
Strathprints Institutional Repository

Blair, Steven Macpherson (2015) Beckhoff and TwinCAT 3 System

Development Guide. [Report] ,

This version is available at http://strathprints.strath.ac.uk/55254/

Strathprints is designed to allow users to access the research output of the University of

Strathclyde. Unless otherwise explicitly stated on the manuscript, Copyright © and Moral Rights

for the papers on this site are retained by the individual authors and/or other copyright owners.

Please check the manuscript for details of any other licences that may have been applied. You

may not engage in further distribution of the material for any profitmaking activities or any

commercial gain. You may freely distribute both the url (http://strathprints.strath.ac.uk/) and the

content of this paper for research or private study, educational, or not-for-profit purposes without

prior permission or charge.

Any correspondence concerning this service should be sent to Strathprints administrator:

strathprints@strath.ac.uk

http://strathprints.strath.ac.uk/
mailto:strathprints@strath.ac.uk

The place of useful learning

The University of Strathclyde is a charitable body, registered in Scotland, number SC015263

Beckhoff and TwinCAT 3 System Development Guide

December 2015

Steven Blair
University of Strathclyde

1

Contents

1 Introduction ... 2

2 TwinCAT 3 Installation on Development PC .. 3

3 Connecting to a Hardware Controller... 4

4 TwinCAT 3 – Typical C++ Project Configuration .. 5

4.1 C++ Module .. 5

4.2 Assigning Module Instances to Processor Cores .. 9

4.3 Using a TMC File .. 11

4.4 Real-Time Monitoring .. 13

5 Integrating Simulink Models .. 16

5.1 Manual Compilation of Generated C++ Code within TwinCAT 16

5.2 Using Simulink-TwinCAT 3 Integration .. 18

6 References .. 20

Abbreviations

CPU Central Processing Unit
IO Input or Output
PC Personal Computer
PMU Phasor Measurement Unit
TMC TwinCAT Module Class
WDK Windows Driver Kit

2

1 Introduction

This document is a guide for setting up a Beckhoff hardware controller and a development
PC. It is assumed that the development PC runs Windows 7 or Window 8/8.1, although other
versions of Windows (including 32-bit and 64-bit) should also work. In particular, guidance is
given on using C++ modules and integrating MATLAB Simulink models within TwinCAT 3.

This guide supplements existing Beckhoff documentation:

 Webinar on TwinCAT 3 C++ integration:
http://multimedia.beckhoff.com/webinar/en/Webinar_TwinCAT_3_C_plusplus_Integra
tion/default.htm

 C++ Quick Start Guide:
https://infosys.beckhoff.com/english.php?content=../content/1033/tc3_c/7205759414
8625035.html&id=

 The comprehensive manual is available here:
ftp://ftp.beckhoff.com/Document/automation/twincat3/TC1300_C_EN.pdf

 The Beckhoff Information System (available at:
http://infosys.beckhoff.com/index_en.htm) contains general documentation and
some code examples; however, many examples are for TwinCAT 2 and cannot be
used in TwinCAT 3.

http://multimedia.beckhoff.com/webinar/en/Webinar_TwinCAT_3_C_plusplus_Integration/default.htm
http://multimedia.beckhoff.com/webinar/en/Webinar_TwinCAT_3_C_plusplus_Integration/default.htm
https://infosys.beckhoff.com/english.php?content=../content/1033/tc3_c/72057594148625035.html&id=
https://infosys.beckhoff.com/english.php?content=../content/1033/tc3_c/72057594148625035.html&id=
ftp://ftp.beckhoff.com/Document/automation/twincat3/TC1300_C_EN.pdf
http://infosys.beckhoff.com/index_en.htm

3

2 TwinCAT 3 Installation on Development PC

1. Install Visual Studio. There are several versions which are compatible with TwinCAT
3, and provide full functionality:

a. Free download: Visual Studio Community 2013 (available here:
https://www.visualstudio.com/en-us/news/vs2013-community-vs.aspx). Note
that TwinCAT 3 does not yet support the 2015 version.

b. Commercial: Visual Studio 2010, 2012, or 2013 (Professional, Premium, or
Ultimate).

c. Within Strathclyde, the 2013 Professional edition can obtained from the
Microsoft DreamSpark agreement, for teaching and non-commercial research
purposes.

Note that if you install TwinCAT 3 without Visual Studio already installed, it will install
“Visual Studio 2010 Shell”. This version is not suitable for C++ development or
debugging.

2. Install Microsoft Windows Driver Kit (WDK) 7 and set up a Windows environment
variable, as described by the following instructions:
http://infosys.beckhoff.com/english.php?content=../content/1033/tc3_c/54043195639
122187.html&id=

3. Download TwinCAT 3 from http://www.beckhoff.co.uk/english.asp?download/tc3-
downloads.htm?id=1905053019883865

a. You need to create an account on the Beckhoff website to access downloads.
b. The specific download is found in the “Software” > “TE1xxx | Engineering”

section, and is called “TwinCAT 3.1 – eXtended Automation Engineering
(XAE)”.

4. When using TwinCAT 3, you might be asked to create or renew licenses. This is
normal. Licenses last for one week, but can be simply renewed, perpetually, when
needed. Licenses only need to be purchased for commercial work.

5. For 64-bit targets, two additional steps must be done:
a. On the development PC, set up digital driver signing. The process is given

here:
http://infosys.beckhoff.com/english.php?content=../content/1033/tc3_c/63050
394893879947.html&id=. Note that step 3 is only required for executing the
system on the local development machine.

b. On the hardware target, execute the “bcdedit /set testsigning yes” command
(step 3 from the link above) and reboot the device.

6. Visual Studio with TwinCAT 3 can be opened form the Windows system tray icon,
and a new TwinCAT 3 project can be created as described here:
http://infosys.beckhoff.com/english.php?content=../content/1033/tc3_c/54043195639
143947.html&id=17135.

https://www.visualstudio.com/en-us/news/vs2013-community-vs.aspx
http://e5.onthehub.com/d.ashx?s=8ehdmeqa5z
http://infosys.beckhoff.com/english.php?content=../content/1033/tc3_c/54043195639122187.html&id
http://infosys.beckhoff.com/english.php?content=../content/1033/tc3_c/54043195639122187.html&id
http://www.beckhoff.co.uk/english.asp?download/tc3-downloads.htm?id=1905053019883865
http://www.beckhoff.co.uk/english.asp?download/tc3-downloads.htm?id=1905053019883865
http://infosys.beckhoff.com/english.php?content=../content/1033/tc3_c/63050394893879947.html&id=
http://infosys.beckhoff.com/english.php?content=../content/1033/tc3_c/63050394893879947.html&id=
http://infosys.beckhoff.com/english.php?content=../content/1033/tc3_c/54043195639143947.html&id=17135
http://infosys.beckhoff.com/english.php?content=../content/1033/tc3_c/54043195639143947.html&id=17135

4

3 Connecting to a Hardware Controller

A TwinCAT “target” is the hardware device which will ultimately execute a control system.
Typically, the target will be one of the Beckhoff hardware controllers (such as the CX1020,
etc.), but the local development PC can also be used as the target for testing purposes.

To use a hardware controller:

1. Connect one of the Ethernet interfaces on the Beckhoff controller to the development
PC. This can be a direct connection, or via a switch. Set the PC's network interface
IP address to be on the same subnet as the control. For example, if the controller’s
IP address is 192.168.2.10 with a subnet mask of 255.255.255.0, then the PC’s IP
address could be set to 192.168.2.20. Note that Beckhoff controllers must not be
added to a corporate Windows domain, because this conflicts with the functionality.

2. Create a new TwinCAT 3 project (or use an existing project) in Visual Studio.
3. In the Solution Explorer panel, double-click on the “SYSTEM” for your project and

select “Choose target...”. Select “Search (Ethernet)”. Press "Broadcast Search" and
select the appropriate network interface (if there is more than one). Select the
appropriate controller device in the list. You may need to select the "IP address"
radio box before adding the route. Enter the device username and password (by
default: "Administrator" and "1"). This process is described in further detail here:
http://infosys.beckhoff.com/english.php?content=../content/1033/tc3_system/html/tcs
ysmgr_addroutedialog.htm&id=.

http://infosys.beckhoff.com/english.php?content=../content/1033/tc3_system/html/tcsysmgr_addroutedialog.htm&id=
http://infosys.beckhoff.com/english.php?content=../content/1033/tc3_system/html/tcsysmgr_addroutedialog.htm&id=

5

4 TwinCAT 3 – Typical C++ Project Configuration

This section describes adding a C++ module to a TwinCAT 3 project.

4.1 C++ Module

In the Solution Explorer panel, right click on “C++” and “Add New Item...”. Select “TwinCAT
Driver Project”, choose a name, and click on “Add”.

Figure 1: Initial C++ module creation

There are several C++ module templates to choose from:

6

Figure 2: C++ module template

Select the option with “Cyclic IO” and click on “Add”. Select a name for the Module Class:

7

Figure 3: Module Class name

This results in a “Module Project” with a TwinCAT Module Class (TMC) file and some pre-
generated C++ code. For example a template CycleUpdate() function has been created
within the main module C++ file (SingleCoreModule.cpp in this example):

8

Figure 4: Example of initial generated code

However, this Module Class is merely “template”, and you must still create an instance (or
“object”) of the Module Class to assign to a processor core on a target controller.

Right click on the C++ project, select “Add New Item”, and find your “published” module, as
shown below:

Figure 5: Creating an instance of a Module Class

9

This means that you can create multiple object instances from the same Module Class
template.

4.2 Assigning Module Instances to Processor Cores

In “SYSTEM” > “Real-Time”, enable the required CPU cores (you may first need to click
“Read from Target”) and set the required Base Time:

Figure 6: Assigning module instances to processor cores

Then create a task for each C++ module instance:

10

Figure 7: Task configuration

For each module instance, select the “Context” tab and assign the module to a task:

Figure 8: Task context mapping

More details on task configuration are available here:
http://infosys.beckhoff.com/english.php?content=../content/1033/tc3_system/html/tcsysmgr_
systemnode_subnodes_tasks.htm&id=15611.

http://infosys.beckhoff.com/english.php?content=../content/1033/tc3_system/html/tcsysmgr_systemnode_subnodes_tasks.htm&id=15611
http://infosys.beckhoff.com/english.php?content=../content/1033/tc3_system/html/tcsysmgr_systemnode_subnodes_tasks.htm&id=15611

11

4.3 Using a TMC File

The TMC file, with its associated editor GUI, defines the functionality of a C++ module. For
example, Outputs – which are visible to other TwinCAT modules – can be defined:

Figure 9: Defining a module output using the TMC editor

In order to be able to monitor variables in real-time, select “Create symbol” in the editor:

Figure 10: “Create symbol” option

12

After making changes to a TMC file, save the file, right click on the module, and select
“TwinCAT TMC Code Generator”. This updates the generated code. The changes should
automatically appear for all module instances:

Figure 11: Two Module Class objects, with a common definition

The definitions can be accessed from C++ code. For example, two output variables can be
assigned values as follows:

Figure 12: Assignment of output values

13

Once all required definitions have been added to the TMC file and the required C++ code
has been added, the module can now be built, although this will also be done automatically
when transferring to a target. Select “Activate Configuration” in the toolbar to run the project
on the TwinCAT target.

Further TMC documentation is available here:
https://infosys.beckhoff.com/english.php?content=../content/1033/tc3_c/2702159848565172
3.html&id=.

4.4 Real-Time Monitoring

Data in TwinCAT projects can be monitored with high granularity in real-time. Go to “File” >
“Add” > “New Project...” > “TwinCAT Measurement”, then select the appropriate scope type:

Figure 13: Creating a new TwinCAT Measurement project

Open the Target Browser by right-clicking on the newly-created “Axis” element:

https://infosys.beckhoff.com/english.php?content=../content/1033/tc3_c/27021598485651723.html&id=
https://infosys.beckhoff.com/english.php?content=../content/1033/tc3_c/27021598485651723.html&id=

14

Figure 14: Adding data to plots

Add the relevant signals to your plot:

Figure 15: Selecting signals from the Target Browser

Press the Record button on the toolbar to capture data:

15

Figure 16: Viewing plots of module data

For the trial license of TwinCAT 3 (which can be renewed perpetually), up to one hour of
data, per signal, can be captured.

16

5 Integrating Simulink Models

There are two approaches for integrating an algorithm or control system implemented in
Simulink (which may include performance-critical components written directly in C) into the
Beckhoff platform, and these approaches are described in the following subsections. Both
approaches involve the automatic generation of a C or C++ code implementation of a
Simulink model, using Simulink Coder [1], [2].

5.1 Manual Compilation of Generated C++ Code within TwinCAT

Simulink Coder can be used to create a C or C++ implementation of a Simulink model, which
is intended to be optimised for embedded, real-time applications. For integration with
TwinCAT 3, Simulink Coder should be configured to generate C++ code for a 32-bit x86
platform (unless a different controller unit architecture is being targeted). Double-precision
floating-point numbers can be used.

The generated C++ code can be included in a TwinCAT 3 project within a C++ Module
Class, using the template for “cyclic” tasks (see Figure 2). The code from Simulink Coder
should wrap the Simulink model in a C++ class. An instance of this class should be defined
as a protected member in the header file of the Module Class (i.e., not simply declared
arbitrarily in the C++ code). The Simulink model should be initialised within the
SetObjStatePS() function within the main Module Class C++ file, for example:

// State transition from PREOP to SAFEOP

//

// Initialize input parameters

// Allocate memory

HRESULT CPMU_M_class::SetObjStatePS(PTComInitDataHdr pInitData)

{

 m_Trace.Log(tlVerbose, FENTERA);

 HRESULT hr = S_OK;

 IMPLEMENT_ITCOMOBJECT_EVALUATE_INITDATA(pInitData);

 // Simulink model initialization

 PMU_Beckhoff_Test_Obj.initialize();

 m_Trace.Log(tlVerbose, FLEAVEA "hr=0x%08x", hr);

 return hr;

}

The task should be configured to execute on a particular time-base, such as 1 ms or 100 µs,
which matches the time-step of the Simulink model. For example, the CX1020 controller unit
– a relatively basic controller with a 1 GHz single-core CPU – can execute the phasor
measurement (PMU) algorithm documented in [3] in real-time with a 100 µs time-base,
requiring 30-40% of the CPU time1. This is illustrated in Figure 17.

1 This only includes the CPU time for the PMU algorithm; however, the additional CPU time
requirements for communications processing are not significant, and can be allocated to a lower
priority task than the time-critical algorithm processing.

17

Figure 17: PMU algorithm CPU execution time

There are two caveats with this approach:

1. In TwinCAT 3, precompiled headers must be manually disabled for the imported
Simulink source files. This is a simple change within the C++ compiler settings.

2. It is required to use platform-specific library calls for mathematical functions, which
are better suited for real-time operation, rather than those defined in the standard C
“math.h” library. A simple method for achieving this is to replace the “#include
<math.h>” line in the main C++ header file generated by Simulink Coder with:

#include <fpu87.h>

#include "math_h_defines.h"

where “math_h_defines.h” provides a mapping of the standard C versions to the
TwinCAT versions:

 #define sqr sqr_

#define sqrt sqrt_

#define sin sin_

#define cos cos_

#define tan tan_

#define atan atan_

#define atan2 atan2_

#define asin asin_

#define acos acos_

#define exp exp_

#define log log_

#define log10 log10_

#define fabs fabs_

#define fmod fmod_

#define ceil ceil_

#define floor floor_

#define pow pow_

#define sincos sincos_

18

#define fmodabs fmodabs_

#define round round_

#define rounddigits rounddigits_

#define coubic coubic_

#define ldexp ldexp_

#define ldexpf ldexpf_

#define sinh sinh_

#define cosh cosh_

#define tanh tanh_

#define finite finite_

#define isnan isnan_

#define rands rands_

Note that this will result in compiler warnings, but allows the module to be built and
executed.

5.2 Using Simulink-TwinCAT 3 Integration

There is a Beckhoff software tool for directly integrating Simulink models with TwinCAT 3.
This is achieved simply by selecting the TwinCAT 3 “target” with Simulink Coder (rather than
the normal embedded target); once the code is generated, the module is automatically
available within TwinCAT 3. A simple example, which illustrates the integration of a Simulink
“block” model into the TwinCAT 3 user interface, is shown in Figure 18.

Figure 18: Simple example of Simulink-TwinCAT 3 integration

19

This tool is intended to be more convenient and to allow easier debugging than direct
integration of C++ code as described in Section 5.1. Simulink model inputs and outputs are
automatically identified in TwinCAT 3, as illustrated in the left of Figure 18. Signals in the
Simulink model can be monitored in real-time whilst the project is executed on the target
hardware. However, this approach requires a separate software licence and the code
generation process typically takes significantly longer than for manual C++ code integration.

Furthermore, the process in Section 5.1 allows additional “wrapper” C++ code to be added to
the Module Class, without needing to add an additional task. Conversely, the direct Simulink-
TwinCAT integration forces all task functionality to be implemented within Simulink.

20

6 References

[1] MathWorks, “Simulink Coder - Generate C and C++ code from Simulink and Stateflow

models,” 2012. [Online]. Available: http://www.mathworks.co.uk/products/simulink-
coder/.

[2] A. J. Roscoe, S. M. Blair, and G. M. Burt, “Benchmarking and optimisation of Simulink
code using Real-Time Workshop and Embedded Coder for inverter and microgrid
control applications,” in Universities Power Engineering Conference (UPEC), 2009,
pp. 1–5.

[3] A. J. Roscoe, “Exploring the Relative Performance of Frequency-Tracking and Fixed-
Filter Phasor Measurement Unit Algorithms Under C37.118 Test Procedures, the
Effects of Interharmonics, and Initial Attempts at Merging P-Class Response With M-
Class Filtering,” IEEE Trans. Instrum. Meas., vol. 62, no. 8, pp. 2140–2153, Aug.
2013.

