrated by the corresponding ion�electrode PMFs (A, C). 


