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ABSTRACT 

 

We report the use of silver hydroxylamine nanoparticles functionalised with 

single stranded monothiolated DNA for the detection of fungal infections. The four 

different species of fungi that were targeted were Candida albicans, Candida 

glabrata, Candida krusei and Aspergillus fumigatus. Rational design of synthetic 

targets and probes was carried out by carefully analysing the 2-D folding of the 

DNA and then by global alignment of the sequences to ensure specificity. The 

effects of varying the concentrations of the DNA and dye surrounding the 

nanoparticles on the resultant surface enhanced Raman scattering (SERS) signal 

was also investigated to ensure compatibility of the probes in a multiplexed 

environment. Using principal components analysis (PCA) it was possible to detect 

the presence of the individual presence of each target and group them accordingly. 

The move to detect the C. krusei single stranded PCR product (ssPCR) was 

significant to demonstrate that the methodology could be employed for the 

detection and diagnosis of invasive fungal infections (IFDs) within a clinical 

setting. Initially the PCR product was subjected to an alkali shock method in order 

to separate the strands ready for detection using the nanoparticle probes system. 

This time 18 base probes were employed to enhance hybridisation efficiency and 

dextran sulfate was found to have a vital role in ensuring that detection of the C. 

krusei target was achieved.  This demonstrated the use of DNA functionalised 

silver nanoparticle for detection of clinically relevant DNA relating to a specific 

fungal infection and offers significant promise for future diagnostic applications.  

 

  



INTRODUCTION 

 

Candida and Aspergillus fungi are ubiquitous within the environment yet are 

amongst the most well known pathogens responsible for causing fungal 

infections.1 The pathogenic fungi from the Aspergillus genus is most often found 

growing on decomposing organic material, whilst Candida is a genus of yeasts, 

hence its presence in humans being diagnosed as a yeast infection. 

 

Both types of fungi present little risk to healthy individuals, however invasive 

fungal infections (IFDs) have been identified as important causes of morbidity and 

death in chronically immunosuppressed patients whose weakened immune 

systems are unable to fight the fungal infection.2 Patients at high risk of infection 

from Aspergillus species include those with acute myelogenus leukemia or 

myelodysplatic syndrome during remission induction chemotherapy, patients 

undergoing allogenic haemotopoietic stem cell transplantation, recipients of solid 

organ transplants and those with other conditions of severe and prolonged 

immunosuppression.3 Candida also poses a risk to the immunocompromised, but 

defining patients who are at high risk for invasive candidiasis (IC) is much more 

difficult. Patients at highest risk from IC include those who have a central venous 

catheter, people being treated in intensive care units, those with kidney failure, 

people being treated with broad spectrum antibiotics, recipients of 

gastrointestinal surgery and diabetics.4 

 

Candida infections account for 70% to 90% of all IFDs.5 Invasive aspergillosis (IA) 

is less prevalent, however it is estimated to affect 5-13% of patients who undergo 

bone marrow transplants, 5-25% of solid organ transplant recipients and 10-20% 

of people with leukaemia undergoing intensive chemotherapy. Mortality rates are 

also particularly high in people with IA where rates can rise as high as 90% under 

certain circumstances. 6 

 

Diagnosis of both types of invasive infections is difficult mainly because the 

patients are already ill from other medical conditions. The most common 

symptoms are fever and chills, but it is often not until unsuccessful treatment with 

antibiotics that other treatments are pursued. Antifungal drugs for the treatment 

of the pathogens can generally be placed into three categories; polyenes,7, 8 

azoles7-9 and echinocandins.8, 10-12 

 

Some types of Candida, most prominently C. glabrata (studied here) has been 

shown to be increasingly resistant to antifungal treatments such as fluconazole 

(7% resistance) and echinocandins (1%). Candida is not alone in developing 

resistance,13 Aspergillus has also been shown globally to be resistant to 3-6% of 

marketed azole drugs.14 Alternative treatment options are available but these are 

uneconomical and have toxic side effects, which are undesirable for patients who 

are already ill. It is becoming increasingly evident that for effective treatment and 

reduced resistance that discrimination of fungi at a species level is needed to 

ensure targeted treatment and to ensure resistance to the existing drugs does not 

reach the current levels of antibiotic resistance in bacteria which is now a major 

global issue. 

 



One of the most readily used methods of infection diagnosis alongside blood 

testing is culturing.15, 16 Culturing is the most common means of identifying fungi 

to allow selection of the most appropriate drug for treatment, however it is not 

without flaws. The main issue is that diagnosis can take anywhere from days to 

weeks and another issue is the susceptibility of the method to false positives. False 

diagnosis can be down to a number of factors including human collection error, 

specimen delay in reaching the laboratory and harmless colonisation due to the 

ubiquitous nature of the fungi.17 Other non-invasive diagnostic tools involve 

searching for serum biomarkers such as galactomannan18-20 and -D-glucan,20, 21 

but these tests are not species specific therefore neither is the treatment given to 

the patient.  
 

Currently there is a lack of information on the true potential for dual infection as 

none of the current techniques look for both Candida and Aspergillus infections 

simultaneously (e.g. real-time PCR for Aspergillus or Candida species, Roche 

Septifast Ȃ Candida, Galactomannan Ȃ Aspergillus). However, recent examples of 

dual infection have been seen in clinical evaluations carried out by Renishaw 

Diagnostics Limited (unpublished). Given the low prevalence of disease, the true benefit of a higher order multiplex is confidently saying that someone doesnǯt have 
one of the disease targets so as to not give treatment unnecessarily (the negative 

predictive value).  The other benefit is that when someone does have a disease 

target present, being able to diagnose and target the treatment appropriately, 

which is the reason we purposefully detect C. glabrata, C. krusei and A. terreus as 

these are treated with the use of different drugs.  Diagnosis made on the basis of 

DNA extraction and PCR amplification can be made specific, targeting at a species 

level and when coupled with surface enhance Raman scattering (SERS) it offers 

excellent analytical sensitivity and multiplex capabilities as discussed in this 

paper. 

 

SERS is a vibrational spectroscopy that uses plasmonic materials to enhance 

Raman scattering by several orders of magnitude yielding an ultra-sensitive and 

selective analytical technique.22, 23 In this paper we make use of silver 

nanoparticles and use a biologically specific event to exploit the fact that 

aggregated nanoparticles give rise to an increase in SERS.  In our original 

demonstration of this we used DNA functionalised silver nanoparticles with a 

Raman reporter to detect a specific DNA sequence.24 Follow up papers 

investigated the different geometries and a variety of Raman tags25 but to date 

biological relevant, PCR product DNA has not been investigated using this 

approach. In addition, the multiplexing capability of the system has not been 

pushed beyond two model sequences.24 

 

Here, detection of single stranded DNA (ssDNA) specific to the fungal infection 

through aggregation of nanoparticle probes induced by sequence specific 

hybridisation is reported. We initially start with synthetic targets and 

demonstrate a multiplex of four before demonstrating the ability to detect a 

specific fungal DNA sequence from PCR product.  

 

EXPERIMENTAL  

 



Synthesis and Characterisation of Silver Nanoparticles (AgNPs) 

Silver nanoparticles were synthesised according to a protocol developed by 

Leopold and Lendl.26 Initially all glassware was soaked in fresh aqua regia to 

remove contaminants, the clean glassware was then washed with copious 

amounts of deionised water and left to dry before synthesising the nanoparticles. 

Hydroxylamine hydrochloride (1.67 x 10-3 M) and sodium hydroxide (3.33 x 10-3 

M) were added to 450 mL of deionised water. This solution was then stirred 

vigorously whilst silver nitrate (50 mL, 1 x 10-2 M) was added immediately, 

turning the solution a dark brown colour. The sol was left to stir for a further 15 

min until a colour change to golden brown signified successful formation of 

AgNPs. A ɉmax of 410 nm and NP concentration of ~480 pM (extinction coefficient 

= 2.87 x 10-10 M) was determined using spectrophotometry, and SEM images 

verified the spherical nature and size (53 ± 5 nm) of the AgNPs. Prior to DNA 

functionalisation, the concentration of the particles were diluted to 200 pM using 

deionised water and the SERS activity/signal reproducibility was assessed using 

a range of isothiocyanate dyes to ensure their validity over a three month time 

period. 

 

Functionalisation of AgNPs with Single-Stranded Monothiolated DNA and 

Dye 

All thiolated DNA was purchased from ATDbio (Southampton, UK), treated with 

DTT then HPLC purified to remove di-thiols and other potential contaminants 

prior to use. Whilst the site of thiol functionalisation could be differed depending 

on the hybridisation orientation being achieved (discussed in results section), the 

modified oligonucleotide always consisted of the same basic moieties; DNA 

sequence for specific detection, three hexaethylene glycol (HEG) units to give the 

oligonucleotides flexibility away from the NP surface and a thiol for tethering to 

the NPs. For fast attachment of the thiolated-DNA to the NP surface a pH-assisted 

methodology was employed.27 Spectrophotometry measurements of the 

functionalised nanoparticles were carried out to elucidate their concentration. 

The average yield of the particles was around 72% (~144 pM). Once re-suspended 

in PBS (phosphate buffered saline solution), the dye was added. The amount 

added differed from dye to dye but isothiocyanates generally varied from 1000 to 

5000 molecules/NP. After dye addition the nanoparticles were left to equilibrate 

for 18 h, then centrifuged and re-suspended in 0.1M PBS. Yields of the NP probes 

after addition of dye were around 64% (~128 pM).  

 

Hybridisation to Synthetic DNA Target 

In a general hybridisation experiment, 10 pM of each probe conjugate (P1 and P2) 

was added to a plastic PCR tube along with 10 nM of synthetic target (final 

concentration). The volume was then made up to 60 uL using 0.3 M PBS and left 

to hybridise for 30 min. 6 samples were created for each probe set; 3 consisted of 

a complementary synthetic target, whilst the other 3 contained a non-

complementary synthetic target (control). Successful hybridisation of the 

nanoparticle probes to the target was signified by the loss of yellow colour 

(although this can often be difficult to observe). After 30 min, the solutions are 

transferred to a 96 well plate and a further 90 uL of 0.3 M PBS was added to each 

replicate 

 



SERS analysis  

SERS analysis was carried out on a Ren-DX Raman plate reader (Renishaw 

Diagnostics Ltd) equipped with a 532 nm laser with maximum laser power of 50 

mW, and 20x objective. Samples were deposited in a black 96 well plate for 

interrogation. Unless stated, all sample volumes were 150 uL and spectra were 

collected using 5% laser power at sample (~2.5 mW) and a 1 s accumulation. The 

system was calibrated using silicon (520 cm-1) and the distance between the 

sample and objective (z-axis) optimised using ethanol (150 uL) before sample 

interrogation.  

 

RESULTS AND DISCUSSION 

 

The basic principle of the assay is based on the specific nanoparticle assembly of 

silver nanoparticles by DNA hybridisation.  This changes the intensity of the SERS 

signal from a Raman reporter attached to the nanoparticle indicating which DNA 

sequence has been involved in the hybridisation.  Multiple combinations of DNA 

functionalised nanoparticles can be added together and the exact sequence match 

determined by examining the change in intensity of the Raman reporter coding for 

that sequence. The basic components of this approach are shown in Figure 1.  The 

head-to-tail conformation was used for the 12 base probes because it enabled 

sufficiently quick hybridisation to the target DNA whilst maintaining an 

acceptable distance between the nanoparticles for sufficient SERS enhancement 

of the reporter (dye) (B) is presumed to be a compromise between all three 

orientations available. Whilst tail-to-tail (C) hybridises the quickest to the target, 

the larger nanoparticle separation reduces the plasmonic coupling so the SERS 

signal tends to be lower than the other orientations. Head-to-head (C) produces a 

large SERS response, yet the reduced distance between the nanoparticles causes 

steric hindrance reducing their ability to bind effectively to the target. When 

moving to longer overall DNA sequences steric influences become more prevalent 

therefore we investigated the use of both 12 and 18 bases probes as well as 

examining the different geometries. The majority of the synthetic probes were 

examined in a head to tail arrangement (B) unless otherwise stated and tail to tail 

was used for the PCR product detection. 

 



 
 

Figure 1. The top scheme shows the hybridisation of nanoparticle probes to 

complementary single stranded DNA.  The length of the probe sequence can be 

varied to increase discrimination and stability.  The Raman reporter (Dye) is 

added to the nanoparticle surface along with the DNA probe sequence to create a 

unique code for this particular DNA sequence.  Schematics A, B and C represent 

the three different orientations that the probes can take when attaching to a 

complementary single strand of DNA due to the stereochemistry induced by the 

deoxyribose sugar on DNA. A) Tail to tail, B) Head to tail, C) Head to head. 

 

Multiplexed DNA Sequence Detection 

Sequences for each of the species were acquired from the basic local alignment 

search tool (BLAST) and unique sections of the fungal DNA were selected for 

specific targeting.  Careful selection of the DNA target and hence the probes used 

to functionalise the nanoparticles is of paramount importance for target 

specificity and to achieve multiplexed detection. However, choosing the DNA with 

which to modify the nanoparticles is not trivial. Single stranded DNA probes are 

not only capable of hybridising extremely well to their targets, but also to 

themselves or other probes within a multiplex, rather than the target if a degree 

of complementarity is present. Hybridisation of probes to themselves is termed 

homodimerisation whilst probes which hybridise to each other are called 

heterodimers. In an attempt to overcome this problem, 2-D folding models 

generated from amplified sequences were analysed at 25 oC and 0.3 M (basic 

hybridisation conditions) to identify regions that were not involved in the 

formation of loops or base pairing, thus allowing for more direct targeting using 

the probe sequences. Alongside the 2-D structure formation, global alignment of 

each of the species amplified regions was carried out to highlight unique bases for 

targeting. After carrying out a thorough assessment of the sequences and 

highlighting target regions, twelve base probes were developed. The main goal of 

this DNA assessment was to ensure that probes used to detect synthetic DNA could 

be easily translated for the detection of single stranded PCR product (ssPCR).  

 



Nanoparticle Functionalisation 

Modification of the oligonucleotide sequences with a thiol (for attachment of the 

probe to the silver surface) and HEG groups (allowing extension of the DNA away from the nanoparticleȌ can take place on either the ͷǯ or ͵ǯ endsǡ but changing the 

modification site changes the conformation with which the nanoparticle probes 

bind to the target. Figure 1 A-C highlights the different orientations of the probes 

that can be achieved, depending on the site of thiol modification. The 12 base 

probes were all modified at the ͷǯ termini therefore they hybridise to the target 

DNA in a head to tail conformation. The 18 base probes however feature thiol modification on opposite endsǤ Probe ͳ ȋPͳȌ has a thiol attached to the ͵ǯ end 
whilst probe 2 is modified on the ͷǯ siteǡ giving a tail to tail orientation upon 
hybridisation with a complementary single strand of DNA.  Functionalisation of 

the hydroxylamine reduced nanoparticles was carried out using the same pH 

reduction method as reported by Liu et al.27 Initial stability testing of the DNA 

functionalised nanoparticles (conjugates) was carried out by subjecting the 

particles to a high concentration of salt solution where it was found that the DNA 

coating on the nanoparticles made them stable in PBS solutions up to 0.7 M.  

 Selection of Raman reporters (normally resonant dyes for maximum 

intensity) is also an important factor in realising a SERS multiplex. The DNA alone 

does not have a sufficiently large Raman cross-section making it inappropriate to 

use as a Raman reporter for identification of the target DNA. Fortunately, there 

are a range of fluorescent dyes commercially available that are capable of 

tethering to the nanoparticles surface. The dyes used in this work were all 

isothiocyanates (ITC) that attach to the nanoparticles via the sulphur. The dyes 

used for developing the multiplex were substituted rhodamine isothiocyanate 

(XRITC), tetramethylrhodamine isothiocyanate (TRITC), rhodamine B 

isothiocyanate (RBITC) and BODIPY-ITC (structures shown in Figure S1). 

Each of the probe sets were tested separately by adding the complementary 

sequence to ensure that they showed sufficient discrimination between the 

presence of complementary and non-complementary target (Figure 2A). 

 



 
 

Figure 2. SERS data from the nanoparticle probes with the target alone and then 

as a multiplex.  Spectra have been baseline corrected and offset for clarity. The 

four probes A. Fumigatus, C. Krusei, C. Glabrata and C. Albicans have been 

abbreviated to Fum, Kru, Glab and Alb respectively in all plots whilst the nonsense 

is represented by Non. A) Shows the discrimination achieved by each of the fungal 



probes when hybridised alone in the presence of complementary and then non-

complementary single stranded synthetic DNA. B) Shows the spectral signal 

arising from a multiplex, consisting of all the fungal probes together with the 

individual targets. Discrimination of these spectra is difficult by eye. C) 

Discrimination of the multiplexed targets is possible when PCA is applied to the 

dataset.  

 

All of the DNA probe sets used with the isothiocyanate dyes showed 

discrimination between the complementary and non-complementary single 

stranded DNA targets. The next step was to employ the conjugates in a 

multiplexed environment. To set up the multiplex 10 pM of each probe set was 

added to a PCR tube along with 10 nM of fungal target. Each fungal target along 

with a non-complementary sequence was added in turn to the mixture of probes 

to see whether discrimination was possible. The average spectra from each probe 

set in response to the complementary target presence is displayed in Figure 2B. 

Spectra changes caused by the presence of the different complementary fungal 

sequences are very difficult to differentiate by eye therefore chemometric 

methods had to be applied. Principal components analysis (PCA) was used to 

evaluate the data and showed that the probes could be effectively separated 

depending on which target was present in the multiplexed environment (Figure 

2C). Prior to evaluation using PCA, all data from 1700 cm-1 to 3000 cm-1 was 

removed as background, the remaining data were then baseline corrected and 

scaled.  This is a significant result demonstrating that the DNA specific 

hybridisation of the appropriate probe set was capable of displaying a discernible 

change in the SERS in a background of the other combinations.  However, this data 

were acquired using synthetic target sequences that were the same length as the 

combined probe sequences and to translate this into a clinically useful 

measurement, longer, biologically relevant sequences must be used.  Therefore, 

measurement of a fungal target sequence of DNA generated from a plasmid using 

PCR was attempted, however due to the target now being a much longer sequence 

(200-400 bases) this required significant further development and optimisation.   

 

Progression towards PCR target discrimination 

We have demonstrated that short, synthetic DNA targets can be identified, 

however this represents an idealised system, whereby the probes (12 bases each) 

form a perfect overlap with the 24 base target derived from the fungal BLAST 

sequence. In reality the amplified sequences are much longer, consisting of 

between ~200-400 bases. This presents challenges as the hybridisation of the 

probes to the longer sequences is much more difficult. The longer sequences are 

prone to forming 2-D folded structures when subjected to physiological buffer 

conditions at 25oC. In order to demonstrate the diminished hybridisation of the 

12 base probes (C. krusei with MGITC functionalised nanoparticles), longer 

synthetic sequences consisting of 48, 96 and 144 bases were used. The results 

shown in Figure S2 demonstrates how the SERS signal decreases as the length of target increasesǤ The reduced Ǯoff to onǯ ratio in comparison with the non-

complementary target signal therefore presents an issue in discrimination of PCR 

product sequences.  

 



In an attempt to address the reduction in signal an exclusion buffer (dextran 

sulfate) was employed.28 The main action of the dextran sulfate has been reported 

to enhance hybridisation by denying volume to the DNA-NPs and targets, thereby 

minimising the effects of diffusion. The effects of the buffer addition on the SERS 

signal when using a 144 base target can be seen in Figure S3. 

 

Increasing the w/v percentage of dextran sulfate present in the hybridisation 

buffer results in an increase in the SERS intensity for longer targets. Without 

dextran the longer targets show only a small increase in SERS intensity compared 

with the non-complementary control. The SERS signal increases until a plateau is 

reached at 3 % final concentration. However, it should be noted that the addition 

of the exclusion buffer increases the background observed but it is not significant 

enough to affect the ability to discriminate complementary and non-

complementary targets.  

 

18 base probes and ssPCR detection 

Initial attempts to detect ssPCR product was carried out using 12 base probes, 

however this was not successful with a number of possible reasons postulated; 

the long length of the ssPCR target impedes hybridisation, the potentially low 

concentration of the ssPCR and that the alkali shock method employed did not 

produce viable DNA. By incubating the double stranded DNA in a NaOH solution 

at room temperature, the production of single stranded DNA was hoped to be 

quicker than subjecting the DNA to urea during multiple heat/cool cycles to 

denature the double strand. To potentially circumvent these problems longer 

oligonucleotide probes were examined. By extending the sequence conjugated to 

the nanoparticle from 12 to 18 this would address the length and concentration 

concerns. Using DNA-NPs specific for C. krusei the SERS response of the 18 base 

DNA-NPs were tested with an exact length complement synthetic target (36 

bases) and ssPCR target (Figure 3). Figure 3 shows that the 18 base targets gave a 

similar off-to-on SERS increase when using the synthetic complement, but no 

change in intensity was observed when using ssPCR (C. krusei = 380 bases). To 

further push the conjugates to hybridise to the ssPCR the concentration of dextran 

sulfate used was increased from 3% to 10% in the assay. This is close to the 

maximum concentration of dextran sulfate possible as the solution becomes 

saturated at 15-20%.  

 

  



 

 
Figure 3. The 12 and 18 base probes (12 bp and 18 bp respectively) show 

comparable performance in complementary and non-complementary 

discrimination when hybridised to exact complements (24 bases and 36 bases). 

However, the levels of discrimination between the complementary and non-

complementary ssPCR product is much lower. 

 

 

Figure 4 shows the results when 18 base DNA-NPs were used in conjunction with 

a high concentration of dextran sulfate and the ssPCR. The SERS spectra show a 

clear increase in intensity when the complement (C. krusei) is used when 

compared to that of a non-complementary target (A. fumigatus). This successfully 

demonstrated the potential application of the SERS methodology described here 

in the interrogation of clinical samples based on PCR products. 

 

After the successful detection of ssPCR target the focus shifted to ascertaining the 

concentration dependence. After treatment of the double stranded DNA with 

NaOH ~125 µL of ssPCR product is generated from 10 µL of 1000 input copy 

number dsPCR (double stranded PCR)  product this approximately corresponds 

to 0.04 µL or 40 nL of the original dsPCR target, illustrating the sensitivity possible 

using this method. Figure 4 shows that using lower volumes of the target it was 

still possible to detect a clear off-to-on SERS results. The parameter used to 

provide the most accurate discrimination of the different concentrations was the 

ratio between the off and on signal.  This is shown in figure 4B and C and indicates 

that although the absolute intensities vary, the ratio of Ǯoff to onǯ follows a 

concentration dependence.  Therefore, we have clearly demonstrated that these 

nanoparticle conjugates can be used to detect a specific PCR product relating to a 

fungal infection and shows promise for future development into a multiplexed 

based measurement for multiple infections.  

 

 



 
Figure 4. This figure shows the discrimination of C. krusei using ssPCR target. The 

plot in A shows the spectral discrimination between the complementary and non-

complementary (A. Fumigatus), whilst the bar chart in B demonstrates the mean 

level of discrimination and accompanying standard deviations (4 replicates for 

both complementary and non-complementary targets) using the intensity at 1614 

cm-1. The mean signals and standard deviations in chart C shows that by lowering 

the volume of ssPCR target used that discrimination is still possible to around 0.1 

µL (4 replicates for complementary and non-complementary targets). 

 

CONCLUSION 

Successful detection of both synthetic and ssPCR targets has been demonstrated 

using DNA functionalised nanoparticles and SERS. Careful design of the probes at 

the initial stages was of paramount importance, not only to allow specific 

detection of the fungal targets but to ensure that unwanted hybridisations 

between the probes themselves was avoided. The rational design also allowed 

sequences to be easily extended for use in detection of longer single strands as 

seen with the ssPCR target. Steric issues with the longer PCR based target were 

overcome by using 18 base probes and dextran sulfate in the buffer system.  



Concentration dependence in the SERS signal was observed and this preliminary 

set of experiments indicates promise for this approach in combination with end 

point PCR measurement in a multiplexed manner.  The work carried out here lays 

important foundations for a move towards specific detection of fungal species 

within a clinical setting using this nanoparticle assembly approach.  
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