
Strathprints Institutional Repository

Estrada, Ernesto and Vargas Estrada, Eusebio and Ando, Hiroyasu 

(2015) Communicability angles reveal critical edges for network 

consensus dynamics. Physical Review E, 92 (5). ISSN 1539-3755 , 

http://dx.doi.org/10.1103/PhysRevE.92.052809

This version is available at http://strathprints.strath.ac.uk/55225/

Strathprints is  designed  to  allow  users  to  access  the  research  output  of  the  University  of 

Strathclyde. Unless otherwise explicitly stated on the manuscript, Copyright © and Moral Rights 

for the papers on this site are retained by the individual authors and/or other copyright owners. 

Please check the manuscript for details of any other licences that may have been applied. You 

may  not  engage  in  further  distribution  of  the  material  for  any  profitmaking  activities  or  any 

commercial gain. You may freely distribute both the url (http://strathprints.strath.ac.uk/) and the 

content of this paper for research or private study, educational, or not-for-profit purposes without 

prior permission or charge. 

Any  correspondence  concerning  this  service  should  be  sent  to  Strathprints  administrator: 

strathprints@strath.ac.uk

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Strathclyde Institutional Repository

https://core.ac.uk/display/42592624?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://strathprints.strath.ac.uk/
mailto:strathprints@strath.ac.uk


Communicability Angles Reveal Critical Edges for Network

Consensus Dynamics

Ernesto Estrada1, Eusebio Vargas-Estrada1, Hiroyasu Ando2

September 20, 2015

1Department of Mathematics and Statistics, University of Strathclyde, 26 Richmond Street, Glasgow G1

1HX, United Kingdom

2Division of Policy and Planning Sciences, Faculty of Engineering, Information and Systems, University

of Tsukuba

1-1-1 Ten-noudai, Tsukuba, 305-8573 Japan

Abstract

We consider the question of determining how the topological structure influences a consensus dy-

namical processes taking place on a network. By considering a large dataset of real-world networks we

first determine that the removal of edges according to their communicability angle—an angle between

position vectors of the nodes in an Euclidean communicability space—increases the average time of

consensus by a factor of 5.68 in real-world networks. The edge betweenness centrality also identifies—

in a smaller proportion—those critical edges for the consensus dynamics, i.e., its removal increases the

time of consensus by a factor of 3.70. We justify theoretically these findings on the basis of the role

played by the algebraic connectivity and the isoperimetric number of networks on the dynamical pro-

cess studied, and their connections with the properties mentioned before. Finally, we study the role

played by global topological parameters of networks on the consensus dynamics. We determine that

the network density and the average distance-sum—an analogous of the node degree for shortest-path

distances, account for more than 80% of the variance of the average time of consensus in the real-world

networks studied.

PACS number(s): 89.75.-k, 02.10.Ox, 05.45.Xt

1 Introduction

Complex networks are ubiquitous in many real-world systems ranging from biological and ecological to

social and infrastructural ones [1]. A network is represented as a simple graph Γ = (V, E), consisting of

a set of n nodes (vertices) V and a set of m edges between the nodes. One of the most important aspects

of these networked systems is the transmission of information from one node to another. It can be argued

indeed that networks exist for facilitating the information transmission in those complex systems. The

nodes of these networks represent the entities of the complex system and their connections represent the

interactions among these entities from which information flows from one node to another. Information

is understood here generically and can represent such a variety of things like the transfer of material or

energy to the spread of diseases or rumors.

The diffusion of information over a network is usually analyzed by considering a simple diffusion

model commonly known as consensus dynamic model [2, 3, 6]. It is based on the idea that the pairs of

connected nodes of the graph try to reach an agreement over a given topic, e.g., opinions, position in

space, etc., and the network as a whole collapses to a steady state of consensus. In this model we consider

that the state of the nodes of the graph at time t are stored in a vector ~u (t). Then, the variation of the state

of the node i with time is controlled by the equation [2, 3, 6]:

~̇ui (t) =
∑

(i, j)∈E

(
~u j (t) − ~ui (t)

)
, i = 1, 2, . . . , n, (1)
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where the sum is taken over all pairs of connected nodes in the network. It is worth noticing that the

consensus dynamics models based on the equation (1) are limited to conservative dynamics and that other

models are cast in terms of different equations (see for instance [3]). However, consensus protocols based

on equation (1), as they are known in technological applications, have been widely used in the study

of wireless sensor networks (WSNs) and peer-to-peer networks, where the problem consists of making

the scalar states of a set of agents converge to the same value under local communication constraints

[7, 8, 9, 10]. In [3] there are many examples of the links between consensus and other applications that

involve the interconnection of dynamical systems and other scientific areas. They include: i) Synchro-

nization of coupled oscillators, ii) Flocking theory, iii) Fast consensus in small-worlds, iv) Rendezvous

in space, v) Distributed sensor fusion, and vi) Distributed formation control. The consensus dynamics

model can be considered for both linear and nonlinear protocols in a network of dynamic agents with

undirected information flow [4] as well as in cases of switching topologies, communication time-delays,

and consensus for double-integrator dynamics [5].

In social network analysis the consensus dynamics plays a fundamental role in understanding the

dynamics of information spreading among actors in a social system and it has been applied for a di-

verse series of real-world situations [11, 12, 13, 14]. Castellano et al. [15] have analyzed the field of

social dynamics from a statistical-physics point of view. In the case of consensus dynamics they have

considered that the constituents of the system are not particles, but humans, and that every individual

interacts with a limited number of peers. The system then presents transitions from disorder (fragmen-

tation/disagreement) to order (consensus/agreement). Networks are considered only as substrates where

the social dynamics take place, but they are recognized as an important aspect always present in social dy-

namics. A prominent example of diffusive model in a social context is the so-called voter model [16, 17],

in which a particle can have one of two opinions (similar to a spin state) on a issue, and that the particles

adopt a particular opinion following a probabilistic approach. The voter model is very much used in

social physics and a few modifications of it have been developed in recent years [15, 17, 18].

A very important question when analyzing a dynamical model, like consensus, is to understand the

role played by the network structure on the dynamical process. These structure-dynamics relations allow

us to understand what are the roles played by different structural parameters over the dynamics, which

permit to engineering the systems to change their dynamical properties. The important problem of net-

work controllability [19, 20, 21, 22], for instance, very much resides in understanding the influence of

structural parameters on the control of a dynamical process taking place on the network. These works

have concentrated on the identification of critical nodes for the studied dynamical processes. For in-

stance, in [23] the authors focus on identifying those nodes that are important for collective dynamics

and propose a centrality measure that relates dynamics and network structure. However, in the current

paper we concentrate on a different problem, mainly the identification of critical edges (not nodes) for the

dynamical process. Consequently, we explore the structure-dynamics relations for the consensus model

in real-world networks. First, we consider the problem of identifying critical edges for the consensus

dynamics, i.e., those edges whose removal significantly increase the average time of consensus in the

network. We found that among a few structural parameters describing the capacity of an edge to transmit

information through it, the communicability angle identifies the most critical edges for the consensus

dynamics in a wide variety of networks. We then consider the influence of a few structural parameters

characterizing global structural properties of networks over the average time of consensus. We find that

the network density and the average shortest path distance are global indicators of the network capacity

to perform consensus in an efficient way.

2 Theoretical Methods

2.1 Mathematical definitions

The graph is said to be undirected if the edges are formed by unordered pairs of vertices. A path of

length k in G is a set of nodes i1, i2, . . . , ik, ik+1 such that for all 1 ≤ l ≤ k, (il, il+1) ∈ E , and there are no

repeated nodes. The graph is connected if there is a path connecting every pair of nodes. The length of

the shortest of all paths connecting two nodes in the graph is known as the shortest path distance between

the corresponding nodes. A graph with unweighted edges, no self-loops (edges from a node to itself),

and no multiple edges is said to be simple. Hereafter we will always consider undirected, simple, and

connected graphs.

The matrix A = (auv), called the adjacency matrix of the graph, has entries

auv =

{
1 if (u, v) ∈ E

0 otherwise
∀u, v ∈ V.

The adjacency matrix can be decomposed by A = QΛQT , with Λ a diagonal matrix containing the

eigenvalues of A and Q = [q1, . . . ,qn] an orthogonal matrix containing the associated eigenvectors.
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The degree ki of the node i is the number of edges incident to it, equivalently ki =
∑

j ai j. We will

designate by δ = min (ki) and ∆ = max (ki) the minimum and maximum degree in the network. The

matrix K = diag (ki) is named the degree matrix of the graph. The matrix L = K − A is known as the

graph Laplacian. It has entries [2, 3]

Luv =



ku if u = v

−1 if (u, v) ∈ E

0 otherwise

∀u, v ∈ V.

The Laplacian matrix is positive semi-definite with eigenvalues denoted here by: 0 = µ1 ≤ µ2 ≤ · · · ≤
µn. If the network is connected the multiplicity of the zero eigenvalue is equal to one, i.e., 0 = µ1 < µ2 ≤
· · · ≤ µn and the smallest nontrivial eigenvalue µ2 is known as the algebraic connectivity of the graph

[24, 25]. Let U be the matrix of orthonormalized eigenvectors ~ψ j of L, i.e., V =
[
~ψ1 · · · ~ψn

]
. The

eigenvector ~ψ2 associated with the algebraic connectivity is known as the Fiedler vector [24]. Let Σ be

the diagonal matrix of eigenvalues of the Laplacian matrix. Then, L = VΣVT .

2.2 Consensus Dynamics on Networks

The consensus dynamics equation (1) can be written as follows for the kind of graphs we analyze in this

work

~̇ui (t) = −
n∑

j=1

ai j

(
~ui (t) − ~u j (t)

)
, i = 1, 2, . . . , n. (2)

This equation indicates that the evolution of the state of the node i in time depends on the ’agreement’

that this node reaches with all its nearest neighbors. It is obvious now that we can write (1) by using the

Laplacian matrix of the graph:

~̇u (t) = −L~u (t) , (3)

~u (0) = ~z. (4)

The solution of this equation is:

~u (t) = e−tL~z. (5)

Then, the solution of the consensus equation on the graph is given by

~u (t) = e−tµ1

(
~ψ1 ·~z

)
~ψ1 + e−tµ2

(
~ψ2 ·~z

)
~ψ2 + · · · + e−tµn

(
~ψn ·~z

)
~ψn, (6)

where 0 = µ1 < µ2 ≤ · · · ≤ µn are the eigenvalues, ~ψ j (p) is the pth entry of the corresponding jth

eigenvector of the Laplacian matrix and ~x · ~y represents the inner product of the corresponding vectors.

When the time tends to infinity every node tends to the state dictated by the average of the values of the

initial condition. This state is usually known as the consensus set [2] and it can be formally defined as the

setA ⊆ Rn which is the subspace span {1} , i.e.,

A =
{
~u ∈ Rn

∣∣∣~ui = ~u j, ∀i, j ∈ V
}
. (7)

The following is a well-known result in the theory of consensus dynamics on networks.

Let G be a connected graph. Then, the consensus dynamics converges to the agreement set with a rate

of convergence that is dictated by µ2. That is, as t → ∞

~u (t)→
(
~ψ1 ·~z

)
~ψ1 =

~1~z0

n
~1 (8)

and hence ~u (t) → A. As µ2 is the smallest positive eigenvalue of the graph Laplacian, it dictates the

slowest mode of convergence in the equation (6).

For the sake of simulations it is sometimes useful to consider the discrete-time model of consensus,

whose equation can be written as follows [2, 3]:

ui (k + 1) = ui (k) + ǫ

n∑

j=1

ai j

(
u j (k) − ui (k)

)
, (9)
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where 0 < ǫ < k−1
max is the time step for the simulation. The equation (9) can be written in matrix form

as follows:

~u (k + 1) = (I − ǫL)~u (k) , (10)

where I is the identity matrix. The matrix (I − ǫL) is usually known as the Perron matrix [3].

2.3 How to Identify Critical Communication Edges?

The intuition behind the identification of critical edges for consensus dynamics is very simple. Consensus

is a dynamical process in which information, generically speaking, is transmitted through the nodes via

the edges of the graph. Then, those edges which support most of the information traffic should be critical

for the global agreement of the network. In other words, the removal of those critical edges—taking care

of not disconnecting the graph—will significantly increase the average time of consensus of the network.

The simplest index fulfilling this intuition is the edge betweenness centrality (EBC) [26]. The EBC of the

edge e is defined as

EB (e) =
∑

vi∈V

∑

v j∈V

ρ
(
vi, e, v j

)

ρ
(
vi, v j

) , (11)

where ρ
(
vi, e, v j

)
is the number of shortest paths between the nodes vi and v j that go through the edge

e ∈ E, and ρ
(
vi, v j

)
is the total number of shortest paths from vi to v j. Obviously, a large value of the

EBC for a given edge indicates that it is critical in the transmission of information through the network

and we should expect that the removal of that edge increases significantly the average time of consensus

of the network.

Assuming that the information is not only flowing through the shortest paths allow us to consider a se-

ries of other measures that quantify the amount of potential routes that the information can use to go from

one node to another in the network. The best known of these measures is the so-called communicability

function [27, 28], which is defined as:

Guv =

∞∑

k=0

(
Ak
)

uv

k!
=
(
eA
)

uv
=

n∑

k=1

eλk qk(u)qk(v), ∀u, v ∈ V. (12)

It counts the total number of walks starting at node u and ending at node v, weighting their length by

a factor 1
k!

, hence considering shorter walks more influential than longer ones (see [27, 28]).

Here we consider the communicability between a pair of nodes connected by an edge G̃uv where

(u, v) ∈ E. In this case, it is clear that

G̃uv = 1 +

(
A2
)

uv

2!
+

(
A3
)

uv

3!
+ · · · (u, v) ∈ E. (13)

Then, small values of G̃uv indicates that there are only very long walks that connect the nodes u and v

apart from the edge bounding them together. Because these long walks receive a large penalization, the

edge communicability mainly depends on the transmission of information through the edge u, v.

We now consider a measure that accounts not for the ’volume’ of information transmitted from one

node to another in the network but mainly by the ’quality’ of the information transmission. That is,

suppose that two nodes u and v are communicating to each other, the quality of their communication

depends on two factors: (i) how much information departing from the node u (v) arrives at the node v (u),

and (ii) how much information departing from the node u (v) returns to that node u (v) without ending at

its destination. Then, the goodness of communication increases with the amount of information which

departs from the originator and arrives at its destination, and decreases with the amount of information

which is frustrated due to the fact that the information returns to its originator without being delivered to

its target. Then, a natural way to account for this quality of information is by considering the recently

proposed communicability angle between a pair of nodes [29]:

θuv = cos−1 Guv√
GuuGvv

. (14)

It represents the angle between the position vectors of the nodes u and v in a Euclidean space, namely

a high dimensional Euclidean sphere where the nodes are placed on the surface separated by their com-

municability distance [30, 31, 32]:

ξuv =
√

Guu +Gvv − 2Guv. (15)

The connection between both concepts can be expressed mathematically as follows:
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ξ2
uv = Guu +Gvv − 2

√
GuuGvv cos θuv. (16)

We notice here that for simple unweighted undirected networks the communicability angle is bounded

as

0◦ ≤ θuv ≤ 90◦. (17)

A large value of communicability between two nodes indicates that there are many short walks con-

necting them. In this case the information has many different routes for going from one node to the other

and there is a kind of redundancy in the topology of the network. Thus, removing those edges with large

communicability is not expected to have a dramatic effect on the consensus time for this network. On the

contrary, if we remove those edges with poor communicability, we are removing essential links for the

transmission of information between two nodes due to the fact that very few walks exist that connect them

or they are very long, which will delay significantly the consensus process. Extending this reasoning to

the communicability angles we should expect that edges with the largest angles are more probably the

critical ones for the transmission of information in the network.Thus, the critical edges should be found

among those having angles close to 90◦.

3 Results and Discussion

3.1 Time of Consensus in Networks

The time at which the global consensus is reached is an important parameter of the general dynamical

process. In the particular case of synchronization, Almendral and Dı́az-Guilera [33] have found that the

synchronization time scales with the inverse of the smallest nonzero eigenvalue of the Laplacian matrix.

In a seminal review paper Arenas et al. [34] state that “Surprisingly, this relation qualitatively holds for

very different networks where synchronization is achieved, indicating that this eigenvalue alone might

be a relevant topological property for synchronization phenomena”. Here we will show analytically the

fundamental role of the inverse of the smallest nonzero eigenvalue of the Laplacian in the consensus

dynamics process.

As we have seen in the Section 3 the consensus dynamics is controlled by the Laplacian matrix of

the network. Here we are interested in considering the influence of the network structure, as captured

by the spectral properties of the network Laplacian, on the time of consensus tc, i.e., the time for which∣∣∣~ui − ~u j

∣∣∣ ≤ ε, where ε is a given threshold. First, we write the eq. (6) for a given node p as

~up (t) =

n∑

q=1

~z (q)

n∑

j=1

~ψ j (p) ~ψ j (q) e−tµ j , (18)

which represents the evolution of the state of the corresponding node as time evolves. Now, let us

consider that the time tends to the time of consensus t → tc, where tc is the time at which ut →
(
~ψT

1
~u0

)
~ψ1.

Let us designate this time by t−c

~up

(
t−c
)
=

1

n

n∑

q=1

~z (q) +

n∑

j=2

~ψ j (p) e−t−c (p)µ j

n∑

q=1

~ψ j (q)~z (q)

 , (19)

here t−c (p) means the time at which the node p is close to reaching the consensus state. Let
〈
~z
〉
=

1
n

∑n
q=1~z (q) and let us write (19) as follows

~up

(
t−c
) − 〈~z〉 =

n∑

j=2

~ψ j (p) e−t−c (p)µ j

n∑

q=1

~ψ j (q)~z (q)

 . (20)

Let us select a node p such that ~ψ2 (p) has the same sign as ~ψ2 ·~z. Since µ2 corresponding to j = 2 is

the smallest eigenvalue in the sum on the right hand side of the expression, this terms tends to 0 slower

than the terms for the other values of j. This means that, if we choose a small enough value of δ, the

values of tc and thus t−c will be very large. Thus, we can ensure that the left hand side of the equation is

small enough that
n∑

j=3

(
~ψ j(p)e−t−c (p)µ j ( ~ψ j ·~z)

)
< 0. This implies that

(
~up

(
t−c
) − 〈~z〉

)
< ~ψ2 (p) e−t−c (p)µ2

(
~ψ2 ·~z

)
. (21)

Now, because
∣∣∣~up

(
t−c
) − 〈~z〉

∣∣∣ ≥ ε we have
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Figure 1: Relative increase in the time of consensus for the real-world networks studied according to

different edge removal strategies. Red solid line: communicability angle; Green chained line: edge

betweenness; Blue dotted line: Communicability; Magenta spaced broken line: random removal.

ε ≤
∣∣∣~up

(
t−c
) − 〈~z〉

∣∣∣ <
∣∣∣∣~ψ2 (p) e−t−c (p)µ2

(
~ψ2 ·~z

)∣∣∣∣ . (22)

Then, the time at which the consensus is reached tc (p) is bounded by

tc (p) ≥ t−c (p) ≥ 1
µ2

ln

∣∣∣∣∣∣∣∣

~ψ2 (p)
(
~ψ2 ·~z

)

ε

∣∣∣∣∣∣∣∣
. (23)

Finally, the average time of consensus is bounded by

〈tc〉 ≥
1

µ2n

n∑

p=1

ln

∣∣∣∣∣∣∣∣

~ψ2 (p)
(
~ψ2 ·~z

)

ε

∣∣∣∣∣∣∣∣
. (24)

3.2 Critical edges for the time of consensus

In order to investigate the role played by the edges on the transmission of information through the net-

work we design the following experiment. We consider a series of real-world networks described in the

Appendix which represent complex systems in a variety of scenarios ranging from social and technolog-

ical to biomolecular and ecological ones. We then remove 20% of their edges by using the following

strategies: (i) removal of the edges with the smallest values of Cuv; (ii) removal of the edges with the

largest values of Cuv; random and independently removal of edges. Here, Cuv corresponds to any of

the edge indicators described previously, i.e., edge betweenness centrality, edge communicability, edge

communicability distance and edge communicability angle. In all cases we take care that the network

does not become disconnected. We then obtain the average time of consensus for each of the networks

generated by using the corresponding removal strategy and compare them with the original network. The

results are illustrated in the Figure 1 (see also the Appendix for specific values), where we give the values

of the average consensus time relative to those of the original networks—values larger than one indicate

relative increase of the consensus time produced by edge removal respect to the original network.

As can be seen from the Figure 1 the removal of 20% of the edges having the largest communicability

angle increases the average time of consensus by a factor of 5.68 ± 4.32. In other words, removing the

edges with the largest angles multiplies by 5.68 the time of consensus of the real-world networks studied.

In 7 networks the average time of consensus is increased more than 10 times when the edges are removed

according to the communicability angle, and in three cases the time of consensus is increased by more

6



than 15 times.

The removal of the edges with the largest EBC also increases significantly the average time of con-

sensus by a factor of 3.70± 2.87. In only one case the time of consensus is increased by a factor of 10. In

contrast, the random and independent removal of edges increases the time of consensus only by a factor

of 1.12 ± 0.20, and in no case the time of consensus is duplicated after the random removal of edges.

The removal of the edges ranked according to the other indices studied here do not increase so signif-

icantly the time of consensus of the networks studied. For instance, removal of edges by the smallest

communicability increases the average time of consensus by 2.41 ± 1.70.

A significant difference among all the indices studied here is the fact that removing the edges by the

smallest communicability angle decreases the average time of consensus of the networks. In general, the

decrease of the time of consensus is not very dramatic—as average it decays by a factor of 0.96 ± 0.24

respect to the original networks, but in some cases there is an acceleration of the consensus process by a

factor of almost 2. This means that while the largest communicability angles identify those critical edges

whose removal increase significantly the time of consensus, the smallest angles correspond to such edges

which are redundant in the network and whose elimination in some way optimize the network for the

consensus protocol. Care should be taken in considering such ’optimization’ of the network due to the

fact that removal of these edges could make the networks more vulnerable to random failures.

3.2.1 Theoretical analysis

So far we have presented the use of the EBC and the communicability angle based on an intuitive reason-

ing. As we have seen in the previous paragraphs this intuition has worked very well due to the fact that

they identify critical edges for consensus dynamics in a very good way. Here we would like to present

some mathematical justification for these empirical findings which will allow us to better understand the

role of these structural parameters on the dynamical process studied. We first start with the EBC for

which Comellas and Gago [35] have found the following lower bound. Let EBCmax be the maximum of

the EBC in a graph, then

EBCmax ≥
n

√
µ2 (2∆ − µ2)

, (25)

Consequently, the largest the EBC the smallest the algebraic connectivity, which implies that the

average time of consensus increases according to (24). From the structural point of view this bound is

probably telling us that the edges with the largest EBC are those bottlenecks (or bridges) connecting

highly dense clusters of the network. Indeed, this is what the following bound obtained by Comellas and

Gago indicates [35]:

EBCmax ≥
n

i (G)
, (26)

where i (G) is the isoperimetric number defined as

i (G) = inf
S

|∂S |
|S |

, (27)

where S is a subset of the set of nodes in the network (having less than the half of the total number

of nodes) and ∂S is the set of edges having one endpoint in S and the other in its complement. Loosely

speaking, a large isoperimetric number indicates that the network does not have structural bottlenecks,

i.e., small sets of edges whose removal disconnect the graph into two almost identical components. Thus,

the relation between EBC and i (G) indicates that edges with large EBC are contained in networks with

small isoperimetric number, i.e., containing structural bottlenecks.

Let us now turn our analysis to the communicability angle. We first consider a combined bound for

the isoperimetric number obtained by Mohar [36]:

1

2
(δ − λ2) ≤ i (G) ≤

√
∆2 − λ2

1
, (28)

That is, the isoperimetric number increases with the increase of the largest eigenvalue λ1, and with the

decrease of the second largest eigenvalue of the adjacency matrix λ2. We can resume this result by saying

that the isoperimetric number increases with the increase of the spectral gap of the adjacency matrix,

i.e., λ1 − λ2. Let us consider what happen to the communicability angle between a pair of nodes when

(λ1 − λ2)→ ∞. In this case we have that

Gpq → ψ1,pψ1,q exp (λ1) , ∀p, q ∈ V. (29)

Thus, when (λ1 − λ2)→ ∞ the communicability angle is

θpq =
Gpq√

GppGqq

→ cos−1 1 = 0◦. (30)
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In other words, when the graph has large isoperimetric number the communicability angle tends

to zero degrees. A large isoperimetric constant implies a large algebraic connectivity, i.e., i (G) ≤√
µ2 (2∆ − µ2), [36], which indeed implies small average time of consensus.

3.3 Time of consensus and global network structure

Here we investigate how the global structure of networks influences the average time of consensus. In this

case we are guided by the existence of analytic bounds for the algebraic connectivity of graphs. That is,

the equation (24) indicates that the average time of consensus is bounded by the algebraic connectivity of

the network. Thus, we should expect a nice correlation between these two parameters for networks. How-

ever, for a better understanding of this relation we should dig more deeply about the structural meaning

of the algebraic connectivity. The algebraic connectivity is related to the minimum degree δ of a network

via the following inequality:

µ2 (G) ≤ nδ

n − 1
. (31)

By combining two bounds obtained respectively by Alon and Milman [37] and by Mohar [38] we

have that the algebraic connectivity is bounded as

4

nDiam (G)
≤ µ2 (G) ≤ 8∆

Diam (G)2
log2

2 n. (32)

We also consider a lower bound for the algebraic connectivity reported by Mohar [39] in terms of the

average path length l̄ (G) of the graph

µ2 (G) ≥ 4

2 (n − 1) l̄ (G) − (n − 2)
. (33)

These bounds clearly indicate a relation between the average time of consensus and the metrical

properties of the networks.

There are many descriptors used to characterize the structure of graphs and networks [1]. Based on

the analytic relations existing between the time of consensus and some structural parameters of networks

we consider here a few network structural parameters to be correlated with the average time of consensus

of networks. They include the average node degree

k̄ (G) =
1

n

n∑

i=1

ki, (34)

where ki is the degree of the corresponding node and the network density

̺ (G) =
k̄

n − 1
, (35)

These parameters can be related to the algebraic connectivity via the bounds (31) and (32)—we re-

mind that δ ≤ k̄ ≤ ∆.
On the other hand we consider the following metrical properties measured in terms of the shortest-

path distance. They are the average shortest path length, which is given by

d̄(G) =
1

n (n − 1)

∑

u,v∈V
d(u, v), (36)

and the network diameter, which is defined by

diam(G) = max
u,v∈V(G)

{d(u, v)} . (37)

We also consider the average distance-sum index—a sort of average degree based on the sum of

distances from a given node to every other node in the network,

s(G) =
1

n

∑

u∈V
s (u) , (38)

where s (u) =
∑

v d(u, v).

We then obtain empirical correlations between these measures and the average time of consensus of

all the real-world networks considered in this work. As expected the algebraic connectivity of the studied

networks display a significant correlation with the average time of consensus with a Pearson correlation

coefficient equal to −0.792. That is, an increase of the algebraic connectivity shortens the time of consen-

sus of the network as expected from eq. (24). However, the Pearson correlation coefficient for the average

time of consensus and the density is −0.920 and that with the average distance-sum is 0.967 (see Fig. 2),
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Figure 2: Illustration of the correlations between the average time of consensus for the real-world net-

works studied and the network density and average distance-sum.

indicating that these global structural parameters capture much better than the algebraic connectivity the

structural influence over the consensus dynamics. Thus, in analyzing the influence of the global structure

over the consensus dynamics in real-world networks with heterogeneous structures, the network density

and the average distance-sum play a more fundamental role than the algebraic connectivity. That is, in-

creasing the density of the networks and reducing the average distance-sum of the nodes will decrease

significantly the time of consensus, mainly as a consequence of the fact that information has significantly

more ways to reach the same node from another using significantly shorter paths.

4 Conclusions

We have investigated the relation between local and global structural parameters over the consensus dy-

namics on networks. At the local level we have identified the structural characteristics that make an edge

critical for consensus. That is, those edges whose removal increases significantly the time necessary for

a global consensus in a network. The removal of edges with the largest edge betweenness centrality,

which accounts for the volume of information flowing through a given edge, increases the time of con-

sensus in real-world networks by a factor of 3.70. On the other hand, the removal of edges based on

their largest communicability angles, which accounts for the quality of information transmitted through a

given edge, increases the consensus time by a factor 5.68. We have also considered some global structural

parameters that influence the consensus dynamic of a network. In particular, the network density and the

average distance-sum accounts for more than 80% of the variance in the time of consensus of a large

series of real-world networks arising in a variety of different scenarios. In closing, we have identified a

few structural parameters—both local and global—which critically influence the dynamical properties of

networks, allowing further studies to design networks with more efficient and robust consensus dynamics.
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Appendix

Dataset-description

Biological networks

• Drosophila PIN: Protein-protein interaction network in Drosophila melanogaster (fruit fly).

• Hpyroli: Protein-protein interaction network in H. pyroli.
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• KSHV: Protein-protein interaction network in Kaposi sarcoma herpes virus.

• Macaque: The brain network of macaque cortex.

• Malaria-PIN: Protein-protein interaction network in P. falciparum (malaria parasite).

• neurons: neuronal synaptic network of the nematode C. elegans. Included all data except muscle

cells and using synaptic connections.

• PIN-Afulgidus: Protein-protein interaction network in A. fulgidus.

• PIN-Bsubtilis: Protein-protein interaction network in B. subtilis.

• PIN-Ecoli: Protein-protein interaction network in E. coli.

• Transc-yeast: Transcriptional regulation between genes in Saccaromyces cerevisiae.

• Trans-urchin: Developmental transcription network for sea urchin endomesoderm development.

• YeastS: Protein-protein interaction network in S. cerevisiae (yeast).

Ecological networks

• Benguela: Marine ecosystem of Bengela, off the south-west coast of South Africa.

• BridgeBrook: Pelagic species from the largest of set of fifty Adirondack Lake (NY) food webs.

• canton: Primarily invertebrates and algae in a tributary, surrounded by pasture, of the Taieri River

in the South Island of New Zealand.

• Chesapeake: The pelagic portion of an eastern US estuary, with an emphasis on larger fish.

• Coachella: Wide range of highly aggregated taxa from the Coachella Valley desert in Southern

California.

• ElVerde: Insects, spiders, birds, reptiles, and amphibians in a rainforest in Puerto Rico.

• grassland: All vascular plants and all insects and trophic interactions found inside stems of plants

collected from 24 sites distributed within England and Wales

• ReefSmall: Caribbean coral reef ecosystem in Puerto Rico/Virgin Island shelf complex.

• ScotchBroom: Trophic interactions between the herbivores, parasitoids, predators, and pathogens

associated with broom, Cytisus scoparius, collected in Silwood Park, Berkshire, England.

• Skipwith: Invertebrates in an English pond.

• StMarks: Mostly macroinvertebrates, fish, and birds associated with an estuarine seagrass commu-

nity, Halodule wrightii, at the St. Marks Refuge, Florida, USA.

• StMartin: Birds and predators and arthropod prey of Anolis lizards on the island of St. Martin in

the northern Lesser Antilles.

• Stony: Primarily invertebrates and algae in a tributary, surrounded by pasture, in native tussock

habitat, of the Taieri River in the South Island of New Zealand.

• Ythan1: Mostly birds, fish, invertebrates, and metazona parasites in a Scottish estuary.

• Ythan2: Reduced version of Ythan1, without parasites.

Informational networks

• centrality-literature: Citation network of papers published in the field of Network Centrality.

• GD: Citation network of papers published in Proceedings of Graph Drawing during the period

1994-2000.

• Roget: Vocabulary network of words related by their definitions in Roget’s Thesaurus of the English

language. Two words are connected if one is used in the definition of the other.

• SmallWorld: Citation network papers which cite Milgram’s 1967 Psychology Today paper or in-

clude Small World in the title.

Social networks

10



• BF (3, 70, 71): Networks of friendship ties from the communities identified as 23, 70, and 71 from

the Brazilian Farmers longitudinal study on the adoption of a new corn seed.

• ColoSpg: The risk network of persons with HIV infection during its early epidemic phase in Col-

orado Springs, USA, using analysis of community-wide HIV/AIDS contact tracing records (sexual

partners) during 1985-99.

• CorporatePeople: American corporate elite formed by the directors of the 625 largest corporations

that reported the compositions of their boards, selected from the Fortune 1,000 in 1999.

• dolphins: Social network of a bottlenose dolphins (Tursiops truncates) population near New Zealand.

• Drugs: Social network of injecting drug-users (IDUs) who have shared a needle in the last six

months.

• Galesburg2: Friendship ties among 31 physicians.

• High-tech: Friendship ties among the employees in a small high-tech computer firm which sells,

installs, and maintains computer systems.

• hs 2: Heterosexual contacts, extracted at the Cadham Provincial Laboratory; a six-month block

data from November 1997 to May 1998.

• Math Method: This network concerns the diffusion of a new mathematics method in the 1950s.

It traces the diffusion of the modern mathematical method among school systems that combine

elementary and secondary programs in Allegheny County (Pennsylvania, USA.) .

• PRISON: Social network of inmates in prison who chose “Which fellows on the tier are you closest

friends with?”

• Sawmill: Social communication network within a sawmill, where employees were asked to indicate

the frequency with which they discussed work matters with each of their colleagues.

• social3: Social network among college students participating in a course about leadership. The

students choose which three members they want to have on a committee.

• Zackar: Social network of friendship between members of the Zackary karate club.

Technological networks

• electronic (1-3): Electronic sequential logic circuits parsed from the ISCAS89 benchmark set,

where nodes represent logic gates and flip-flops.

• Internet-1997: The internet at the Autonomous System (AS) level, as of September 1997.

• Software (Abi, Digital, Mysql, VTK, XMMS): Software network development for different pro-

grams.

• USAir97: Airport transportation network between airports in the US in 1997.
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Relative increase of 〈tc〉 according to:

No. Network n G̃pq EBC θpq Rnd Ref.

1 Coachella 30 3.83 9.68 19.68 0.71 [40]

2 Skipwith 35 9.52 7.89 16.85 0.76 [41]

3 electronic3 512 8.61 9.97 15.55 1.13 [42]

4 Software-XMMS 971 4.51 14.91 14.49 1.00 [79]

5 electronic2 252 6.22 9.52 14.43 0.93 [42]

6 hs 2 69 2.57 6.97 14.27 0.95 [43]

7 electronic1 122 4.95 9.95 11.00 1.03 [42]

8 Software-Mysql 1480 3.03 2.55 9.96 0.73 [79]

9 centrality-literature 118 1.23 2.21 8.98 0.81 [44]

10 Transc-yeast 662 1.48 4.70 8.54 1.08 [45]

11 social3 32 3.01 1.65 8.41 0.95 [43]

12 dolphins 62 1.82 3.94 8.25 0.79 [46]

13 StMarks 48 2.28 6.75 7.94 0.85 [47]

14 Drugs 616 1.62 1.79 7.87 0.97 [48]

15 Software-VTK 771 3.60 4.01 7.41 0.82 [79]

16 Malaria-PIN 229 2.27 1.50 7.36 1.23 [49]

17 CorporatePeople 1586 3.84 5.26 7.10 1.02 [50]

18 ElVerde 156 2.55 5.87 6.34 0.77 [51]

19 Math Method 30 2.39 3.99 6.08 0.85 [52]

20 Roget 994 1.72 1.92 5.69 0.96 [53]

21 PINEcoli 230 1.35 3.62 5.44 0.91 [54]

22 Benguela 29 2.24 3.66 5.39 0.72 [41]

23 Galesburg2 31 3.13 5.43 5.22 0.93 [55]

24 BridgeBrook 75 1.51 2.88 5.18 2.17 [56]

25 SmallWorld 233 1.16 4.81 5.15 1.00 [57]

26 PRISON 67 2.50 2.06 5.09 1.13 [58]

27 Stony 112 1.07 1.59 4.87 1.01 [59]

28 Hi-tech 33 2.08 2.80 4.56 0.60 [60]

29 Zackar 34 1.55 2.80 4.35 1.15 [61]

30 Software-Digital 150 1.91 2.41 4.07 1.33 [79]

31 Trans-Ecoli 328 1.94 4.57 4.00 0.72 [45]

32 GD 249 2.27 3.30 3.93 0.86 [57]

33 Hpyroli 710 1.79 2.67 3.70 0.63 [62]

34 ScotchBroom 154 1.72 5.78 3.58 0.98 [63]

35 canton 108 1.66 1.97 3.57 1.01 [64]

36 Chesapeake 33 1.26 2.08 3.54 1.55 [65]

37 Software-Abi 1035 1.18 0.74 3.28 0.62 [79]

38 BF-70 48 1.26 2.64 3.17 1.40 [66]

39 Sawmill 36 1.94 2.32 3.14 1.18 [67]

40 YeastS 2224 1.37 2.27 3.06 0.98 [68]

41 Ythan2 92 1.17 0.73 3.06 0.96 [70]

42 PIN-Ecoli 1251 1.90 3.32 2.82 0.96 [54]

43 Internet-1997 3015 2.67 6.76 2.68 0.99 [80]

44 Macaque 30 5.11 3.78 2.67 1.04 [81]

45 USAir97 332 1.47 2.88 2.65 0.90 [57]

46 Ythan1 134 1.14 0.70 2.65 0.97 [69]

47 neurons-A 280 2.27 1.14 2.41 0.70 [71]

48 grassland-A 75 1.75 2.08 2.41 0.97 [72]

49 BF-71 71 2.85 2.33 2.29 0.96 [66]

50 KSHV 50 1.29 1.71 1.77 0.79 [73]

51 Trans-urchin 45 1.13 1.32 1.62 0.78 [45]

52 BF-23 40 1.98 1.71 1.62 1.11 [66]

53 ColoSpg 324 1.03 0.98 1.00 0.99 [74]

54 PIN-Afulgidus 32 0.95 1.04 0.95 0.92 [75]

55 StMartin 44 1.26 1.55 0.95 0.83 [76]

56 Pin-Bsubtilis 84 0.98 1.04 0.94 0.96 [77]

57 ReefSmall 50 2.84 2.28 0.84 0.79 [78]

Table 1: Dataset: n number of nodes, G̃pq average communicability, EBC edge-betweenness centrality,

θpq communicability angle, Rnd random. The largest increase in the average time of consensus are

boldfaced.
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