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AbstratA random retangular graph (RRG) is a generalization of the random ge-ometri graph (RGG) in whih the nodes are embedded into a retangle withside lengths a and b = 1/a, instead of on a unit square [0, 1]2 . Two nodes arethen onneted if and only if they are separated at a Eulidean distane smallerthan or equal to a ertain threshold radius r. When a = 1 the RRG is iden-tial to the RGG. Here we apply the onsensus dynamis model to the RRG.Our main result is a lower bound for the time of onsensus, i.e., the time atwhih the network reahes a global onsensus state. To prove this result weneed �rst to �nd an upper bound for the algebrai onnetivity of the RRG,i.e., the seond smallest eigenvalue of the ombinatorial Laplaian of the graph.This bound is based on a tight lower bound found for the graph diameter. Ourresults prove that as the retangle in whih the nodes are embedded beomesmore elongated, the RRG beomes a 'large-world', i.e., the diameter grows toin�nity, and a poorly-onneted graph, i.e., the algebrai onnetivity deaysto zero. The main onsequene of these �ndings is the proof that the time ofonsensus in RRGs grows to in�nity as the retangle beome more elongated.In losing, onsensus dynamis in RRGs strongly depend on the geometri har-ateristis of the embedding spae, and reahing the onsensus state beomesmore di�ult as the retangle is more elongated.Keywords
• Consensus dynamis
• Random geometri graphs
• Graph diameter
• Algebrai onnetivity
• Graph Laplaian
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1. IntrodutionMany real-world networked systems are embedded into geometrial spaes.These spatial networks, as they are known, may represent many di�erent kindsof senarios [1℄. For instane, in urban street networks the nodes desribe theintersetion of streets, whih are represented by the edges of the graph. Thesestreets and their intersetions are embedded in the two-dimensional spae repre-senting the surfae oupied by the orresponding ity. Similar situations ourwith infrastrutural and transportation systems ranging from water supply net-works and railroads to the internet and wireless sensor networks (WSNs). InWSNs [2℄, the nodes represent the sensors whih are deployed on a given geo-graphial region and their ommuniation de�nes the onnetivity of the nodes.This is analogous to many other ommuniation systems ranging from mobilephones to radio signals. On a di�erent sale we an mention the vasular andellular networks of nodes embedded into ells and biologial tissues [3℄; pro-tein residue networks [3℄; the networks of hannels in fratured roks [4℄; thenetworks representing the orridors and galleries in animal nests [5, 6℄; andlandsape networks [7℄, among others. For modeling these spatial networks itis neessary to have a theoretial model that aptures both the topologial fea-tures typial of omplex networks and the spatial embedding of these spei�kinds of systems. The most ommonly used model for spatial networks is theso-alled random geometri graph (RGG) [8, 9, 10, 11℄. In RGGs eah nodeis randomly assigned geometri oordinates and then two nodes are onnetedif the (Eulidean) distane between them is smaller than or equal to a ertainthreshold r.The RGG model has been widely used in the study of wireless sensor net-works (WSNs) and peer-to-peer networks [12, 13, 14℄, where the problem ofonsensus has reeived great attention due to the fat that it allows the ahiev-ing of tasks with a minimum overhead of ommuniation [15, 16, 17, 18, 19℄.In the onsensus protools, as they are known in tehnologial appliations, theproblem onsists of making the salar states of a set of agents onverge to thesame value under loal ommuniation onstraints [20, 21℄. Thus, sine the om-muniation requires only loal information there is no ongestion due to networktra�. RGGs are also used to model populations whih are geographially on-strained in a ertain region, like a ity. This senario is important, for instane,for the analysis of epidemi spreading in suh populations [22, 17, 23, 24℄. Inthis sense Riley et al. [25℄ have remarked that RGGs �provide a nie way ofesaping the lak of loal orrelation and lustering that are impliit proper-ties of the on�guration graphs often used to explore epidemi dynamis�. In asimilar fashion, RGGs an be used to model strutured populations in whihopinions, instead of viruses, are propagated. In this ase the RGGs also apturesvery well the geographi onstraints of the population and, in omparison withother models [26℄, they �are more realisti for a number of reasons: (i) RGG isisotropi (on average) while regular lattie is not; (ii) the average degree for anRGG an be set to an arbitrary positive number, instead of a small �xed numberfor the lattie; (iii) RGGs losely apture the topology of random networks of3



short-range-onneted spatially-embedded arti�ial agents�.In the formulation of the RGG model it is assumed that the nodes are uni-formly and independently distributed on a unit square (or a higher dimensionalhyperube in the general ase) [8, 9℄. This unit square represents the area onwhih the agents are interating to reah a onsensus state, and it ould be aworkplae, a ity, or a forest, just to mention some examples. Suh a square-likearea is typial of many real-world senarios. For instane, the ity of San Fran-iso (USA) is known as the "seven-by-seven-mile square", due to the fat thatthe mainland part of the ity is a square of nearly 11 km by 11 km. However, ifwe onsider other ities, like Manhattan, the piture looks very di�erent. Man-hattan is 13.4 miles (21.6 km) long and 2.3 miles (3.7 km) wide, whih resemblesa retangular shape instead of a square one. Based on this neessity of onsid-ering the in�uene of the retangular shape on the topologial and dynamialproperties of the random networks deployed on these areas we have reentlyintrodued the random retangular graph (RRG) model [27℄. In this ase, thenodes are uniformly and independently distributed on a unit retangle of givenside lengths. When both sides are of the same length we reover the RGG insuh a way that the RRG model generalizes the RGG one.Here, we are interested in investigating analytially and omputationallyhow the elongation of the retangle in the RRG a�ets the onsensus dynamistaking plae on the nodes and edges of the networks onstruted on them. Westart by introduing the onept of the random retangular graph (RRG), andontinue with the desription of the onsensus model to be onsidered. Then,we state the main result of this work whih proves that for a RRG with a �xednumber of nodes and a given onnetion radius, the time for reahing onsensusgrows to in�nity when the retangle is very elongated. We �nally support ouranalyti results with omputational simulations for RRGs.2. PreliminariesHere we present some de�nitions, notations, and properties whih will beused in this work (see [3℄). For the basi de�nitions about networks the readeris direted to the literature (see for instane [3℄). The notation used here isstandard. For instane, ki designate the degree of the node i. The matrix K =
diag (ki) designate the degree matrix of the graph and the matrix L = K − Ais the graph Laplaian, where A stands for the adjaeny matrix of the graph.It has entries

Luv =







ki if u = v
−1 if (u, v) ∈ E
0 otherwise ∀u, v ∈ V.The eigenvalues of the Laplaian matrix are denoted here by: 0 = µ1 ≤ µ2 ≤

· · · ≤ µn. If the network is onneted the multipliity of the zero eigenvalueis equal to one, i.e., 0 = µ1 < µ2 ≤ · · · ≤ µn and the smallest nontrivialeigenvalue µ2 is known as the algebrai onnetivity of graph [28, 29℄. Let U be4



the matrix of orthonormalized eigenvetors ~ψj of L, i.e., U =
[

~ψ1 · · · ~ψn

].The eigenvetor ~ψ2 assoiated with the algebrai onnetivity is known as theFiedler vetor [28℄. Let Λ be the diagonal matrix of eigenvalues of the Laplaianmatrix. Then, L = UΛUT .2.1. Random Retangular GraphsThe RGG is de�ned by distributing uniformly and independently n pointsin the unit d-dimensional ube [0, 1]d [8℄. Then, two points are onneted byan edge if their Eulidean distane is at most r, whih is a given �xed numberknown as the onnetion radius. That is, we reate a disk of radius r entredat eah node, and every node inside that disk is onneted to the entral node.This disk plays the role of the area of in�uene of a given node, suh as the areaof overage of a mobile or wireless sensor.In [27℄ we have onsidered a unit hyperretangle as the Cartesian produt
[a1, b1]× [a2, b2]× · · · × [ad, bd] where ai, bi ∈ R, ai ≤ bi, and 1 ≤ i ≤ d insteadof the unit square of the RGG. Hereafter we will restrit ourselves to the 2-dimensional ase, whih orresponds to a retangle of unit area. Now, the RRGhas been de�ned by distributing uniformly and independently n points in theunit retangle [a, b] and then onneting two points by an edge if their Eulideandistane is at most r. The rest of the onstrution proess remains the same asfor the RGG. This implies that RRG → RGG as (a/b) → 1 and onsequentlythe RRG is a generalization of the RGG.In Fig. 1 we illustrate two RRGs with di�erent values of the retangle sidelength a and the same number of nodes and edges. In the �rst ase when a = 1the graph orresponds to the lassial random geometri graph in whih thenodes are embedded into a unit square. The seond ase orresponds to a = 2and it represents a slightly elongated retangle.
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Figure 1: Illustration of a RRG reated with 250 nodes embedded into a unit square, a = 1,(top) and a unit retangle with a = 2 (bottom). In both ases the nodes are onneted if theyare at a Eulidean distane smaller than or equal to r = 0.15.A few important strutural parameters of RRGs have been determined an-alytially in a previous work by the urrent authors (see [27℄). They inludethe average degree, the probability that the graphs are onneted, their degreedistributions, average path length and lustering oe�ient.2.2. Consensus dynamis on graphsLet us onsider that the state of the nodes of the graph at time t are storedin the vetor ~u (t). Then, the variation of the state of the node i with time isontrolled by the equation [21, 20℄:
~̇ui (t) =

∑

(i,j)∈E

( ~uj (t)− ~ui (t)) , i = 1, 2, . . . , n, (1)whih, for the kind of graphs we analyze in this work an be written as
~̇ui (t) = −

n
∑

j=1

aij (~ui (t)− ~uj (t)) , i = 1, 2, . . . , n. (2)This equation indiates that the evolution of the state of the node i in time6



depends on the 'agreement' that this node reahes with all its nearest neighbors.It is obvious now that we an write 1 by using the Laplaian matrix of the graph:
~̇u (t) = −L~u (t) , (3)
~u (0) = ~z. (4)In the equation (3) the Laplaian matrix is ating over the vetor ~u (t) whihis updated in time. That is, ~up (t) is a salar whih represents the 'opinion' ofthe node p at the time t. The solution of this equation is:

~u (t) = e−tL~z. (5)where 0 = µ1 < µ2 ≤ · · · ≤ µn are the eigenvalues and ~ψj,p the pth entry ofthe orresponding jth eigenvetor of the Laplaian matrix. Then, the solutionof the onsensus equation on the graph is given by
~u (t) = e−tµ1

(

~ψ1 · ~z
)

~ψ1 + e−tµ2

(

~ψ2 · ~z
)

~ψ2 + · · ·+ e−tµn

(

~ψn · ~z
)

~ψn, (6)where ~x ·~y represents the inner produt of the orresponding vetors. Whenthe time tends to in�nity every node tends to the state ditated by the average ofthe values of the initial ondition. This state is usually known as the onsensusset [21℄ and it an be formally de�ned as the set A ⊆ R
n whih is the subspae

span {1} , i.e.,
A = {~u ∈ R

n |~ui = ~uj , ∀i, j ∈ V } . (7)The following is a well-known result in the theory of onsensus dynamis onnetworks.Lemma 1. ([21℄ p. 46) Let G be a onneted graph. Then, the onsensus dy-namis onverges to the agreement set with a rate of onvergene that is ditatedby µ2.Proof. As t → ∞

~u (t) →
(

~ψ1 · ~z
)

~ψ1 =
~1 � ~z

n
~1 (8)and hene ~ut → A. As µ2 is the smallest positive eigenvalue of the graphLaplaian, it ditates the slowest mode of onvergene in the equation 6.For the sake of simulations it is sometimes useful to onsider the disrete-time model of onsensus, whose equation an be written as follows [21, 20℄:7



~ui (k + 1) = ~ui (k) + ǫ
n
∑

j=1

aij (~uj (k)− ~ui (k)) , (9)where 0 < ǫ < k−1
max is the time step for the simulation. The equation 9 anbe written in matrix form as follows:

~u (k + 1) = (I − ǫL) ~u (k) , (10)where I is the identity matrix. The matrix (I − ǫL) is usually known as thePerron matrix [20℄.3. Algebrai onnetivity and diameter of RRGsAs we have seen in the previous setion the so-alled algebrai onnetivity
µ2 [28, 29℄ ditates the slowest mode of onvergene in the onsensus dynamis.That is, the rate at whih a given group of nodes onneted in a network reahesthe global onsensus is mainly determined by the seond smallest eigenvalue ofthe Laplaian matrix. Consequently, we obtain the �rst result here, whih is anupper bound for the algebrai onnetivity of a RRG.Theorem 2. Let GR (n, a, r) be a onneted RRG with n nodes embedded in aretangle of sides with lengths a and b = a−1, and onnetion radius r. Then,the algebrai onnetivity, i.e., the seond smallest eigenvalue of the Laplaianmatrix, is bounded as

µ2 (GR) ≤
8 (n− 1) (ar)

2

a4 + 1
log22 n. (11)In order to prove Theorem 2 we need the following result.Lemma 3. Let GR (n, a, r) be a onneted RRG with n nodes embedded in aretangle of sides with lengths a and b = a−1, and two nodes are onneted if andonly if their at a Eulidean distane smaller or equal than r. Let D = D (GR)be the diameter of the orresponding RRG. Then,

D (GR) ≥
√
a4 + 1

ar
. (12)Proof. The nodes of the RRG are uniformly and independently distributed inthe unit retangle. Then, let us assume that the n points are equally spaed inthe area of the retangle separated by a Eulidean distane of r. In this ase thelargest number of points are onneted along the main diagonal of the retangle.If the length of the main diagonal is c there are c
r
onneted nodes in this line.Thus, the maximum shortest path distane in the RRG is c

r
with c = √

a4 + 1

a
.For a onneted RRG this is the shortest the diameter an be, beause if two8



points in the main diagonal are separated at a Eulidean distane larger than
r, then the diameter of GR will be larger than c

r
, whih proves the result.Now, we onsider the following bound obtained by Alon and Milman [30℄ forthe algebrai onnetivity of any simple graph.Theorem 4. ([30℄). The seond smallest eigenvalue of the Laplaian matrix ofany graph is bounded as

µ2 (G) ≤
8kmax

D2
log22 n. (13)Then, by substituting 12 into 13 we have

µ2 (G) ≤
8kmax

dD2
log22 n ≤ 8kmax (ar)

2

a4 + 1
log22 n ≤ 8 (n− 1) (ar)

2

a4 + 1
log22 n, (14)where the last inequality uses the fat that for any simple graph kmax ≤ n−1,whih �nally proves the Theorem 2.Remark 5. The results in this setion prove that the elongation of the retanglein the RRG makes the graphs drastially less onneted for a given radius.However, as an be seen in the inequalities (11) and (12) the redution of thealgebrai onnetivity with the retangle elongation an be ompensated withthe inrease of the onnetion radius, whih also dereases the diameter of thegraph. For instane, if we are onsidering the deployment of wireless sensors invery elongated region it is ustomary to use sensors whih have overage radiussigni�antly larger than those typially used for overing more squared regions.Otherwise, there is a high risk that the whole network is disonneted.4. Consensus timeHere we are interested in analyzing the in�uene of the algebrai onnetivityon the time of onsensus tc, i.e., the time for whih |~ui − ~uj | ≤ δ, where δ is agiven threshold. Then, we state our main result of this work.Theorem 6. Let GR (n, a, r) be a onneted RRG with n nodes embedded ina retangle of sides with lengths a and b = a−1, and two nodes are onnetedif and only if they are at a Eulidean distane smaller than or equal to r. Let

〈tc〉 be the time of onsensus averaged for all the nodes in the graph. Let µ2 bethe algebrai onnetivity of the RRG and ~ψ2 the orresponding Fiedler vetor.Then
〈tc〉 ≥

1

nµ2

n
∑

p=1

ln

∣

∣

∣

∣

∣

∣

~ψ2,p

(

~ψ2 · ~z
)

δ

∣

∣

∣

∣

∣

∣

.9



Proof. First, we write the eq. 6 for a given node p as
~up (t) =

n
∑

q=1

~zq

n
∑

j=1

~ψj,p
~ψj,qe

−tµj , (15)whih represents the evolution of the state of the orresponding node astime evolves. Now, let us onsider that the time tends to the time of onsensus
t → tc, where tc is the time at whih u (t) → (

~ψT
1 ~z
)

~ψ1. Let us designate thistime by t−c
~up
(

t−c
)

=
1

n

n
∑

q=1

~zq +

n
∑

j=2

(

~ψj,pe
−t−c (p)µj

n
∑

q=1

~ψj,q~zq

)

, (16)here t−c (p) means the time at whih the node p is lose to reahing theonsensus state. Let 〈~u0〉 = 1
n

∑n

q=1 ~zq and let us write 16 as follows
~up
(

t−c
)

− 〈~z〉 =
n
∑

j=2

(

~ψj,pe
−t−c (p)µj

n
∑

q=1

~ψj,q~zq

)

. (17)Let us selet a node p suh that ~ψ2,p has the same sign as ~ψ2 · ~z.Sine µ2 orresponding to j = 2 is the smallest eigenvalue in the sum on theright hand of the expression, this terms tends to 0 slower than the terms for theother values of j. This means that, if we hoose a small enough value of δ, thevalues of tc and thus t−c will be very large. Thus, we an ensure that the leftside of the equation is small enough that n
∑

j=3

(

~ψj,pe
−t−c (p)µj ( ~ψj · ~z)

)

< 0. Thisimplies that
(

~up
(

t−c
)

− 〈~z〉
)

< ~ψ2,pe
−t−c (p)µ2

(

~ψ2 · ~z
)

. (18)Now, beause |~up (t−c )− 〈~z〉| ≥ δ we have
δ ≤

∣

∣~up
(

t−c
)

− 〈~z〉
∣

∣ <
∣

∣

∣

~ψ2,pe
−t−c (p)µ2

(

~ψ2 · ~z
)
∣

∣

∣
. (19)Then, the time at whih the onsensus is reahed tc (p) is bounded by

tc (p) ≥ t−c (p) ≥ 1
µ2

ln

∣

∣

∣

∣

∣

∣

~ψ2,p

(

~ψ2 · ~z
)

δ

∣

∣

∣

∣

∣

∣

. (20)Finally, the average time of onsensus is bounded by10



〈tc〉 ≥
1

µ2n

n
∑

p=1

ln

∣

∣

∣

∣

∣

∣

~ψ2,p

(

~ψ2 · ~z
)

δ

∣

∣

∣

∣

∣

∣

, (21)whih proves the result.If we are using a disrete-time approah like the one given in 10 then
〈tc〉 ≥ 1

ǫµ2n

n
∑

p=1

ln

∣

∣

∣

∣

∣

∣

~ψ2,p

(

~ψ2 · ~z
)

δ

∣

∣

∣

∣

∣

∣

. (22)The importane of the Theorem 6 is that when µ2 → 0 the time of onsensusgrows to in�nity. Previously, we have already proved in Theorem 2 that theelongation of a random geometri graph with a given number of nodes and a �xedonnetion radius means that the algebrai onnetivity goes asymptotially tozero. The immediate onsequene of this result is that the onsensus timegrows to in�nity in RRG when a → ∞ due to the inverse relation between theonsensus time and the algebrai onnetivity.5. SimulationsIn this setion we arry out simulations with the main goal of investigatinghow the elongation of a retangle in�uenes the onsensus time. However, dueto its importane for the urrent paper as well as in general for the furtherstudy of RRG we �rst investigate the in�uene of the retangle side length onthe diameter of the graphs and on their algebrai onnetivity. Here we willonsider RRGs onstruted by plaing n = 500 nodes in a unit retangle of sidelengths a and b = a−1. The onnetion radius will be �xed to r = 0.15 and wesystematially vary the side length from a = 1 to a = 12. For eah value of awe take 100 random realizations of the RRG and report the average value ofthe orresponding property. In Fig. 2(a) we illustrate the plot of the averagevalues of the diameter 〈D〉 versus the values of a (blue squares). As an be seenthe diameter inreases linearly with the elongation of the retangle. In fat,
〈D〉 ≈ 7.927a− 0.237. This result agrees with our analytial ones (see Theorem3) whih indiates that as a→ ∞ the diameter of the RRG also grows to in�nity.The lower bound (12) is also plotted in Fig. 2(a) (red irles) where it an beseen that it follows idential trend as the observed value of the diameter forRRG. Indeed, the observed diameter linearly orrelates with the one obtainedby eq. 12 with a orrelation oe�ient of 0.999.The diameter is mainly used here to �nd an upper bound for the algebraionnetivity µ2 of the graph, i.e., the seond smallest eigenvalue of the Laplaianmatrix. We have alulated the average values of the algebrai onnetivity forthe RRGs studied here and the results are plotted in Fig. 2(b) (blue squares).11



As an be seen the algebrai onnetivity deays as a power-law with the sidelength of the retangle: µ2 ≈ 0.7487a−1.968 − 0.00661 with Pearson orrelationoe�ient equal to 0.9999. This on�rms our analytial result that as a → ∞the algebrai onnetivity deays to zero. We also inlude in this �gure theplot orresponding to the values of the upper bound found for the algebraionnetivity (red irles). As an be seen, although the observed values aresigni�antly smaller than the ones provided by the upper bound, they bothdeay following similar power-laws with the hange of the retangle side length.The observed values of the algebrai onnetivity do not hange linearly withthose provided by the upper bound. Instead, they are related by a power-lawrelation of the type: 〈µ2〉 ≈ 4476µ̂0.61
2 − 84.65, where µ̂2 is the upper boundobtained by the eq. (11).The main onlusion of this part of the work is that when the retangle be-omes more elongated, the RRG beomes a larger world (the diameter inreases)and also it displays less onnetivity (derease of µ2), whih makes the graphmore vulnerable to be split into isolated omponents by removing just a fewnodes/edges. The onsequenes of this result for the analysis of the onsensusdynamis are analyzed below.
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Figure 2: Change of the diameter (a) and the algebrai onnetivity (b) of RRGs with thevariation in the side length of the retangle, a. All the graphs have n = 500 nodes and theonnetion radius is r = 0.15. The squares orrespond to the average values observed for theRRG after 100 random realizations, and the irles represents the bounds obtained by eq. 12and eq. 11, respetively. Notie the semilog plot on the y-axis for the plot (b).We now study the in�uene of the retangle elongation over the onsensusdynamis on RRGs. We take are with the elongation proess so that the graphsdo not beome disonneted. First we ompare the disrete-time evolution oftwo RRGs with n = 500 nodes and r = 0.15, but one having a = 1 (a 'lassial'RGG) and the other having a = 5. In Fig. 5 (a) and (b) we plot the timeevolution of this onsensus dynamis, where it an be seen that the time of12



onsensus for the graph embedded into the unit square is at least 10 timesshorter than that for the elongated RRG (see further). Beause these plots arethe results of only one random realization we perform a systemati variationof the retangle side length and report the average of the time of onsensusafter 100 random realizations for eah value of a with a stopping riterion of
δ = 10−4. The results are illustrated in Fig. 5 (), where we plot the values ofthe average time for onsensus versus the retangle side lengths (blue squares).As an be seen the time for onsensus inreases with the elongation of theretangle. The best �t for this orrelation is a 4th order polynomial: 〈tc〉 ≈
0.1885a4− 1.651a3+19.59a2− 37.06a2+30.59; the �t has a Pearson orrelationoe�ient of 0.9997. Using this model we an obtain a more preise estimationof the average time for onsensus of the random realization illustrated in Fig.5 (a) and (b). For a value of δ = 10−4 the onsensus is reahed for a = 1 at atime of 11.66, while for a = 10 at a time of 1853. We will go bak to this kindof analysis later on in this paper.The estimated times for onsensus obtained from the equation (21) are alsoplotted in Fig. 5 () (red irles), where it an be seen that they follow the sametrend as the observed values. Indeed, the plot of the observed values versus thoseexpeted from the eq. (21) (see Fig. 5 (d)) indiates a perfet linear orrelationbetween the two with a Pearson orrelation oe�ient of 0.9999.
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Figure 3: Illustration of the onsensus dynamis for a RRG with a = 1 (a) and for a = 5 (b).The simulations were arried out using a disrete time onsensus model (see 10) with a randomalloation of initial states for the nodes. Both networks have 500 nodes and the onnetionradius is r = 0.15. Notie that the sale for the time axis has hanged by a fator of 10 fromone plot to the other. () Dependene of the time for onsensus with the length of the side ofthe retangle. Here the squares represent the average values of the 100 simulations and theirles are the values obtained by the equation 21. The solid lines represent the best �t whihwere obtained using 4th order polynomials. (d) Linear plot of the observed and estimated(using equation 21) for the time of onsensus of the RRGs with 500 nodes and r = 0.15.Finally, we plot in Fig. 4 the dependene of the time of onsensus withrespet to both the onnetion radius and the retangle side length. The linethat divides the region of relatively fast onsensus (deep blue region in theontour plot) from that of relatively slow one is given by a = κ · r − 1.5, where
κ = 28 for the analytial and κ = 26 for the observed results. Thus, a onditionfor fast onsensus in RRG with n = 500 an be simply approximated by

a+ 1.5

r
< κ. (23)14



We would like to briey explore some of the onsequenes that our resultshave on the study of onsensus in real-world situations. As we have seen in theIntrodution a ity like Manhattan has dimensions whih resemble a retanglemore than a square. That is, Manhattan is 21.6 km long and 3.7 km wide. Thisan be represented as a unit retangle of dimensions a ≈ 2.42 and b ≈ 0.41.Using our �tted model, and onsidering that we embed 500 nodes, e.g., wirelesssensors to monitor the ity, we obtain the expeted time for onsensus on thisRRG, whih is 38.3. This time is 3.3 times longer than the one expeted if thenetwork is onsidered to be embedded into a unit square, i.e., a = 1. That is,we would be underestimating the time for onsensus of the sensors by a fatorof three. Also, aording to (23) we an estimate that a fast onsensus an bereahed in this network only if r > 0.157.
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Figure 4: Contour plot showing the dependene of the time of onsensus with the onnetionradius and the retangle side length in RRGs with 500 nodes. a) Analytial results. b)Observed results from the simulations. The diagonal white line orresponds to the equations
a = κ · r − 1.5, where κ = 28 for the analytial and κ = 26 for the observed results.6. ConlusionsIn this work we have found some interesting strutural and dynamial prop-erties of graphs embedded into retangular areas. The reently de�ned randomretangular graphs (RRGs) aount for the spatial distribution of nodes allowingthe variation of the shape of the unit retangle ommonly used in random geo-metri graphs (RGGs). In partiular, we have found an exellent lower boundfor the diameter of RRGs. The diameter is an important parameter per seas well as for its inlusion in many inequalities for other network struturalparameters. For instane, we have used this bound to �nd an upper boundfor the algebrai onnetivity of RRGs. The algebrai onnetivity, the seondsmallest eigenvalue of the graph Laplaian, is one of the most important param-eters relating network struture and dynamial proesses taking plae on them,e.g., onsensus/di�usion dynamis, synhronization. Finally, we have studiedthe onsensus dynamis on RRGs where we have found analytially that as the15



retangle beomes more elongated, the time for reahing onsensus inreasespolynomially with the side length of the retangle. The simulation results al-lowed us to on�rm these results and to �nd empirial relations between thetopologial and dynamial parameters with the retangle side length.The results obtained in this work have important pratial onsequenesfor modeling real-world senarios. First, modeling a real-world senario whihis not geometrially similar to a square using the `lassial' RGG, produesa signi�ant error in estimating important strutural and dynamial networkparameters. More importantly, the RRG provides a modeling senario in whihwe an simulate the in�uene of the shape of a geographial region on thetopologial and dynamial properties of the graphs embedded on them.There are many new researh avenues that the study of RRGs open for thestudy of spatially embedded graphs. One of them is the analysis of other dy-namial proesses, suh as synhronization, and epidemi spreading on RRGs.Another area of development is the extension of RRGs to higher dimensions, spe-ially to three-dimensional (3D) ones. 3D-RRGs will allow the e�etive modelingof many real-world senarios in whih the nodes are embedded into elongatedubi regions of the 3D spae. Finally, a third area of interesting development isthe onsideration of other proximity graphs, suh as Gabriel graphs and randomneighborhood graphs, embedded into retangular regions instead of unit squaredones. We hope these developments will ontribute to be better understandingof networks embedded into geometrial spaes.[1℄ Mar Barthélemy. Spatial networks. Physis Reports, 499(1):1�101, 2011.doi: doi:10.1016/j.physrep.2010.11.002.[2℄ I.F. Akyildiz and M.C. Vuran. Wireless Sensor Networks. Advaned Textsin Communiations and Networking. Wiley, 2010. ISBN 9780470515198.URL http://books.google.o.uk/books?id=7YBHYJsSmS8C.[3℄ E. Estrada. The Struture of Complex Networks: Theory and Ap-pliations. OUP Oxford, 2011. ISBN 9780191613425. URLhttp://books.google.o.uk/books?id=6iK4vp8oewYC.[4℄ Elizabeth Santiago, Jorge X. Velaso-Hernández, and Manuel Romero-Saledo. A methodology for the haraterization of �ow ondutivitythrough the identi�ation of ommunities in samples of fraturedroks. Expert Systems with Appliations, 41(3):811 � 820, 2014. ISSN0957-4174. doi: http://dx.doi.org/10.1016/j.eswa.2013.08.011. URLhttp://www.sienediret.om/siene/artile/pii/S0957417413006234.Methods and Appliations of Arti�ial and Computational Intelligene.[5℄ Andrea Perna, Sergi Valverde, Jaques Gautrais, Christian Jost, Ri-ard Solé, Pasale Kuntz, and Guy Theraulaz. Topologial e�ienyin three-dimensional gallery networks of termite nests. Physia A:Statistial Mehanis and its Appliations, 387(24):6235 � 6244, 2008.ISSN 0378-4371. doi: http://dx.doi.org/10.1016/j.physa.2008.07.019. URLhttp://www.sienediret.om/siene/artile/pii/S0378437108006675.16
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