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A Multiperiod OPF Model Under Renewable

Generation Uncertainty and Demand Side

Flexibility
W. A. Bukhsh, Member, IEEE, C. Zhang, Member, IEEE, P. Pinson, Senior Member, IEEE

Abstract—Renewable energy sources such as wind and solar
have received much attention in recent years and large amount
of renewable generation is being integrated to the electricity
networks. A fundamental challenge in power system operation
is to handle the intermittent nature of the renewable generation.
In this paper we present a stochastic programming approach to
solve a multiperiod optimal power flow problem under renew-
able generation uncertainty. The proposed approach consists of
two stages. In the first stage operating points for conventional
power plants are determined. Second stage realizes the gener-
ation from renewable resources and optimally accommodates
it by relying on demand-side flexibility. The benefits from its
application are demonstrated and discussed on a 4-bus and
a 39-bus systems. Numerical results show that with limited
flexibility on the demand-side substantial benefits in terms
of potential additional re-dispatch costs can be achieved. The
scaling properties of the approach are finally analysed based on
standard IEEE test cases upto 300 buses, allowing to underlined
its computational efficiency.

Index Terms—Demand response; optimal power flow; power
system modelling; linear stochastic programming.

NOMENCLATURE

Sets

B Buses, indexed by b.

L Lines (edges), indexed by l .

G Generators, indexed by g .

W Renewable generators, indexed by w .

D Loads, indexed by d .

D0 Flexible loads, D0 ⊆D.

Bl Buses connected by line l .

Lb Lines connected to bus b.

Gb Generators located at bus b.

Db Loads located at bus b.

S Scenarios, indexed by s.

T Discrete set of time intervals, indexed by t .
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Parameters

bl Susceptance of line l .

τl Off-nominal tap ratio of line l (if trans-

former).

P G−
g ,P G+

g Min., max. real power outputs of conven-

tional generator g .

P D
d ,t

Real power demands of load d .

fg ,t (pG
g ,t ) Generation cost function for generator g .

P W
w,s,t Renewable generation under scenario s

from generator w.

λw,s Probability of scenario s.

C W
w,t Cost of renewable generation spillage.

F−

d ,t
,F+

d ,t
Min., max load flexibility of demand at bus

d .

∆P−

g ,t ,∆P+

g ,t Min., max change in operating point of

generator g during time period [t , t +1].

Variables

pG
g ,t Real power output of generator g .

pW
w,s,t Real power output of renewable generator w .

θb,s,t Voltage phase angle at bus b.

pL
l ,s,t

Real power injection at bus b into line l (which

connects buses b and b′).

pD
d ,s,t

Real power supplied at bus d .

αd ,s,t Proportion of load supplied at bus d .

I. INTRODUCTION

ELECTRICITY networks around the world are evolving

at a rapid pace. This change is happening because

of the increased emphasis on clean and renewable energy

sources. Large-scale renewable energy sources (RES) are

encouraged by different incentive schemes, in order to

support energetic independence and mitigate issues related

to climate change. Many countries are investing substantial

resources in planning and expanding current infrastructure

to cope with RES integration. Wind power generation is the

most widely used source of renewable energy and it is been
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integrated in many power systems around the world [1], [2],

while solar power is catching up at a rapid pace.

The non-dispatchable nature of wind power introduces

additional costs stemming from the management of inter-

mittency [3], [4]. Extra reserves need to be obtained, at

an additional cost, in order to hedge the uncertainty from

the partly predictable generation from wind farms. Despite

the advancements in forecasting methodologies and tools,

hour-ahead forecast errors for a single wind plant may be

as high as 10%-15% of its actual output on average [5].

In contrast, demand at the transmission level has a large

base component that can be predicted accurately. In power

systems optimization problems electricity demand typically

is modelled as inelastic. However in reality a substantial

amount of electricity demand is elastic [6]. Electric loads

like PEV charging, district heating, HVAC systems are some

examples of flexible demands and constitute considerable

percentage of the total demand e.g., more than one third of

the US residential demand is flexible [7]. Based on historic

data distribution companies have good idea about the

amount of flexibility in demand for a given time window.

Majority of these demands are deferrable meaning that part

of the demand can be shifted in time while respecting

deadlines and rate constraints [6]. Demand side manage-

ment is an active area of research in power systems and

there are many challenges with respect to operation and

application of demand control [8]. However demand side

flexibility contributes to improve reliability of power system

and also reduce the curtailment of renewable sources [9].

Many distribution system operators implement some sort

of demand response (DR) programs. DR can be in the form

of interruptible load contracts (ILC) or voluntarily reduction

of demand by customers in response to high prices of

electricity. DR programs not only provide ancillary services

to the operation of power systems but also acts to optimize

the generation from renewable sources. Authors in [10]

propose a DR approach and test it on a realistic test case. A

stochastic unit commitment model with deferrable demand

is presented in [11]. Authors show that the curtailment of

renewable energy can be minimized by initiating DR.

Traditional power system operation is based on deter-

ministic security-constrained commitment and dispatch

models [12]. In order to ensure security of supply these

models use very conservative forecasts of wind power

generation [1] and as a result of the conservative operation

large amount of wind is curtailed [13]. With the increase in

wind power penetration in the existing system it is becom-

ing a big challenge to optimally utilize these resources.

The most important decision for a power system operator

in short time scales is to determine the operating point of

conventional generators (coal, nuclear, etc) [14]. It is very

difficult to command an entirely different set point to these

generators in short time scales; however small adjustments

can be made. Power system operators buy reserve capacities

from the fast response units and bring them online if there

is a large deviation in the demand. However we note that

generation from wind can change considerably in small

time scales. Locational marginal prices (LMPs) go up if

reserve capacities of generators are utilized. Similarly if

more than expected power is generated from wind farms,

it has to be spilled in order to keep demand-generation

balance; unfortunately resulting in wastage of cheap and

clean energy.

The conventional optimal power flow (OPF) problem [15]

consists in determining the operating point of generators

which minimizes the cost of generation and respects the

network and physical constraints. The OPF problem hence

provides the dispatch for the next time period, which is

usually one-hour ahead. For smaller time scales (typically

5 min) any demand/generation mismatch is alleviated by

automatic generation control (AGC) [16].

The OPF problem has been extended to account for

the variable and partly-predictable nature of wind power

generation in e.g., [3], [17]–[20]. These papers capture

the intermittent nature of wind power generation using

different probabilistic techniques and determine a robust

operating point for the generating units. With stronger focus

on the demand side, the authors in [18] consider demand-

side participation as well as uncertainty in demand bids.

Finally, in a spirit similar to our proposal, the authors in

[14] extended the OPF problem to a two-stage stochastic

optimization problem, where the decision problem is then

to find the steady-state operating point for large generation

units in the first stage, while scheduling fast-response

generation at the second stage, based on a set of scenarios

for renewable energy generation. Demand is there assumed

to be deterministic and the problem is not time coupled.

This means the optimal operating points are independent

of the temporal characteristics of the system.

In view of such limitations in the literature, we propose

here to place emphasis on the Multiperiod OPF (MPOPF)

problem, which comprises of the time-coupled version of

OPF problem. The objective is thus to minimize the cost of

generation over the given time horizon while satisfying net-

work constraints and ramp-rate constraints. As an example

of recent developments related to the MPOPF, the authors

in [21] consider a stochastic MPOPF model and model

the offshore renewable generation with HVDC connections.

Uncertainties in wind power generation is considered using

a scenario-based approach and demand is assumed to be

deterministic.

Stochastic programming approaches [22] provide a suit-

able framework to accommodate the uncertainty in power

generation from RES. In this paper we present two stage

stochastic program. We consider the flexibility in demands

and different scenarios of power production from RES.

We focus our attention to intra-hour time scale because

of the three reasons. First reason is that the forecasts of

renewable generation (mainly wind) are somewhat reason-

ably accurate in hour ahead period as compared to the

day ahead period. Secondly though the amount of energy

cleared in short time scales is small but the value of energy

is very high. And thirdly given the increasing focus on RES,

the penetration from renewable sources would increase

and hence the amount of energy cleared in hour-ahead

operations.
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The decision problem in our stochastic programming

approach is to find the operating point of conventional

generators while taking into account the uncertainty in

the power generation from RES. Demand flexibilities are

considered and optimization decides the operating point of

generators, utilization of flexibilities while minimizing total

cost of generation.

Contribution of this paper is to present a framework

that can be used to optimally utilize the generation from

intermittent sources. Taking flexibilities from demand side

and considering possible scenarios of generations from

wind power, the proposed approach optimally shifts the

demand in the given time horizon. It can also be used as a

tool to project future LMPs given demand side flexibilities.

The projected prices are useful information for distribution

companies, and they can use this information to plan their

demand response strategies [23]. We provide wind scenarios

and network data of all the numerical results presented in

this paper in an online archive at [24].

This paper is arranged as follows. Section II gives the

formulation of the problem. Numerical results are given

in section III. We give conclusions and future research

directions in section IV.

II. PROBLEM FORMULATION

We propose a two-stage stochastic programming for-

mulation of multiperiod optimal power flow problem. In

the first stage, decision is made about the dispatch from

conventional generators and these decisions remain fixed

in the second stage of the problem. The second stage

realizes the generation from renewable sources. Any result-

ing supply-demand mismatch is alleviated by the demand

response from flexible demands. It is important to note that

demand response can be replaced by the high marginal-

cost generators which can be tapped in short term, or the

virtual generation resources. However for the sake of clarity

of presentation we only consider flexibility in demands. The

expensive generators are modelled as high cost generation

units in the data, and hence they are minimized as part of

the problem.

Consider a power network with set of buses B. Let W

denotes the set of renewable generators in the network.

Since the real power generation from renewable generators

is uncertain, let S be the set of real power generation sce-

narios of these generators. We assume zero marginal price

of the generation from renewable generators. Let G be the

set of conventional power plants. Let T := {1,2, · · · ,T } be the

set of give time horizon. Following we give constraints and

objective function of our two stage stochastic multiperiod

optimal power flow problem.

A. Power flow

Let pG
g ,t be the real power generation from the conven-

tional generator g in the time interval t . Let pW
w,s,t be the

real power generation from the renewable generator w in

the time period t in case the scenario s is realized. The

power balance equations are given as, ∀b ∈B, s ∈S , t ∈T :
∑

g∈Gb

pG
g ,t +

∑

w∈Wb

pW
w,s,t =

∑

d∈Db

pD
d ,s,t +

∑

l∈Lb

pL
l ,s,t , (1)

where pL
l ,s,t

is the flow of real power in the line l , in the time

interval t given scenario s is realized. The power balance

equation is given as, ∀l ∈L , s ∈S , t ∈T :

pL
l ,s,t =−

bl

τl

(

θb,s,t −θb′,s,t

)

, (2)

where b and b′ are two ends of the line l . Note that

we consider the DC model of line flow [25]. This model

ignores line losses and reactive power. We have made this

assumption in order to keep the formulation linear.

B. Load Model

Let D denotes the set of real power demands and we

assume that a distribution network is attached to each bus

d ∈ D. The demand at distribution network is aggregated

and is denoted by P D
d ,t

. We assume that each distribution

company at the demand bus d know about the flexibility

of their demand during the time interval t . This flexibility

can either come from distribution company’s direct control

over some demands or from its DR programs.

Let αd ,s,t be the proportion of load supplied to the

bus d at the time interval t if the scenario s is realized.

Let [F−

d ,t
,F+

d ,t
] be the flexibility interval of the demand at

bus d during time period t . The flexibility in demand

can be modelled in different ways. If the demand at the

distribution network d is not flexible then F−

d ,t
= F+

d ,t
= 1 is

used. If demand at bus d is flexible then it is placed in the

set D0 ⊆D.

The load model is given by following set of constraints:

pD
d ,s,t =αd ,s,t P D

d ,t , (3a)

0 ≤ F−

d ,t ≤αd ,s,t ≤ F+

d ,t , (3b)

αd ,s,t = 1,∀d ∈D \D0. (3c)

(1−F−

d ,t
) is the proportion of demand d which is flexible

in the time interval t , and (F+

d ,t
−1) is the amount of load

that can be increased in the time interval t .

Cost of generation is monotonically increasing function

of real power generation. If demands are flexible but not

conserved over the given time interval then optimal solu-

tion is to reduce the demands. Therefore it is reasonable

to consider shifting the demand over a given time period.

Distribution company will give its flexibility for each time

interval, and the optimization model will decide how to op-

timally shift the demand. The following constraints ensure

that the total demand is met at the end of the time horizon,

∀d ∈ D0:

T
∑

t=1

pD
d ,t =

T
∑

t=1

P D
d ,t . (4)

Optimization model would decide the amount of demand

to be consumed in each time interval. Note that we assume

that there is enough power to support a task which requires
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more than one time interval to finish. This assumption is

justifiable because of the lower bound on the value of αd ,s,t .

Otherwise it is possible to impose a constraint coupled in

time. We have assumed that flexibility can be utilized in

any way across the time interval. In practice the flexibilities

depend on the type of demands e.g., some demands might

need up and down times, and charging/discharging rates.

All these technical details can be modelled using linear

constraints. However technical details and discussion on

this subject is out of the scope of this paper.

C. Operating constraints

The generation from conventional generators is bounded

by the following inequality constraints:

P G-
g ≤ pg ,t ≤ P G+

g , (5)

where P G-
g ,P G+

g are the lower and upper bounds on the

generation output of generator g , respectively.

In short time scales it is not be possible for a conven-

tional generator g to considerably deviate from current op-

erating point [14]. Therefore we limit the amount of change

in generation depending on the ramp rate of individual

generators. The constraints are given as:

∆P−

g ,t ≤ pG
g ,t+1 −pG

g ,t , (6a)

pG
g ,t+1 −pG

g ,t ≤∆P+

g ,t . (6b)

D. Scenarios of renewable energy generation

Forecasting of renewable energy generation is a very

active area of research, especially for wind and solar energy

applications. While forecasts were traditionally provided in

the form of single-valued trajectory informing of expected

generation for every lead time and location of interest,

individually, emphasis is now placed on probabilistic fore-

casts in various forms [26]. For decision problems where

the space-time dependence structure of the uncertainty

is important, forecasts should optimally take the form of

space-time trajectories. For example recently, the bene-

fits from employing space-time trajectories in a network-

constrained unit commitment problems were demonstrated

and discussed [11].

In the present case, scenarios of wind power generation

are used as input to the stochastic programming approach

to solving the multiperiod optimal power flow problem.

The exact setup, data and methods of [26] are employed.

In short, the approach relies on nonparametric forecasts

for the marginal predictive densities, and on a Gaussian-

based copula for the interdependence structure, tracked

in an exponential smoothing framework. A sample of 100

space-time scenarios originally issued for 15 control areas

in Denmark are used. If others were to aim at reproducing

presented results or use these scenarios as input to other

stochastic optimization problems, these wind scenarios are

made publicly available in an online archive at [24].

E. Objective function

The objective of our optimization is to minimize the

cost of generation and optimally utilize the renewable

generation. We assume zero marginal price for the renew-

able generation resources. If such assumption is made in

the usual multiperiod OPF problem then it optimizes the

renewable resources. However as the demand is fixed, usual

formulation of multiperiod OPF will not try to optimally use

the flexibility of demand depending on the generation from

renewable sources.

Let λw,s be the probability of scenario s for the renewable

generator w . Also let C W
w,t be the cost of wind spillage

from generator g , in the time interval t respectively. Our

objective is to minimize the cost of generation from con-

ventional generators, and optimally utilize the generation

from renewable resources while initiating demand response

from the distribution system operators. Overall the objective

function is to minimize the following over the given time

horizon:

z =
∑

g∈G

f (pG
g ,t )+

∑

s∈S

λw,s

(

∑

w∈W

C W
w,t

(

P W
w,s,t −pW

w,s,t

)

)

. (7)

It is possible to have a cost term in the objective function

for shifting demand. However we have assumed that the

demand can be shifted freely in the given time horizon. This

assumption is based on the understanding that distribution

companies will benefit with reduced real time prices if they

provide flexibilities in their demands.

F. Overall formulation

Overall formulation of the multiperiod optimal power

flow problem is given as follows:

min
∑

t∈T

z
(

pG
g ,t , pW

w,s,t

)

(8a)

subject to

(1−6), (8b)

θb0,s,t = 0, (8c)

0 ≤ pW
w,s,t ≤ P W

w,s,t , (8d)

where constraints (8b) gives the load model, power bal-

ance and power flow equations, bounds of real power

generations and ramp rates, respectively. Constraint (8c) is

the slack bus constraint, and (8d) is the bounds on the

generation from renewable generation.

The overall problem is then, depending on the objective

function f (pG
g ,t ) is linear or quadratic program (LP or QP).

We use CPLEX 12.06 [27] called from an AMPL [28] model

to solve the problem.

III. NUMERICAL EXAMPLE

A. An illustrative example: 4 Bus Case

We start with a small 4 bus network as shown in Fig. 1.

This network consists of one generator and one wind farm.

The total load of the network is 100 MW. Complete data of

this network is available online at [24].
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1 2

3 4
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70 MW 30 MW

x12 = 0.06 p.u.

x13 = 0.06 p.u. x24 = 0.08 p.u.

Fig. 1. 4 Bus Network.
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(a) 20 Wind Generation Scenarios.
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(b) Load Profile.

Fig. 2. Wind scenarios and demand profile for the 4 bus network.

We assume that the time horizon consists of twenty

time periods i.e. T = {1,2, · · · ,20}. We assume 20 different

scenarios for wind power generation at bus 1 as shown in

Fig. 2(a).

We assume zero marginal cost for the wind power. The

marginal price of conventional generator at bus 1 is nonzero

and quadratic monotonically increasing function of real

power generations. We assume the cost of wind spillage to

be unity and ramp rate of the generator at bus 1 to be ±10%.

It is important to note that for feasibility the least value of

ramp rate should be equal or greater than the max rate of

change in demand during any given time interval. For this

test case the maximum change of 6% occurs between the

time periods 18 and 19 (Fig. 2(b)).

Fig. 3 shows the cost of generation as the wind power

penetration is increased in the system. We can observe that

the cost of generation is monotonically decreasing as the

wind power penetration in the system is increased. Also

0 10 20 30 40 50
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14

16

18

Wind Penetration (%)

C
o

st
o

f
g

e
n

e
ra

ti
o

n
($

M
W

h
)

±0% Flexibility

±10% Flexibility

±20% Flexibility

±30% Flexibility

Fig. 3. Generation cost vs wind power penetration for 4 bus network.

the cost of generation decreases further when the demand

is made more flexible. There is no difference in the cost

of generation between ±20% and ±30% demand flexibility.

This is because ramp rate of the conventional generator

is not fast enough to utilize the flexibility of demand. For

this example we can say that for given ramp rate of ±10%

and wind generation uncertainties, the optimal demand

flexibility needed to fully utilize the wind power is ±20%.

Cost of generation depends upon the uncertainty in

the wind power generation. If we increase the number

of scenarios then the cost of generation would increase.

Fig. 4 shows the robustness of solution depending on the

number of scenarios. We increase the number of scenarios

from 20 to 100 and we can observe in Fig. 4(a) that the

mean wind spillage (for all scenarios and all time periods)

is increased. Fig. 4(b) shows the difference in cost of

generation. The difference in cost of generation between 20

and 100 scenarios increases as the wind penetration in the

system increase. This is because there is more uncertainty

in generation from wind for 100 scenarios as compared

to 20 scenarios. However the difference between cost of

generation, for given demand flexibilities and penetration

levels, is always less than 6%.

B. 39 Bus Case

Consider the 39 bus New England test network obtained

from [29]. This test network consists of 39 buses, 10 gener-

ators, and 46 transmission lines. We modify the network as

follows. We consider there are 8 conventional generators,

and there are two renewable sources at buses 34 and 37

respectively. We consider that demands at buses 7, 8 and

12 are flexible demands. The topology of the network is

shown in Fig. 5. Default data from [29] assume same cost

data for all generators. We take more realistic cost data from

[30] to use in our example. Modified data of this network

is available at [24].

The total demand in the network is 6254.23 MW. Approx-

imately 27% of this demand is at the flexible demand buses
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Fig. 4. Robustness of the solutions of 4 bus network with respect to
uncertainty in the wind power generation.

4, 8 and 20. Total generation capacity of the network is 7367

MW, and approximately 15% of the total capacity is from

renewable generators at buses 34 and 37. We assume the

ramp rate of conventional generators to be ±5%.

Let T = {1,2, · · · ,12} (first 12 from Fig. 2(b)) and consider

100 independent scenarios for the renewable generators at

the buses 34 and 37. Fig. 6 shows the result of our model

as the flexibility of demand is increased. Line limits were

not active at the optimal solution, therefore the locational

marginal price at all buses were equal. The solid (blue)

line shows the results when demand at buses 7, 8 and

12 is not flexible. In this case the marginal prices follow

the behaviour of demand curve i.e., prices are high when

demand is high and prices decrease with the decrease in

demand. If demand is ±10% flexible then the marginal

prices are low but this flexibility (coupled with ±5% ramp

rate) is not enough to have constant system price. We

observed that with ±10% demand flexibility, the cost of

generation is decreased by 3.9%. Further as the flexibility

of demand is decreased, the system price tends toward

a constant function. It is interesting to note that the

difference in system prices is very small for the demand

flexibilities of 40% and 100%. This is because of the strict

ramp rate constraints, i.e., generators can not change their

operating point fast enough to utilize the flexibility of

demand. However in practice it is not plausible to have

100% flexibility at any demand node.

Another interesting point to observe is that since we

consider the linear model of the system, the results are

Fig. 5. Modified 39 bus system

generally independent of the flexibility i.e., the flexibility

can come from any node of the network as long as line

limits are respected. In practice the transmission system are

lossy, so the results would depend on line losses however

the effect of line losses is expected to be very small.

C. Larger test cases

We consider the standard IEEE test networks consisting

of 14, 30, 57, 118 and 300 buses from the test archive

at [31]. We also consider 9, 24 and 39 bus test cases

from [29]. For all test cases we assumed ramp rate of

conventional generators to be ±10%, number of scenarios

to be 50 and 12 time intervals. We generated large number

of scenarios by considering different demand flexibilities

and choices of wind generation buses. To keep consistency

across all scenarios we considered that for all cases wind

power penetration is always less than or equal to 25%. For

all the instances total demand across the time horizon is

constrained to be conserved.

Tab. I gives the results of some of the scenarios on 57,

118 and 300 bus networks. Second column in this table

gives the set of buses where wind power generation is

assumed. Third column gives the percentage of wind power

penetration in system. Column four and five gives the set

of buses which are flexible and their percentage of load

in the system respectively. Second last column gives the

assumed flexibility in the set D0. Last column shows the

improvement in the cost of generation when compared to

solving the problem with inflexible loads.

Results in Tab. I shows that considerable savings can be

made in the generation cost if demands are flexible. For
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Fig. 6. Numerical results for 39 bus system.

example consider the 57 bus case with W = {7} and D0 =

{12}. In this case the load at bus 12 is approximately 30%

of the total load of the network. The result shows that if

the demand at bus 12 is ±10% flexible that the cost of

generation can be improved by 4%, i.e., approximately 3%

(10% of 30%) flexibility in demand results in 4% reduction

in cost of generation.

Fig. 7 gives the run times on all standard test cases.

Problems were solved on a single core 64 bit Linux machine

with 8 GiB RAM, using AMPL 11.0 with CPLEX 12.6 to solve

LP and QP problems. The results are for large number of

scenarios for wind power penetration (less than 25%) and

demand flexibilities. Fig. 7 shows that the solution times

scale well with increase in the size of the network. Note

that solution times for 24 bus case is higher than 39 and 57

network. This is because of the reason that 24 bus network

has more generators than 39 and 57 bus networks and

hence the size of the problem is bigger.

IV. CONCLUSIONS AND FUTURE RESEARCH DIRECTIONS

In this paper we presented a two stage stochastic pro-

gramming approach to solve multiperiod optimal power

flow with flexible demands. We observed that considerable

savings in power generation costs can be made if a small

proportion of the demand is flexible. The flexibility of

the demand can come from any node of the network

provided it respects the network constraints. Numerical

9 14 24 30 39 57 118 300
10−2

10−1

100

101

102

nB

t
(s

)

Fig. 7. Min., mean and max. solution times for solving multiperiod OPF
with different demand flexibilities and wind penetration.

results show that the uncertain wind power generation can

be optimally utilized using flexibility of the demand and

hence maximizing the social welfare. Computational times

shows the promise of the proposed approach.

Future research will investigate the wider practical as-

pects of the approach. We would like to extend this to

longer time scales by considering unit-commitment as

part of the problem. Current research work is looking

at modelling this problem with AC power flow equations

i.e., considering line losses and reactive power flows.
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