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Abstract

A random rectangular graph (RRQG) is a generalization of the random ge-
ometric graph (RGG) in which the nodes are embedded into a rectangle with
side lengths a and b = 1/a, instead of on a unit square [0,1]°. Two nodes are
then connected if and only if they are separated at a Euclidean distance smaller
than or equal to a certain threshold radius . When a = 1 the RRG is iden-
tical to the RGG. Here we apply the consensus dynamics model to the RRG.
Our main result is a lower bound for the time of consensus, i.e., the time at
which the network reaches a global consensus state. To prove this result we
need first to find an upper bound for the algebraic connectivity of the RRG,
i.e., the second smallest eigenvalue of the combinatorial Laplacian of the graph.
This bound is based on a tight lower bound found for the graph diameter. Our
results prove that as the rectangle in which the nodes are embedded becomes
more elongated, the RRG becomes a ’large-world’, i.e., the diameter grows to
infinity, and a poorly-connected graph, i.e., the algebraic connectivity decays
to zero. The main consequence of these findings is the proof that the time of
consensus in RRGs grows to infinity as the rectangle become more elongated.
In closing, consensus dynamics in RRGs strongly depend on the geometric char-
acteristics of the embedding space, and reaching the consensus state becomes
more difficult as the rectangle is more elongated.
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1. Introduction

Many real-world networked systems are embedded into geometrical spaces.
These spatial networks, as they are known, may represent many different kinds
of scenarios [1]. For instance, in urban street networks the nodes describe the
intersection of streets, which are represented by the edges of the graph. These
streets and their intersections are embedded in the two-dimensional space repre-
senting the surface occupied by the corresponding city. Similar situations occur
with infrastructural and transportation systems ranging from water supply net-
works and railroads to the internet and wireless sensor networks (WSNs). In
WSNs [2], the nodes represent the sensors which are deployed on a given geo-
graphical region and their communication defines the connectivity of the nodes.
This is analogous to many other communication systems ranging from mobile
phones to radio signals. On a different scale we can mention the vascular and
cellular networks of nodes embedded into cells and biological tissues [3]; pro-
tein residue networks [3]; the networks of channels in fractured rocks [4]; the
networks representing the corridors and galleries in animal nests [5, 6]; and
landscape networks [7], among others. For modeling these spatial networks it
is necessary to have a theoretical model that captures both the topological fea-
tures typical of complex networks and the spatial embedding of these specific
kinds of systems. The most commonly used model for spatial networks is the
so-called random geometric graph (RGG) [8, 9, 10, 11]. In RGGs each node
is randomly assigned geometric coordinates and then two nodes are connected
if the (Euclidean) distance between them is smaller than or equal to a certain
threshold r.

The RGG model has been widely used in the study of wireless sensor net-
works (WSNs) and peer-to-peer networks [12, 13, 14|, where the problem of
consensus has received great attention due to the fact that it allows the achiev-
ing of tasks with a minimum overhead of communication [15, 16, 17, 18, 19].
In the consensus protocols, as they are known in technological applications, the
problem consists of making the scalar states of a set of agents converge to the
same value under local communication constraints [20, 21]. Thus, since the com-
munication requires only local information there is no congestion due to network
traffic. RGGs are also used to model populations which are geographically con-
strained in a certain region, like a city. This scenario is important, for instance,
for the analysis of epidemic spreading in such populations [22, 17, 23, 24]. In
this sense Riley et al. [25] have remarked that RGGs “provide a nice way of
escaping the lack of local correlation and clustering that are implicit proper-
ties of the configuration graphs often used to explore epidemic dynamics”. In a
similar fashion, RGGs can be used to model structured populations in which
opinions, instead of viruses, are propagated. In this case the RGGs also captures
very well the geographic constraints of the population and, in comparison with
other models [26], they “are more realistic for a number of reasons: (i) RGG is
isotropic (on average) while regular lattice is not; (ii) the average degree for an
RGG can be set to an arbitrary positive number, instead of a small fized number
for the lattice; (iii) RGGs closely capture the topology of random networks of



short-range-connected spatially-embedded artificial agents”.

In the formulation of the RGG model it is assumed that the nodes are uni-
formly and independently distributed on a unit square (or a higher dimensional
hypercube in the general case) [8, 9]. This unit square represents the area on
which the agents are interacting to reach a consensus state, and it could be a
workplace, a city, or a forest, just to mention some examples. Such a square-like
area is typical of many real-world scenarios. For instance, the city of San Fran-
cisco (USA) is known as the "seven-by-seven-mile square", due to the fact that
the mainland part of the city is a square of nearly 11 km by 11 km. However, if
we consider other cities, like Manhattan, the picture looks very different. Man-
hattan is 13.4 miles (21.6 km) long and 2.3 miles (3.7 km) wide, which resembles
a rectangular shape instead of a square one. Based on this necessity of consid-
ering the influence of the rectangular shape on the topological and dynamical
properties of the random networks deployed on these areas we have recently
introduced the random rectangular graph (RRG) model [27]. In this case, the
nodes are uniformly and independently distributed on a unit rectangle of given
side lengths. When both sides are of the same length we recover the RGG in
such a way that the RRG model generalizes the RGG one.

Here, we are interested in investigating analytically and computationally
how the elongation of the rectangle in the RRG affects the consensus dynamics
taking place on the nodes and edges of the networks constructed on them. We
start by introducing the concept of the random rectangular graph (RRG), and
continue with the description of the consensus model to be considered. Then,
we state the main result of this work which proves that for a RRG with a fixed
number of nodes and a given connection radius, the time for reaching consensus
grows to infinity when the rectangle is very elongated. We finally support our
analytic results with computational simulations for RRGs.

2. Preliminaries

Here we present some definitions, notations, and properties which will be
used in this work (see [3]). For the basic definitions about networks the reader
is directed to the literature (see for instance [3]). The notation used here is
standard. For instance, k; designate the degree of the node i. The matrix K =
diag (k;) designate the degree matrix of the graph and the matrix £L = K — A
is the graph Laplacian, where A stands for the adjacency matrix of the graph.
It has entries

ki fu=w
Lyw=1 -1 if (u,v) €FE Yu,v € V.
0 otherwise

The eigenvalues of the Laplacian matrix are denoted here by: 0 = 1 < po <

- < pin. If the network is connected the multiplicity of the zero eigenvalue
is equal to ome, ie., 0 = pu; < po < --- < p, and the smallest nontrivial
eigenvalue (o is known as the algebraic connectivity of graph [28, 29]. Let U be



the matrix of orthonormalized eigenvectors Jj of L,ie., U= 1/71 e 1/7" } .

The eigenvector Jg associated with the algebraic connectivity is known as the
Fiedler vector [28]. Let A be the diagonal matrix of eigenvalues of the Laplacian
matrix. Then, £ =UAUT.

2.1. Random Rectangular Graphs

The RGG is defined by distributing uniformly and independently n points
in the unit d-dimensional cube [0,1]¢ [8]. Then, two points are connected by
an edge if their Euclidean distance is at most r, which is a given fixed number
known as the connection radius. That is, we create a disk of radius r centred
at each node, and every node inside that disk is connected to the central node.
This disk plays the role of the area of influence of a given node, such as the area
of coverage of a mobile or wireless sensor.

In [27] we have considered a unit hyperrectangle as the Cartesian product
[a1,b1] X [az,b2] X -+ X [aqg, bg] where a;,b; € R, a; < b;, and 1 < i < d instead
of the unit square of the RGG. Hereafter we will restrict ourselves to the 2-
dimensional case, which corresponds to a rectangle of unit area. Now, the RRG
has been defined by distributing uniformly and independently n points in the
unit rectangle [a, b] and then connecting two points by an edge if their Euclidean
distance is at most r. The rest of the construction process remains the same as
for the RGG. This implies that RRG — RGG as (a/b) — 1 and consequently
the RRG is a generalization of the RGG.

In Fig. 1 we illustrate two RRGs with different values of the rectangle side
length a and the same number of nodes and edges. In the first case when a =1
the graph corresponds to the classical random geometric graph in which the
nodes are embedded into a unit square. The second case corresponds to a = 2
and it represents a slightly elongated rectangle.
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Figure 1: Illustration of a RRG created with 250 nodes embedded into a unit square, a = 1,
(top) and a unit rectangle with a = 2 (bottom). In both cases the nodes are connected if they
are at a Euclidean distance smaller than or equal to r = 0.15.

A few important structural parameters of RRGs have been determined an-
alytically in a previous work by the current authors (see [27]). They include
the average degree, the probability that the graphs are connected, their degree
distributions, average path length and clustering coefficient.

2.2. Consensus dynamics on graphs

Let us consider that the state of the nodes of the graph at time ¢ are stored
in the vector @ (¢). Then, the variation of the state of the node 7 with time is
controlled by the equation [21, 20]:

i (t) = > (1) — i (b)), i=1,2,...,n, (1)

(i,)eE

which, for the kind of graphs we analyze in this work can be written as

@(t):_zaij(m(t)_u;-(t)),¢:1,2,...,n. (2)

This equation indicates that the evolution of the state of the node 4 in time



depends on the 'agreement’ that this node reaches with all its nearest neighbors.
It is obvious now that we can write 1 by using the Laplacian matrix of the graph:

i) = —Laf), 3)
w(0) = Z (4)
In the equation (3) the Laplacian matrix is acting over the vector @ (t) which

is updated in time. That is, @, (¢) is a scalar which represents the ’opinion’ of
the node p at the time ¢. The solution of this equation is:

a@(t) =e £z (5)

where 0 = py < pg < --- < p,, are the eigenvalues and Jj,p the pth entry of
the corresponding jth eigenvector of the Laplacian matrix. Then, the solution

of the consensus equation on the graph is given by

u(t) = et (1/71 : z) Dy + et (1/72 ~5) Yo+ o e tHn (z/?n : z) Un,  (6)

where Z - ¢ represents the inner product of the corresponding vectors. When
the time tends to infinity every node tends to the state dictated by the average of
the values of the initial condition. This state is usually known as the consensus
set [21] and it can be formally defined as the set A C R™ which is the subspace
span{l}, i.e.,

A={G@eR" |7 =u}, Vi,jeV}. (7)

The following is a well-known result in the theory of consensus dynamics on
networks.

Lemma 1. ([21] p. 46) Let G be a connected graph. Then, the consensus dy-
namics converges to the agreement set with a rate of convergence that is dictated
by 2.

Proof. Ast — oo

-
« 2

i(t) > (4 2) dy = =T (8)

and hence u; — A. As puo is the smallest positive eigenvalue of the graph
Laplacian, it dictates the slowest mode of convergence in the equation 6. O

n

For the sake of simulations it is sometimes useful to consider the discrete-
time model of consensus, whose equation can be written as follows [21, 20]:



@ (k+1) = a; (k) +eZaij (it (k) — i; (k)), (9)

where 0 < € < kL is the time step for the simulation. The equation 9 can

be written in matrix form as follows:

@(k+1)= (I —eL)a(k), (10)

where [ is the identity matrix. The matrix (I — eL) is usually known as the
Perron matrix [20].

3. Algebraic connectivity and diameter of RRGs

As we have seen in the previous section the so-called algebraic connectivity
2 [28, 29] dictates the slowest mode of convergence in the consensus dynamics.
That is, the rate at which a given group of nodes connected in a network reaches
the global consensus is mainly determined by the second smallest eigenvalue of
the Laplacian matrix. Consequently, we obtain the first result here, which is an
upper bound for the algebraic connectivity of a RRG.

Theorem 2. Let Gg (n,a,r) be a connected RRG with n nodes embedded in a
rectangle of sides with lengths a and b = a', and connection radius r. Then,
the algebraic connectivity, i.e., the second smallest eigenvalue of the Laplacian
matriz, is bounded as

8(n—1) (ar)2
a* +1

In order to prove Theorem 2 we need the following result.

p2 (Gr) < logs . (11)

Lemma 3. Let Ggr (n,a,r) be a connected RRG with n nodes embedded in a
rectangle of sides with lengths a and b = a~"', and two nodes are connected if and
only if their at a Euclidean distance smaller or equal than r. Let D = D (GR)
be the diameter of the corresponding RRG. Then,

a*+1
D (Ggr)> —. 12
(Gr) = Y (12
Proof. The nodes of the RRG are uniformly and independently distributed in
the unit rectangle. Then, let us assume that the n points are equally spaced in
the area of the rectangle separated by a Euclidean distance of r. In this case the
largest number of points are connected along the main diagonal of the rectangle.

c
If the length of the main diagonal is ¢ there are — connected nodes in this line.
r

c a*+1
Thus, the maximum shortest path distance in the RRG is — with ¢ = ——.

r a
For a connected RRG this is the shortest the diameter can be, because if two



points in the main diagonal are separated at a Euclidean distance larger than
c

r, then the diameter of Gr will be larger than — , which proves the result. [
r

Now, we consider the following bound obtained by Alon and Milman [30] for
the algebraic connectivity of any simple graph.

Theorem 4. ([30]). The second smallest eigenvalue of the Laplacian matriz of
any graph is bounded as

8]€ma(13
n2 (G) < =55 logi n. (13)

Then, by substituting 12 into 13 we have

8km(li1)
dD?

S8kmaz (ar)2
a* +1

8(n—1) (ar)2

<
Hz (G) < a*+1

logan < logan < logan, (14)
where the last inequality uses the fact that for any simple graph k4, < n—1,

which finally proves the Theorem 2.

Remark 5. The results in this section prove that the elongation of the rectangle
in the RRG makes the graphs drastically less connected for a given radius.
However, as can be seen in the inequalities (11) and (12) the reduction of the
algebraic connectivity with the rectangle elongation can be compensated with
the increase of the connection radius, which also decreases the diameter of the
graph. For instance, if we are considering the deployment of wireless sensors in
very elongated region it is customary to use sensors which have coverage radius
significantly larger than those typically used for covering more squared regions.
Otherwise, there is a high risk that the whole network is disconnected.

4. Consensus time

Here we are interested in analyzing the influence of the algebraic connectivity
on the time of consensus ¢, i.e., the time for which |u; — uj| < §, where § is a
given threshold. Then, we state our main result of this work.

Theorem 6. Let Gr (n,a,r) be a connected RRG with n nodes embedded in
a rectangle of sides with lengths a and b = a~', and two nodes are connected
if and only if they are at a Euclidean distance smaller than or equal to r. Let
(tc) be the time of consensus averaged for all the nodes in the graph. Let uo be

the algebraic connectivity of the RRG and 1/72 the corresponding Fiedler vector.
Then

1 & Do (% : 27)



Proof. First, we write the eq. 6 for a given node p as

n n

iy (t) = Z Zq Z %jypﬁﬁqe_tujv (15)

q=1 Jj=1

which represents the evolution of the state of the corresponding node as
time evolves. Now, let us consider that the time tends to the time of consensus

t — t., where t. is the time at which u () — (15{5) Jl. Let us designate this
time by ¢
n

DS (¢<> Zgj,ng) )
q=1 q=1

Jj=2

U (tc_) -

S|

here ¢_ (p) means the time at which the node p is close to reaching the
consensus state. Let (i) = < 2221 Z, and let us write 16 as follows

i) - (=3 (¢ s z@,qzq) | a7
j=2 g=1

Let us select a node p such that z/jg,p has the same sign as 1/72 7.

Since o corresponding to j = 2 is the smallest eigenvalue in the sum on the
right hand of the expression, this terms tends to 0 slower than the terms for the
other values of j. This means that, if we choose a small enough value of §, the
values of t. and thus ¢t_ will be very large. Thus, we can ensure that the left

side of the equation is small enough that > (wzpe’tg(p)”f (4 - Z)) < 0. This
j=3

implies that

(3 (t2) = () < o= ¥ (- 2) (18)

Now, because |, (t. ) — (Z)| > ¢ we have

6 < |y (1) = (B)] < [dapete @2 (- 7). (19)

Then, the time at which the consensus is reached t. (p) is bounded by

Vo (27
L) 2t 0) > 1nw.

Finally, the average time of consensus is bounded by

10



which proves the result. O

If we are using a discrete-time approach like the one given in 10 then

) > Zm% (2)

EL2TL

The importance of the Theorem 6 is that when po — 0 the time of consensus
grows to infinity. Previously, we have already proved in Theorem 2 that the
elongation of a random geometric graph with a given number of nodes and a fixed
connection radius means that the algebraic connectivity goes asymptotically to
zero. The immediate consequence of this result is that the consensus time
grows to infinity in RRG when a — oo due to the inverse relation between the
consensus time and the algebraic connectivity.

5. Simulations

In this section we carry out simulations with the main goal of investigating
how the elongation of a rectangle influences the consensus time. However, due
to its importance for the current paper as well as in general for the further
study of RRG we first investigate the influence of the rectangle side length on
the diameter of the graphs and on their algebraic connectivity. Here we will
consider RRGs constructed by placing n = 500 nodes in a unit rectangle of side
lengths @ and b = a~!. The connection radius will be fixed to » = 0.15 and we
systematically vary the side length from @ = 1 to a = 12. For each value of a
we take 100 random realizations of the RRG and report the average value of
the corresponding property. In Fig. 2(a) we illustrate the plot of the average
values of the diameter (D) versus the values of a (blue squares). As can be seen
the diameter increases linearly with the elongation of the rectangle. In fact,
(D) =~ 7.927a — 0.237. This result agrees with our analytical ones (see Theorem
3) which indicates that as a — oo the diameter of the RRG also grows to infinity.
The lower bound (12) is also plotted in Fig. 2(a) (red circles) where it can be
seen that it follows identical trend as the observed value of the diameter for
RRG. Indeed, the observed diameter linearly correlates with the one obtained
by eq. 12 with a correlation coefficient of 0.999.

The diameter is mainly used here to find an upper bound for the algebraic
connectivity po of the graph, i.e., the second smallest eigenvalue of the Laplacian
matrix. We have calculated the average values of the algebraic connectivity for
the RRGs studied here and the results are plotted in Fig. 2(b) (blue squares).

11



As can be seen the algebraic connectivity decays as a power-law with the side
length of the rectangle: s ~ 0.7487a 1958 — 0.00661 with Pearson correlation
coefficient equal to 0.9999. This confirms our analytical result that as a — oo
the algebraic connectivity decays to zero. We also include in this figure the
plot corresponding to the values of the upper bound found for the algebraic
connectivity (red circles). As can be seen, although the observed values are
significantly smaller than the ones provided by the upper bound, they both
decay following similar power-laws with the change of the rectangle side length.
The observed values of the algebraic connectivity do not change linearly with
those provided by the upper bound. Instead, they are related by a power-law
relation of the type: (uo) ~ 4476195 — 84.65, where /i is the upper bound
obtained by the eq. (11).

The main conclusion of this part of the work is that when the rectangle be-
comes more elongated, the RRG becomes a larger world (the diameter increases)
and also it displays less connectivity (decrease of ps), which makes the graph
more vulnerable to be split into isolated components by removing just a few
nodes/edges. The consequences of this result for the analysis of the consensus
dynamics are analyzed below.

10 ‘ ‘ : :
100 : : : ‘ ‘
90’ 103 F
80f ,
107 ¢ T
5 70t £ e
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£ 60 g 10’
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— o
© 50t o
x Q 0
S 40! g0y
:
2 30 ST
20¢ .
107}
10F 8
0 : - : : : : : :
0 2 4 6 8 10 12 107, 2 4 6 8 10 12
Rectangle side length, a Rectangle side length, a

Figure 2: Change of the diameter (a) and the algebraic connectivity (b) of RRGs with the
variation in the side length of the rectangle, a. All the graphs have n = 500 nodes and the
connection radius is » = 0.15. The squares correspond to the average values observed for the
RRG after 100 random realizations, and the circles represents the bounds obtained by eq. 12
and eq. 11, respectively. Notice the semilog plot on the y-axis for the plot (b).

We now study the influence of the rectangle elongation over the consensus
dynamics on RRGs. We take care with the elongation process so that the graphs
do not become disconnected. First we compare the discrete-time evolution of
two RRGs with n = 500 nodes and r = 0.15, but one having a = 1 (a ’classical’
RGG) and the other having @ = 5. In Fig. 5 (a) and (b) we plot the time
evolution of this consensus dynamics, where it can be seen that the time of

12



consensus for the graph embedded into the unit square is at least 10 times
shorter than that for the elongated RRG (see further). Because these plots are
the results of only one random realization we perform a systematic variation
of the rectangle side length and report the average of the time of consensus
after 100 random realizations for each value of a with a stopping criterion of
§ = 107%. The results are illustrated in Fig. 5 (c), where we plot the values of
the average time for consensus versus the rectangle side lengths (blue squares).
As can be seen the time for consensus increases with the elongation of the
rectangle. The best fit for this correlation is a 4th order polynomial: (¢.) ~
0.1885a* — 1.651a> + 19.59a% — 37.06a> 4 30.59; the fit has a Pearson correlation
coeflicient of 0.9997. Using this model we can obtain a more precise estimation
of the average time for consensus of the random realization illustrated in Fig.
5 (a) and (b). For a value of § = 10~* the consensus is reached for a = 1 at a
time of 11.66, while for a = 10 at a time of 1853. We will go back to this kind
of analysis later on in this paper.

The estimated times for consensus obtained from the equation (21) are also
plotted in Fig. 5 (c) (red circles), where it can be seen that they follow the same
trend as the observed values. Indeed, the plot of the observed values versus those
expected from the eq. (21) (see Fig. 5 (d)) indicates a perfect linear correlation
between the two with a Pearson correlation coefficient of 0.9999.

13



1 ‘ ‘ ‘ ‘ 1
0.9 1 0.9
0.8 1 0.8
0.7
0.6
o
T 05
w
0.4
0.3
0.2 1 0.2
0.1 1 0.1
0 : : : : 0 ; ‘ ‘ ‘
0 100 200 300 400 500 0 1000 2000 3000 4000 5000
time time
4000
3500
3500f 1
3000(
« 3000 19
? 2 2500
c
© 2500 {e
2 8
S 2 2000t
O 2000 1L
5 £
(e} = L
= 1500 1k 1500
S T
F 1000 | £ 1000}
w
500t {  500f
0 : ‘ ‘ ‘ ‘ ‘
0 2 4 6 8 10 12 0 500 1000 1500 2000 2500 3000
Rectangle side length Observed time for consensus

Figure 3: Illustration of the consensus dynamics for a RRG with a =1 (a) and for a =5 (b).
The simulations were carried out using a discrete time consensus model (see 10) with a random
allocation of initial states for the nodes. Both networks have 500 nodes and the connection
radius is » = 0.15. Notice that the scale for the time axis has changed by a factor of 10 from
one plot to the other. (c) Dependence of the time for consensus with the length of the side of
the rectangle. Here the squares represent the average values of the 100 simulations and the
circles are the values obtained by the equation 21. The solid lines represent the best fit which
were obtained using 4th order polynomials. (d) Linear plot of the observed and estimated
(using equation 21) for the time of consensus of the RRGs with 500 nodes and r = 0.15.

Finally, we plot in Fig. 4 the dependence of the time of consensus with
respect to both the connection radius and the rectangle side length. The line
that divides the region of relatively fast consensus (deep blue region in the
contour plot) from that of relatively slow one is given by a = k- r — 1.5, where
k = 28 for the analytical and k = 26 for the observed results. Thus, a condition
for fast consensus in RRG with n = 500 can be simply approximated by

a+1.5
— <

. K. (23)

14



We would like to briey explore some of the consequences that our results
have on the study of consensus in real-world situations. As we have seen in the
Introduction a city like Manhattan has dimensions which resemble a rectangle
more than a square. That is, Manhattan is 21.6 km long and 3.7 km wide. This
can be represented as a unit rectangle of dimensions a ~ 2.42 and b =~ 0.41.
Using our fitted model, and considering that we embed 500 nodes, e.g., wireless
sensors to monitor the city, we obtain the expected time for consensus on this
RRG, which is 38.3. This time is 3.3 times longer than the one expected if the
network is considered to be embedded into a unit square, i.e., a = 1. That is,
we would be underestimating the time for consensus of the sensors by a factor
of three. Also, according to (23) we can estimate that a fast consensus can be
reached in this network only if r» > 0.157.

Rectangle side length
Rectangle side length

0.1 0.2 03 04 05 0.6 0.1 0.2 03 04 05 0.6
Connection radius Connection radius

Figure 4: Contour plot showing the dependence of the time of consensus with the connection
radius and the rectangle side length in RRGs with 500 nodes. a) Analytical results. b)
Observed results from the simulations. The diagonal white line corresponds to the equations
a =k -r— 1.5, where k = 28 for the analytical and x = 26 for the observed results.

6. Conclusions

In this work we have found some interesting structural and dynamical prop-
erties of graphs embedded into rectangular areas. The recently defined random
rectangular graphs (RRGs) account for the spatial distribution of nodes allowing
the variation of the shape of the unit rectangle commonly used in random geo-
metric graphs (RGGs). In particular, we have found an excellent lower bound
for the diameter of RRGs. The diameter is an important parameter per se
as well as for its inclusion in many inequalities for other network structural
parameters. For instance, we have used this bound to find an upper bound
for the algebraic connectivity of RRGs. The algebraic connectivity, the second
smallest eigenvalue of the graph Laplacian, is one of the most important param-
eters relating network structure and dynamical processes taking place on them,
e.g., consensus/diffusion dynamics, synchronization. Finally, we have studied
the consensus dynamics on RRGs where we have found analytically that as the

15



rectangle becomes more elongated, the time for reaching consensus increases
polynomially with the side length of the rectangle. The simulation results al-
lowed us to confirm these results and to find empirical relations between the
topological and dynamical parameters with the rectangle side length.

The results obtained in this work have important practical consequences

for modeling real-world scenarios. First, modeling a real-world scenario which
is not geometrically similar to a square using the ‘classical’ RGG, produces
a significant error in estimating important structural and dynamical network
parameters. More importantly, the RRG provides a modeling scenario in which
we can simulate the influence of the shape of a geographical region on the
topological and dynamical properties of the graphs embedded on them.

There are many new research avenues that the study of RRGs open for the

study of spatially embedded graphs. One of them is the analysis of other dy-
namical processes, such as synchronization, and epidemic spreading on RRGs.
Another area of development is the extension of RRGs to higher dimensions, spe-
cially to three-dimensional (3D) ones. 3D-RRGs will allow the effective modeling
of many real-world scenarios in which the nodes are embedded into elongated
cubic regions of the 3D space. Finally, a third area of interesting development is
the consideration of other proximity graphs, such as Gabriel graphs and random
neighborhood graphs, embedded into rectangular regions instead of unit squared
ones. We hope these developments will contribute to be better understanding
of networks embedded into geometrical spaces.
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