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ABSTRACT  

 

This study presents the derivation of ordinary state-based peridynamic heat conduction 

equation based on the Lagrangian formalism.  The peridynamic heat conduction 

parameters are related to those of the classical theory.  An explicit time stepping scheme 

is adopted for numerical solution of various benchmark problems with known solutions.  

It paves the way for applying the peridynamic theory to other physical fields such as 

neutronic diffusion and electrical potential distribution.  

 

1.  Introduction  

 

Nonlocal theories have been used to some extent to describe heat conduction on a 

continuum level.  In heat conduction, the thermal energy is transported through phonon, 

lattice vibration, and electrons.  Usually, electrons are the vehicles through which thermal 

energy is transported in metals while phonons are the heat carrier in insulator and 

semiconductors.  This process of thermal energy transfer is inherently nonlocal because 

the carriers arrive at one point having brought thermal energy from another.  

Nevertheless, macroscale heat transfer models that adopt a local formulation, typically 

employing the Fourier’s law as the local constitutive relation, have been used 
successfully to represent continuum heat conduction.   

 

The mean free path of the heat carriers is the average distance a carrier travels before its 

excess energy is lost.  As the heat carriers’ mean free path becomes comparable to the 
characteristic lengths; the nonlocality needs to be taken into account in the continuum 

model.  Nonlocality often becomes important at low temperatures, as exhibited in 

cryogenics systems, since the heat carriers have a longer mean free path at lower 

temperatures.  It has been found that nonlocality should also be accounted for in 

problems in which the temperature gradients are steep.  This is because the penetration 

depth, the length characterizing the temperature gradient, becomes short, even becoming 

the same order of magnitude as the mean free path of the carrier.  In such instances, it is 

necessary to consider the nonlocality of the heat transport in a continuum model.  

Recently, with the miniaturization of devices, the small geometric length scales have also 

necessitated the inclusion of nonlocal effects in microscale and nanoscale models [1]. 
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Several nonlocal heat conduction theories have been proposed in the last few decades.  In 

the early 1980s, Luciani et al. [2] developed a nonlocal theory to better represent electron 

heat transport down a steep temperature gradient by introducing a nonlocal expression for 

the heat flux.  The nonlocal model was in better agreement with probabilistic simulations 

(Fokker-Planck simulations) than the local models.  Later, Mahan and Claro [3] proposed 

a nonlocal relation between the heat current, determined from Boltzmann’s equation, and 
the temperature gradient.  In the 1990s, Sobolev [4] introduced a model in which both 

space and time nonlocality are taken into account in the strong form, i.e. integral form, of 

the energy balance, Gibbs and entropy balance equations.  Lebon and Grmela [5], 

proposed a weakly nonlocal model (weakly nonlocal are typically based on gradient 

formulation).  The model was based on nonequilibrium thermodynamics, for which an 

extra variable is added to the basic state variables to account for nonlocality.  

Subsequently, they extended their model to include nonlinearity [6].  More recently, the 

development of nonlocal heat conduction equations has been motivated by the 

miniaturization of devices.  A number of researchers have put forth nonlocal models with 

the objective of capturing heat transport in microscale and nanoscale devices.  One 

example of this is the ballistic-diffusive heat equation by Chen [7], which was derived 

from the Boltzmann’s equation, and it accounts for nonlocality in heat transport.  Another 
example is by Alvarez and Jou [8].  They developed their model by including nonlocal 

(and memory/lag) effects in irreversible thermodynamics.  Tzou and Guo [9] constructed 

their model by incorporating a nonlocal (and lag) term into the Fourier law. 

 

An area of interest is determining the temperature field in the presence of emerging 

discontinuities.  One class of problems that contains a discontinuity is the heat transfer 

process which involves phase change such as solidification and melting [10].  This 

process is commonly referred to as Stefan problem, and there are a number of 

technologically important problems that involve heat transfer with phase change.  

Examples of these include ablation of space vehicles during reentry and casting of metals.  

Another heat conduction problem with an emerging discontinuity is the rewetting 

problem from the nuclear industry.  Rewetting in a nuclear reactor is employed to restore 

temperatures to a safe range following accidental dry out or loss of coolant.  Emergency 

cooling is introduced to the system via an upward moving water front or by spraying 

from the top of the reactor [11, 12].  A moving discontinuity occurs in the heat generating 

solid at the quench front due to the sudden change in heat transfer condition at the solid 

surface.   

 

Peridynamics is a nonlocal continuum theory which allows governing field equations to 

be applicable at discontinuities.  This applicability at discontinuities is achieved by 

replacing the spatial derivatives, which lose meaning at discontinuities, with integrals that 

are valid regardless of the existence of a discontinuity.  A peridynamic heat conduction 

model allows problems with discontinuities are readily solvable as no spatial derivatives 

appear in the formulation, making the equation applicable everywhere in the body.   

 

The peridynamic theory was initially developed as a reformulation of the equation of 

motion in solid mechanics that was better suited for modeling bodies with discontinuities, 

such as cracks [13].  The theory was formulated in what is now referred as the bond-
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based peridynamic theory, in which a body assumed to be comprised of a network of 

independent pairwise interactions.  However, the independence of the pairwise 

interactions in solid mechanics leads to certain material limitation.  As a result, Silling et 

al. [14] and Silling and Lehoucq [15] developed a generalized approach to peridynamics 

in which interactions are not independent, and referred to as state-based peridynamics.  

Peridynamic states were introduced as the mathematical objects that convey the 

information associated with a body.  Within the realm of solid mechanics, the 

peridynamic theory has been successfully employed to model fracture nucleation and 

propagation [16].  

 

A peridynamic approach to heat conduction is advantageous as it not only accounts for 

nonlocality but it also allows for the determination of the temperature field in spite of 

discontinuities.  The peridynamic heat conduction model is a continuum model; it is not a 

discrete model.  As such the phonon and electron motion is not explicitly modeled.  

Initial successful attempts have recently been made to develop heat conduction equations 

in the peridynamic framework.  Gerstle et al. [17] developed a peridynamic model for 

electromigration that accounts for heat conduction in a one dimensional body.  

Additionally, Bobaru and Duangpanya [18] proposed a one dimensional peridynamic 

heat conduction equation.  Recently, Bobaru and Duangpanya also solved the 2-D heat 

conduction problem with discontinuities [19].  Both studies adopted the bond-based 

peridynamic approach. 

 

As part of this study, the heat conduction equation is formulated within the framework of 

generalized state-based peridynamics.  To begin with the peridynamic states are 

reviewed.  The derivation of the generalized peridynamic heat equation is demonstrated 

using the Lagrangian formalism and the peridynamic variables are explained.  

Subsequently, simplifications are made to develop the bond-based peridynamic approach 

for heat conduction from the generalized state-based.  The thermal response function and 

an approach for determining the microconductivity are also presented.  A numerical 

procedure is described for solving the peridynamic heat conduction equations along with 

the discretization and time stepping schemes as well as numerical stability criterion.  

Various problems are simulated based upon the present peridynamic heat transfer model, 

and comparisons against classical solutions are presented in order to establish its validity. 

 

2. State-Based Peridynamic Thermal Diffusion Equation 

 

Within the peridynamic framework, the interaction between material points is nonlocal.  

For thermal diffusion, the nonlocal interaction between material points is due to the 

exchange of heat energy.  Therefore, a material point will exchange heat with points 

within its neighborhood defined by the horizon.  

 

In the Lagrangian formalism, the governing heat conduction equation corresponds to the 

Euler-Lagrange equation.  The Euler-Lagrange equation based on the Lagrangian , L is 

given in the following form [20]  
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0
d L L

dt

       
,  (1a) 

 

with 

 

V

L dV L ,  (1b) 

 

in which   is the temperature, L  is the lagrangian density.  The Lagrangian density of a 

peridynamic material point can be defined as 

 

Z s  L ,  (2) 

 

where Z is thermal potential and it is a function of all the temperatures of the points that 

x  interacts with,   is the density and s  is the heat source per unit mass, which includes 

the rate of heat generation per unit volume and the internal energy storage.  There is a 

thermal potential associated with each material point, and the term,  iZ  represents the 

thermal potential of material point, ( )ix .  The microthermal potential,   i j
z  is the thermal 

potential due to the interaction (exchange of heat energy) between material point, ( )ix  and 

( )jx . The microthermal potential is related to heat energy exchange, which depends on 

the temperature difference between the material points.  Therefore, the microthermal 

potential is dependent on the temperature difference between pairs of material points.  

More specifically, the microthermal potential,   i j
z  depends on the temperature 

difference between point, i  and all other material points that interact with point, ( )ix .  

Note that the microthermal potential      j i i j
z z , as   j i

z  depends on the state of 

material points that interact with material point, ( )jx .  The microthermal potential is 

denoted as follows, 

 

   ( )( ) ( )( ) ( )( ) ( )( )(1 ) (2 ) (1 ) (2 )
, , , ,i i j ji j i j i i j i j i j jz z z z           (3) 

 

where ( )i  is the temperature at point, ( )ix  and 
(1 )i  is the temperature of the first 

material point that interacts with point, ( )ix , and similarly, ( )j  is the temperature at 

point, ( )jx while 
(1 )j  is the temperature of the first material point that interacts with 

point, ( )jx  as shown in Fig. 1. 
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Figure 1. Peridynamic material points and their interaction with each other 

 

 

The thermal potential of point, ( )ix ,  iZ  is defined as 

 ( ) ( )( ) ( ) ( )(1 ) (2 )
1

1 1
, ,

2 2
i ii i j i i

j

Z z




    

 ( )( ) ( ) ( ) ( )(1 ) (2 )
           + , ,j jj i j j jz V     (4) 

 

where ( )jV  is the infinitesimal volume associated with material point, ( )jx .  Basically, 

this equation indicates that the thermal potential at a point is the summation over all the 

microthermal potential associated with that point.  The Euler-Lagrange equation, Eq. 

(1a), for material point, ( )kx  becomes 

 

( ) ( )

0
k k

d L L

dt

  
     

.  (5a) 

 

in which  

 

( ) ( )

1

i i

i

L V




L .  (5b) 

 

with 

 

   ( ) ( )i i i i
Z s  L .  (5c) 
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The microthermal potential and therefore thermal potential are both functions of 

temperature.  Consequently, invoking Eq. (2) and Eq. (4) into Eq. (5a) results in the 

following equation 

 

 
 

 
 

( ) ( )( )( )

( )

1 1 ( )( ) ( )

( ) ( )( )( )

( ) ( ) ( ) ( )

1 1 ( )( ) ( )

1

2

1
  0

2


 

 

 

 

     
  

     
    
   

      

 

 

j kk i

i

j i kj k

k ji k

i k k k

j i kk j

z
V

z
V V s V

 (6a) 

 

or 

 

   
( )( ) ( )( )

( ) ( ) ( )

1 1 1 1( ) ( ) ( ) ( )

1
0

2


   

   

    
      
           

   k i i k

i i k

j i j ij k k j

z z
V V s  (6b) 

 

in which the terms  ( ) ( )( ) ( ) ( )

1

i k i j k

i

V z




     and  ( ) ( )( ) ( ) ( )

1

i i k k j

i

V z




     can be 

thought of as the heat flow density from material point, ( )jx  to material point, ( )kx  and 

the heat flow density from material point ( )kx  to ( )jx , respectively.  Based on this 

interpretation, ( )( )k j  and ( )( )j k  are introduced, and defined as 

 

 
( )( )

( )( ) ( )

1( ) ( ) ( )

1 1

2

k i

k j i

ij j k

z
V

V





 
 
    
 ,  (7a) 

and 

 

 
( )( )

( )( ) ( )

1( ) ( ) ( )

1 1

2

i k

j k i

ij k j

z
V

V





 
 
    
 ,  (7b) 

 

Using these definitions allows Eq. (6b) to be rewritten as follows 

 

 ( )( ) ( )( ) ( ) ( )

1

0k j j k j k

j

V s


    ,  (8) 

 

As described by Silling et al [14] and Silling and Lehoucq [15], a PD state can be thought 

of as an infinite dimensional array that contains certain information about all the 

interactions associated with a particular material point.  All of the heat flow density 

associated with each interaction assembled in an infinite-dimensional array is referred to 

as the heat flow scalar state,  ,h tx  where t is the time.  The assembled heat flow state 

for material points ( )kx  to ( )jx  may be represented as 
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   ( ) ( )( ) ( ) ( )( ),       and      ,k k j j j kh t h t

   
       
   
   

x x .   (9) 

 

The heat flow state associates each pair of interacting material points with a heat flow 

density, and enables the expressions for heat flow densities ( )( )k j  and ( )( )j k  as  

 

   ( )( ) ( ) ( ) ( ) ( )( ) ( ) ( ) ( ),    and   ,k j k j k j k j k jh t h t   x x x x x x , (10) 

 

where the angled brackets include the interacting material points.  The microthermal 

potentials may also be assembled in a state, which is called the microthermal potential 

scalar state,  ,z tx , permitting the following representation  

 

   ( )( ) ( ) ( ) ( ) ( )( ) ( ) ( ) ( ),    and   ,k j k j k j k j k jz z t z z t   x x x x x x . (11) 

 

Utilizing the concept of PD states, Eq. (7) may be rewritten as 

 

 ( ) ( )

1

2
j k

z
h




  
.  (12) 

 

Applying the state notation, Eq. (8) can be also rewritten as 

 

    ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

1

, , 0k j k j k j j k

j

h t h t V s




     x x x x x x . (13) 

 

Because the volume of each material point ( )jV is infinitesimally small, for the limiting 

case of ( ) 0jV  , the summation can be replaced with integration over the material points 

within the horizon as 

 

   ( )

1

j
H

j

V dV 


    x ,  (14) 

 

It permits Eq. (13) to be recast as 

 

    , , 0
H

h t h t dV s       xx x x x x x , (15) 

 

where  , 0 for h t H   x x x x , and domain of integration, H  is defined by the 

horizon of the material point, x  that interacts with other material points in its own 

family. 
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For convenience, the following notation is adopted 

 

   , , ,h t h h t h  x x .  (16) 

 

Also, the temperature scalar state,   is defined as 

 

     , , ,t t t    x x - x x x .  (17) 

 

The temperature state simply contains the temperature difference associated with each 

interaction of a particular material point.  Since, the microthermal potential is dependent 

on the temperature difference of all the interactions associated with the material point, it 

may be written as a function of the temperature state, 

 

 z z  .  (18) 

 

Therefore, the heat flow state can also be written as a function of the temperature state, 

 

 h h  .  (19) 

 

As outlined by Bathe [21], the heat conduction equation should explicitly include the rate 

at which heat energy is stored when the heat flow changes over a short period of time.  

This rate of internal energy storage density, 
s , is a negative energy source and it is 

given by 

 

s vc
t

 



,  (20) 

 

for which cv is the specific heat capacity.   

 

Therefore, the source term in Eq. (13) is then replaced by s bs s  , where bs  is the 

heat source due to volumetric heat generation per unit mass.  Invoking Eq. (20) into Eq. 

(13) leads to the transient form of the state-based peridynamic thermal diffusion equation   

 

       , , , ,v s

H

c t h t h t dV h t       x x x - x x x - x x , (21) 

 

in which    , ,s bh t s tx x  is the heat source due to volumetric heat generation.  The 

resulting equation is an integro-differential equation in time and space.  It contains 

differentiation with respect to time, and integration in spatial domain.  It does not contain 

any spatial derivatives of temperature; thus, the PD thermal equation is valid everywhere 

whether or not discontinuities exist in the domain.  Construction of its solution involves 

time and spatial integrations while being subject to conditions on the boundary of the 

domain , , and initial conditions. 
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3. Relationship between heat flux and peridynamic heat flow state 

 

 The heat flow scalar state, h  contains the heat flow densities associated with all the 

interactions.  The heat flow density,  ,h t  x x x , has units of heat flow rate (rate of 

heat energy change) per volume square .  The integral in Eq. (21),  

 

   , ,
H

h t h t dV    x x - x x x - x   (22) 

 

is similar to the divergence of heat flux, q , and it has units of heat flow rate per 

volume .  Therefore, the peridynamic heat flow state can be related to the heat flux, q . 

 

Multiplying the PD heat conduction equation, Eq. (21), by a temperature variation of 

 , and integrating over the entire domain result in 

 

     , , ,v s

V V H V

c dV h t h t dV dV h t dV              x x - x x x - x x . (23) 

 

After moving the last term on the right-hand side of Eq. (23), the heat generation term, to 

the left-hand side, and changing the integration from H  to V  due to the fact that 

 

   , , 0 for h t h t H       x x x x x x x , (24) 

 

leads to the following form of the equation 

 

     , , ,v s

V V V

c h t dV h t h t dV dV              x x x - x x x - x . (25) 

 

If the parameters x  and x  in the second integral on the right-hand side of Eq. (25) are 

exchanged, the second integral  

 

   , ,
V V V V

h t dV dV h t dVdV          x x - x x x - x . (26) 

 

Substituting from Eq. (26) into Eq. (25), leads to 

 

     , ,v s

V V V

c h t dV h t dV dV          x x x - x  (27) 

 

Invoking the variation of the temperature scalar state,   from Eq. (17) into Eq. (27) 

results in 

 

 ,v s

V V

c h t dV ZdV      x   (28) 
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where Z  corresponds to the variation of the PD thermal potential at x  due to its 

interactions with all other material points:  

 

   ,
V

Z h t dV      x x - x x - x   (29) 

 

Considering only the material points within the horizon, Eq. (29) can be rewritten as  

 

   ,
H

Z h t dV      x x - x x - x . (30) 

 

Based on the classical formulation, the corresponding variation of thermal potential can 

be written as  

 

   1ˆ
2

Z k k k        G G G G G G G .(31a) 

 

with  Ẑ G  given by 

 

  1ˆ
2

Z k G G G .  (31b) 

 

where k  is the thermal conductivity and G .  After invoking the Fourier relation, 

kq G  , the variation of classical thermal potential can be rewritten as 

 

 Ẑ   G q G   (32) 

 

By applying the definition of scalar reduction given in Appendix A, the temperature 

gradient can be approximated as  

 

1 1
  

H

w dV
m m

          G X x - x x - x X x - x  (33) 

 

in which   is a scalar state; thus, not requiring the dyadic,   operation. It reduces to 

 

1
 

H

w dV
m

     G x - x X x - x x - x   (34) 

 

where w  is a scalar state representing the influence function, and m  is the scalar 

weighted volume. 

 

Its substitution into Eq. (32) leads to the following, 
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1ˆ T

H

Z w dV
m

      q x - x X x - x x - x  (35) 

 

Assuming that the variation of the PD thermal potential, Z , and classical thermal 

potential, Ẑ  are equal, ˆZ Z   , and comparing Eq. (29) to Eq. (35), it follows that 

 

  1
, Th t w

m
  x x - x q x - x X x - x ,   (36) 

 

and this expression relates the heat flow state to the heat flux. 

 

4.  Bond-Based Peridynamic thermal diffusion 

 

If it is assumed that the heat flow density associated between two material points, x  and 

x  is a function of the temperature difference only between these two points, then the 

following expression holds true, 

 

   , ,h t h t   x x - x x x - x .  (37) 

 

This leads to the specialized bond-based PD thermal diffusion.  In this specialized case, 

the heat flow density,  , ,hf tx x  is defined as 

 

       , , , , 2 ,hf t h t h t h t      x x x x - x x x - x x x - x . (38) 

 

so that the PD heat conduction equation can be written as 

 

     , , , , , ,v h b
H

c t f t dV s t       xx x x x . (39) 

 

The term, hf , also referred to as the thermal response function, is the heat flow density 

function which governs the interaction of only material point x with x .  In the case of 

bond-based PD thermal diffusion, the pairwise interactions are independent of each other, 

and the heat flow between a pair of material points does not depend on the temperature 

difference between other pairs of material points.  The thermal response function, 

 ,hf x x  is zero for material points outside the horizon; i.e.,   ȟ x x . 

 

5. Thermal Response Function 

 

The pairwise heat flow density can be related to the microthermal potential through 

 

h

z
f







.  (40) 
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The microthermal potential, z  represents the thermal potential between a pair of 

interacting points.  The temperature difference between the material points 'x  and x  at 

any time is given by 

 

     ', , ', ,t t t  x x x x .  (41) 

 

The thermal potential at point, x  is then a summation over all microthermal potentials 

associated with this point, and is defined as, 

 

   1
, , ,

2
H

Z t z t dV   xx x x .  (42) 

 

The pairwise heat flow density function, 
hf , can be expressed as 

 

   ', ,
', ,h

t
f t




x x
x x

ȟ
,  (43) 

 

where   is the thermal microconductivity.  The microthermal potential corresponding to 

the thermal response functions, 
hf  can be obtained as 

 
2

2
z


ȟ

,  (44) 

 

The microconductivity is a PD parameter which can be related to the standard 

conductivity for a specified horizon.  It can be determined by equating the peridynamic 

thermal potential to the classical thermal potential at a point arising from a simple linear 

temperature field a suggested by Agwai [22].  The expression for the microconductivity 

will differ depending on the form of the thermal response function.  There are other forms 

as given by Bobaru and Duangpanya [18, 19] and Gerstle et al. [17]. 

 

In the most general case, heat transfer through a medium is three-dimensional. However, 

certain problems can be classified as two- or one dimensional depending on the relative 

magnitudes of heat transfer rates in different directions.  Their explicit forms are derived 

in Appendix B as 

 

2

2
 one dimensional 




k

A
.  (45a) 

3

6
 two dimensional

 


k

h
.  (45b) 

 

4

6
 three dimensional




k
.  (45c) 
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These parameters are determined by computing the thermal potential of a material point 

whose horizon is completely embedded in the material.  The value of this parameter 

depends on the domain of integration defined by the horizon.  Therefore, the value of   

requires correction if the material point is close to free surfaces or material interfaces 

(Fig.  C2).  The details of the correction procedure are explained in Appendix C. 

 

6. Initial and boundary conditions 

 

The PD thermal equation does not contain any spatial derivatives; thus, boundary 

conditions are, in general, not necessary for the solution of an integro-differential 

equation.  However, such condition on temperature can be imposed in a “fictitious 
material layer” along the boundary of a nonzero volume.   
 

Heat flux does not directly appear in the PD thermal diffusion equation.  Therefore, the 

application of heat flux is also different from that of the classical heat conduction theory. 

The difference can be illustrated by considering a region,   that is in thermal 

equilibrium.  If this region is fictitiously divided into two domains,   and   as shown 

in Fig. 2, there must be rate of heat flow Q and Q entering through the cross-sectional 

surfaces,   of domain   and  . 

 

 
               (a)                              (b)                               (c)                                   (d) 

 

Figure 2. Boundary conditions: (a) heat fluxes through the cross sectional area (b) heat 

flow rate in classical heat conduction theory, (c) heat flow density of a material point in 

domain 
  with other material points in domain 

 , (d) heat flux density from domain 
 due to domain 

 . 

 

According to classical heat conduction theory, the heat flow rates, Q andQ  can be 

determined by integrating the normal component of the heat flux over the cross-sectional 

area,  , of domains 
  and 

  as 

 

Q d  



   q n   (46a) 

 

and 
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Q d  



   q n   (46b) 

 

in which q  and q  are the heat fluxes across the surfaces with unit normal, 
n  and 

n  

of domains 
  and 

  as  shown in Fig 2a-b 

 

In the case of the PD theory, the material points located in domain 
  interact with the 

other material points in domain 
  (Fig. 2c).  Thus, the heat flow rate, Q  can be 

computed by volume integration of the heat flux densities (Fig. 2d) over domain 
  as 

 

( )Q dV





  x    (47a) 

 

in which ( )x , acting on a material point in domain 
  is determined by 

 

   ( ) , ,x h t h t dV


       x x - x x x - x  (47b) 

 

Note that if the volume 
  is void, the volume integration in Eq. (47b) vanishes.  Hence, 

the heat flux cannot be applied as a boundary condition since their volume integrations 

result in a zero value.  Therefore, the heat flux can be applied as rate of volumetric heat 

generation in a “real material layer” along the boundary of a nonzero volume. 

 

6.1 Initial conditions 

 

Time integration requires the application of initial temperature values at each material 

point in the domain,  as shown in Fig. 3, and they can be specified as 

 
*( , 0) ( )t  x x   (48) 

 

6.2  Boundary conditions 

 

Boundary conditions can be imposed as temperature, heat flux, convection and radiation. 

As shown in Fig. 3, the prescribed boundary temperature is imposed in a layer of 

fictitious region, t  along the boundary of the actual material surface, t  of the actual 

material region, .  Based on numerical experiments, the extent of the fictitious 

boundary layer  to be equal to the horizon,   in order to ensure that the prescribed 

temperatures sufficiently reflected in the actual material region.  The prescribed heat flux, 

convection, and radiation are imposed in boundary layer regions, f , c  and r , 

respectively, with depth,  , along the boundary of the material region,  as shown in 

Fig. 3.   
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Figure 3. Boundary layers for imposing temperature, heat flux, convection and radiation  

 

 

6.2.1  Temperature 

As shown in Fig. 4a, the prescribed boundary temperature, * *( , )t x  can be imposed in a 

layer of fictitious region, 
t
 along the boundary of the actual material surface, 

t
 as 

 
* *( , ) 2 ( , ) ( , )t t t t t     y x z

* ,     ,     t t  x y z                    (49) 

 

in which z  represents the position of a material point in ,  and * x  represents the 

location of a point on the surface, t .  Their relative position is such that the distance, 

*d  x z  between them is the shortest.  The location of the image material point in 
t  

 

is obtained from 2d y z n  with  * *  n x z x z .  The implementation of 

prescribed temperature boundary condition is demonstrated in Fig. 4b.  For the case of 
* *( , ) 0t x , this representation enforces the temperature variation in the fictitious 

region to become the negative mirror image of the temperature variation near the 

boundary surface in the actual material as shown in Fig. 4c.   

 

Note that the material points in the fictitious region are mirrored with respect to the 

tangent line of the surface.  When there is a corner, the unit normal vector is assumed to 

be in the direction of the average of the two unit normal vectors of the associated edges, 

and the tangent line is assumed to be perpendicular to this vector. 
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(a) 

 

 
                                                      (b)                                              (c) 

Figure 4. (a) Material point and its image in fictitious domain (b) constant temperature 

condition (c) zero temperature condition 

 

 

6.2.2 Heat flux 

Application of this type of boundary condition is accomplished by first calculating the 

rate of heat entering through the bounding surface then converting the heat flow rate, Q  

to a heat generation per unit volume and then specifying this volumetric heat generation 

to collocations points in the boundary region. Assuming the cross sectional area is 

constant for each material point, conversion is achieved by 

 

.

f f

f f f

d
Q

Q
V V


 

     
 

 q n
q n q n

  (50) 

 

where Q  is the volumetric heat generation, q  is the heat flux, f  is the area over which 

the heat flux is applied and fV  is the volume of the boundary region.  
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In the presence of specified flux, *( , )tq x  over the surface f , shown in Fig. 3, it can be 

applied as the rate of volumetric heat generation in a boundary layer, f  as  

 

*1
( , ) ( , )sh t t  


x q x n     for      fx  (51) 

 

If there exists no specified flux, *( , ) 0t q x , volumetric heat generation, Q  calculated 

from Eq. (50) vanishes.  Thus, the implementation of zero flux boundary condition can be 

viewed as imposing a zero valued volumetric heat generation.  Alternative to this 

implementation, zero flux can be achieved by assigning the mirror image of the 

temperature values near the boundary in the actual domain to the material points in the 

fictitious region as shown in Fig. 5.  

 

 
Figure 5  Material point and its image in fictitious region for imposing zero flux 

 

 

6.2.3  Convection 

Convection is a heat transfer between the surface of the body and the surrounding 

medium.  The convection boundary condition is specified as 

 

 ( , ) ( , )t h t    q x n x     for      cx   (52) 

 

in which   is the temperature of the surrounding medium, h  is convective heat transfer 

coefficient and ( , )t x  is the temperature of the body on the surface, c  .  Similar to the 

specified flux condition, convection can be imposed in the form of a rate of heat 

generation per unit volume in a boundary layer region, c  as  
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 1
( , ) ( , )sh t h t  


x x     for      cx  (53) 

 

6.2.4  Radiation 

Radiation is a heat transfer between the surface of the body and the surrounding medium. 

The radiation boundary condition can be written as  

 

 4 4( , ) ( , ) sst t   q x n x     for      rx  (54) 

 

in which 
ss  is the temperature of the surface surrounding the body, ( , )t x  is the 

surface temperature of the body,   is the Stefan-Boltzman constant, and   is emissivity 

of the boundary surface.  Similar to the imposition of convection condition, radiation can 

also be imposed in the form of rate of heat generation per unit volume in a boundary 

layer region, r  as  

 

 4 41
( , ) ( , )s ssh t t  


x x     for      rx  (55) 

 

 

7.  Numerical Procedure 

 

Numerical techniques are employed in order to solve for the PD thermal diffusion 

equation.  The region of interest is discretized into subdomains in which the temperature 

is assumed to be constant.  Thus, each subdomain is represented as a single integration 

point located at its mass center with an associated volume.  Subsequently, the integration 

in the governing equation, given in Eq. (39), is numerically performed as 

 

           ( ) ( )

1

N
n n n

i v i hi j i j s i
j

c f V h 


    x x   (56) 

 

for which n  is the time step number, i  represents the point of interest and j  represents 

the points within the horizon of i .  The volume of the subdomain associated with the 

collocation point jx  is denoted by jV .  The time integration is accomplished using the 

forward difference time stepping scheme.  When forward differencing is employed, the 

following equation is solved 

 

   
   

         
1

1

N
n n n n

hi i j i j s i
ji v i

t
f V h

c







 
     

 
 x x , (57) 

 

where t  is the time step size. 
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7.1  Discretization and Time Stepping 

 

A one-dimensional region is considered to describe the details of the numerical scheme.  

The discretization of a one-dimensional region into subdomains is depicted in Fig. 6.  

Each subdomain has one integration point.  The integration point represents a material 

point.  The solution is constructed for material point,  ix .  The material point  ix  

interacts with all points within its horizon, represented by  jx .  As shown in Fig. 6, 

material point  ix interacts with six other material points,  jx  

 -3, - 2, -1, 1, 2 and 3j i i i i i i    in its horizon. Thus, the radius of the horizon is 

3    where    1
| |

i i
x x   . 

 

The discretized form of the PD thermal diffusion equation for material point,  ix    

becomes 

 

            
1

N
n n n

i v i i h i j j s i
j

c f V h


   ,  (58) 

 

in which the thermal response function, represented by   
n

h i j
f , is determined at each time 

step for every interaction.  The discretized equation for the thermal response function, 
hf  

is cast as  

 

  
  

  

n

i jn

h i j

i j

f



ȟ

.  (59) 

 

The relative initial position is defined as       i j j i
ȟ x - x , while the relative temperature 

is defined as       
n n n

i j j i
  - .  The thermal interaction of material point, ix  with the 

points within its horizon is illustrated in Fig.7.  

 

The discretized thermal diffusion equation can be expanded as 
 

                    1 1 2 2 3 3

n n n n

i v i i h i i i h i i i h i i i
c f V f V f V           

                1 1 2 2 3 3
             n n n n

h i i i h i i i h i i i s i
f V f V f V h           (60) 

 

For marching in time, the forward differencing scheme is used.  The time derivative of 

temperature at material point,  ix  is determined at the current time step, n from Eq. (60).  

By employing time integration via the forward differencing technique, the temperature at 

the next time step, (n+1) is determined.  This algorithm may be expressed as  
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     
1n n n

i i i
t    .  (61) 

 

The forward differencing method utilized for the numerical time integration is 

conditionally stable.  Therefore, it is necessary to develop a stability condition which sets 

the restriction on the time step size in order to prevent unbounded numerical solution.  

Similar to that performed by Silling and Askari [16], adopted a von Neumann stability 

analysis, and derived the stability condition as.   
 

  
 

( ) ( )

1 | |

i v i

N

j
j i j

c
t

V






 

 ȟ

.  (62) 

 

Due to the dependence of   on the horizon, the stability condition given in Eq. (62) is 

dependent on  . 

 

 

 

 
 

Figure 6.  Discretization of one dimensional region with collocation points. 
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Figure 7.  Thermal interaction of points with the horizon of i. 

 

8. Numerical results 

 

In achieving the numerical results, the bond-based peridynamics approach is adopted 

while utilizing the numerical schemes described in the preceding sections.  The 

predictions from the peridynamic simulations are compared against the classical solutions 

to establish the validity of the peridynamic heat transfer analysis. These solutions concern 

a finite slab with time dependent surface temperature and convection boundary condition, 

plate under thermal shock with insulated boundaries, 3-D block with temperature and 

insulated boundaries, dissimilar materials with an insulated crack, and a thick plate with 

two inclined insulated cracks. 

 

8.1 Finite slab with time dependent surface temperature 

 

A finite slab initially at zero temperature is subjected to a boundary temperature that 

increases linearly with time whose analytical solution is available, Jiji [23].  The slab 

thickness is 0.01 mL .  Its specific heat capacity, thermal conductivity and mass density 

are specified as 64 J/kgKvc , 233 W/mKk  and 3260kg/m  , respectively.  It is 

subjected to the following initial conditions and boundary conditions:  

 

( ,0) 0 C  x   0  x L   (63) 

 

and 

 

(0, ) 0, ( , )  with 500 , 0      t L t At A t    (64) 

 

As shown in Fig. 8, the spacing between material points in the PD model is 

0.0001 m  , the time step size, 
610  s t . 
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The temperature variation is predicted at 0.001 st  , 0.002 st  , 0.003 st   and 

0.004 st  . Both analytical and PD predictions are shown in Fig. 9 , and they are in close 

agreement. Because the temperature on the right boundary increases as a function of 

time, the rate of heat transfer from the right boundary also increases, as expected. 

 

 
 

Figure 8.  Discretization of the finite slab and the fictitious boundary regions for 

temperatures 

 

 

 

 
Figure 9. Temperature variations from peridynamics and classical analytical solution  

 

 

8.2 Slab with convection boundary condition 

 

A plate of thickness L, initially at temperature ( ,0) ( ) x F x , dissipates heat by 

convection for times 0t  from its surface into an environment at 0  C . The plate 

initially has a linear temperature profile, and two surfaces are subjected to convective 
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heat transfer.  Its analytical solution was constructed by Ozisik [10].  The slab thickness 

is 1 mL .  Its specific heat capacity, thermal conductivity and mass density are 

specified as 64 J/kgKvc , 233 W/mKk  and 3260kg/m  , respectively.  It is 

subjected to the following initial conditions and boundary conditions:  

 

( ,0) ( ),      0 ,   with ( )    x F x x L F x x    (65) 

 

and 

 

 1 ,   0,at 0k h t x
x




     


    (66) 

 

and 

 

 2 ,   0, atk h t x L
x




    


    (67) 

2 2

1 2with 10 / , 20 / , 0    h W m K h W m K C .  

As shown in Fig. 10, the spacing between material points in the PD model is 

0.002 m  , the time step size, 
610  s t .  The rates of heat generation per unit 

volume at 0x  and x L  are introduced as  

 

 1 1 1

1
( , ) ( , ) ,   s ch t h t

x
   


x x x     (68) 

 

and 

 2 2 2

1
( , ) ( , ) ,   s ch t h t

x
   


x x x     (69) 

 

 

The temperature variation is predicted at 0.5 st , 2.5 st , 5 st  and 10 st .  Both 

analytical and PD predictions are shown in Fig. 11, and they are in close agreement.  

 
 

Figure 10   Discretization of the finite slab and boundary regions for convection 

 



 24 

 Figure 11 . Temperature variations from peridynamics and classical analytical solutions 

8.3 Plate under thermal shock with insulated boundaries 

 

A square plate of isotropic material under thermal shock with insulated boundaries, 

shown in Fig. 12 , was first considered by Tehrani and Eslami [24] by using Boundary 

Element Method, (BEM). The plate has a length and width of 10 m L W , and 

thickness of 1 mH .  Its specific heat capacity, thermal conductivity and mass density 

are specified as 1 J/kgKvc , 1 W/mKk  and 31 kg/m  , respectively.  It is subjected 

to the following initial conditions and boundary conditions:  

 

( , , 0) 0 C   x y t    (70) 

 

and 

 

, ( 10, ) 0,   0x x y t        (71) 

, ( , 5) 0,   0y x y t         (72) 

2( 0, ) 5 ,  0   tx t te t    (73) 

 

As shown in Fig.12, the spacing between material points in the PD model is 0.02 m  , 

the time step size, 45 10 s  t .   
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Figure 12  Peridynamic model of the plate 

 

The temperature variations at 0y  are predicted for 3 st  and 6 st . Both BEM and 

PD predictions are shown in Fig.13 , and they are in close agreement.  

 

 
 

Figure 13.  Temperature variation from peridynamics and BEM at 0y   [24 ] 

 

 

8.4 A block of material with temperature and insulated boundaries 
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A block of isotropic material is subjected to constant temperatures at both ends while its 

lateral surfaces are insulated.  The schematic of the problem is described in Fig. 14  

 

 
 

Figure 14.  Peridynamic model of a three-dimensional block  

 

The block has a length of 0.01 mL  and width and thickness of 0.001 m W H .  Its 

specific heat capacity, thermal conductivity and mass density are specified as 

64 J/kgKvc , 233 W/mKk  and 3260 kg/m  , respectively.  It is subjected to the 

following initial conditions and boundary conditions:  

 
o( , , ,0) 100 C,   0 ,   0 ,   0       x y z x L y W z H    (74) 

 

and 

 
o o(0, , , ) 0 C,   ( , , , ) 300 C,   0    y z t L y z t t    (75) 

, ,( ,0, , ) 0,   ( , , , ) 0,   0    y yx z t x W z t t     (76) 

, ,( , ,0, ) 0,   ( , , , ) 0,  0    z zx y t x y H t t     (77) 

 

As shown in Fig. 14, the spacing between material points in the PD model is 

0.0001 m  , the time step size, 710 s t .  Since the block is insulated on its lateral 

surfaces, the temperature profile along the block can be compared with the one-

dimensional analytical solution given by  

 

1,3,5,...

(0, ) ( , ) 2
( , ) (0, ) sin

n

t L t n
x t t x x

L L L
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

        
 

   

     
2 2

2100
          (0, ) 1 ( , ) 1 1

k n
t

n n c LL L
t L t e

n n




 

 
   

           
  (78) 

 

The temperature variation is predicted at 65 10 s t , 55 10 s t , 45 10 s t , and 
35 10 s t . As the block reaches a steady-state condition, the temperature profile 

approaches a linear variation along the block. As observed in Fig. 15, the thermal 

response predicted by the peridynamic heat transfer model is in close agreement with the 

analytical solution. 
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Figure 15. Temperature variations from peridynamics and classical analytical solutions 

8.5 Dissimilar materials with an insulated crack 

 

As shown in Fig. 16, a plate is made of two different materials with an insulated interface 

crack.  The plate geometry is specified by 2 cmL  , 2 cmW , 0.01 cmH  and 

2 1.0 cma .  Its specific heat capacity, thermal conductivity and mass density are 

specified as 1 J/kgKvc , 1.14 W/cmKk  and 31kg/cm  , respectively.  It is 

subjected to the following initial conditions and boundary conditions:  

 

( , , ,0) 0,     / 2 / 2,   / 2 / 2       x y z L x L W y W    (79) 

 

and 
o o( , / 2, ) 100 C,   ( , / 2, ) 100 C,   0      x W t x W t t    (80) 

, ,( / 2, , ) 0,   ( / 2, , ) 0,   0     x xL y t L y t t    (81) 

 

As shown in Fig. 16, the spacing between material points in the PD model is 

0.01 cm  , the time step size, 410 s t .  The peridynamic predictions and their 

comparison with ANSYS are given in Fig.17.  As observed, there is a close agreement. 

 

In order to demonstrate the three-dimensional capability of the PD analysis, the plate 

geometry with an insulated crack is also discretized in the thickness direction, as shown 

in Fig. 18.  The thickness is changed to 0.2 cmH , and its subjected to the following 

initial conditions and boundary conditions:  
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( , , ,0) 0 / 2 / 2,   / 2 / 2,    0          x y z L x L W y W H z   (82) 

 

and 

 
o o( , / 2, , ) 100 C,   ( , / 2, , ) 100 C,   0      x W z t x W z t t    (83) 

, ,( / 2, , , ) 0,   ( / 2, , , ) 0,   0     x xL y z t L y z t t    (84) 

, ,( , ,0, ) 0,   ( , , , ) 0,   0     z zx y t x y H t t    (85) 

 

As shown in Fig. 18, the spacing between material points in the PD model is 

0.02 cm  , the time step size, 510 s t .  The peridynamic results are compared with 

the two-dimensional predictions in the case of homogeneous plate, 1 2k k k  . As 

observed in Fig.19, there exists a close agreement between the two- and three-

dimensional models. 

 

 

 
 

Figure 16 .  Peridynamic model of the plate with an insulated interface crack 
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Figure 17  Temperature variations along 0x , across the interface of the plates with 

thermal conductivity 
1k  for the upper half and 

2k  for the lower half of the plate at 

0.5t s  

 

 

 
 

Figure 18 .   Three-dimensional peridynamic  model of plate with a crack 
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Figure 19 .  Temperature field from two- and three-dimensional peridynamic analysis for 

1 2k k k   at 0.5t s  (two-dimensional model = solid line, three-dimensional model = 

dashed line) 

 

8.6 Thick Plate with two inclined insulated cracks 

 

In order to further demonstrate the 3-D capability of the PD analysis, a thick plate with 

two insulated inclined cracks is considered under two different types of boundary 

conditions.  The plate geometry is symmetric with respect to the vertical direction.  For 

the first type of boundary conditions, the plate is subjected to constant temperature at the 

top and bottom surfaces while remaining surfaces are insulated.  For the second type of 

boundary conditions, the plate is subjected to constant temperature at the top and bottom 

surfaces and convective heat transfer on the left and right surfaces while remaining 

surfaces are insulated.  The discretization and PD model of the plate for these two 

different types of boundary conditions are shown in Fig. 20 (a) and (b). 

 

The plate geometry is specified by 2 cmL  , 2 cmW , 0.2 cmH  and 2 0.6 cma .  

Crack orientations from horizontal direction are 
o60   and 

o120   with the distance 

between crack centers is 2 0.66 cme  .  Its specific heat capacity, thermal conductivity 

and mass density are specified as 1 J/kgKvc , 1.14 W/cmKk  and 31kg/cm  , 

respectively.  It is has zero initial temperature, and boundary conditions are specified as:  

 

Type -I:  
o o( , / 2, , ) 100 C, ( , / 2, , ) 100 C, 0x W z t x W z t t        (86) 

, ,( / 2, , , ) 0, ( / 2, , , ) 0, 0x xL y z t L y z t t       (87) 

, ,( , ,0, ) 0, ( , , , ) 0, 0z zx y t x y H t t          (88) 
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Type-II:  
o o( , / 2, , ) 100 C, ( , / 2, , ) 100 C, 0x W z t x W z t t         (89) 

 , ( / 2, , , ) , 0xkT L y z t h t          (90) 

 , ( / 2, , , ) , 0xkT L y z t h t        (91) 

2 o10W/cm K , 0 Ch        (92) 

, ,( , ,0, ) 0, ( , , , ) 0, 0z zx y t x y H t t          (93) 

 

As shown in Fig. 20, the spacing between material points in the PD model is 0.02 m  , 

the time step size, 
510  s t .  The rates of heat generation per unit volume at / 2x L   

and / 2x L  are introduced as  

 1
( , ) ( , ) ,   s ch t h t

x
   


x x x     (94) 

 

 
(a) 

 



 32 

 
(b) 

Figure 20 .  Peridynamic model of the thick plate: (a) boundary condition type I, and (b) 

boundary conditions type -II 

 

For the first type of boundary conditions , the peridynamic prediction for the temperature 

field is shown in Fig. 21 .  They are in close agreement with the classical solution [25, 

26].  For the second type of boundary conditions, the peridynamic prediction for the 

temperature field is shown in Fig. 22.  There exists no classical solution for comparison. 

 

 
 

Figure 21 . Three-dimensional  peridynamic temperature predictions on the mid-

plane with a normal in z direction at 0.45t s  for boundary conditions type -I 

 o

0 100 C   
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Figure 22 . Three-dimensional  peridynamic temperature predictions on the mid-

plane with a normal in z direction at 0.45t s  for boundary conditions type -II 

 0 100oC   

 

9.  Conclusions 

 

This study presents the derivation of the generalized state-based peridynamic heat 

transfer model based on the Lagrangian formalism, and confirmed that the governing 

equation represents the conservation of thermal energy.  The state-based peridynamic 

equation was reduced to the bond-based peridynamic heat transfer equation with an 

approach to determine the peridynamic material parameter, the microconductivity.  For 

all of the validation problems, the peridynamic solution was in very good agreement with 

the classical solution.  Therefore, it is concluded that the peridynamic heat transfer model 

does correctly represent heat transfer.  The benefit of a peridynamic heat transfer model 

over the classical model is the inclusion of nonlocality and the ease with which 

discontinuities are handled.  This ground work for the peridynamic heat transfer model 

enables the examination of the predictive capability of the peridynamic heat transfer 

model in the presence of nonlocality and discontinuities. 
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Appendix A - Concept of state 
 

The state concept presented by Silling et al [14] and Silling and Lehoucq [15] can be 

viewed as a data bank to extract information about the state of material points. For 

example, the vector states of reference position, X  and deformation, Y  provide 

information about the relative position of material points in the reference and deformed 

configurations.  The mathematical operations for such extraction of information are 

denoted as  

 

   X x x x x   (A.1a) 

 

and 

 

   Y x x y y   (A.1b) 

 

in which  x x  and  y y  represent the relative position of the points x  and x  in the 

reference and deformed configurations.  Similarly, a temperature scalar state,   can 

provide information about the temperatures, T  and T  at these two material points in the 

form 

 

T T   x - x   (A.2) 

 

The tensor product of vector states A  and D  is defined as 

 

H
w dH       A D x x A x x D x x  (A.3) 

 

where w  is the influence function, a scalar state and   represents the dyadic product of 

two vectors i.e.,  C a b  or ij i jC a b . 

 The reverse transformation from a vector state to a second-order tensor, which is 

called the “reduction” process, can be approximated by the expression given by Silling et 
al. [14],. The tensor  Y  is the vector state reduction of the vector state, Y  and it is 

defined as 

 

    1 Y Y X K .  (A.4) 
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The shape tensor, K , is defined as 

 

 K X X .  (A.5) 

 

Therefore, the shape tensor, K , can be obtained as  

 

H

w dH      K x x X x x X x x .  (A.6) 

The influence function, w  x x , can be chosen as  

 

w
  
 

x x
x x

,  (A.7) 

 

with   defining the radius of the horizon, H .  

 

Based on the definition of reduction, Eq. (A.4), a scalar state, a  can be reduced to a 

vector,  a  as  

 

    1a a m X .  (A.8) 

 

Hence, a vector state, a  can be reduced to a vector, f  as 

 

 af ,  (A.9) 

 

The scalar weighted volume, m  is defined as 

 

H

m w dH    x - x X x - x X x - x ,  (A.10) 

 

The dyadic,  , operation annuls because both a  x x and  X x - x x - x  are scalar; 

thus, the reduction expression can be rewritten as  

 

1

H

w a dH
m

     f x x X x x x x ,  (A.11a) 

 

with  

 

H

m w dH    x - x x - x x - x ,  (A.11b) 
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Substituting for the influence function, w  x x  from Eq. (A.7), scalar weighted volume 

can be evaluated as  

 

H

m dH   x - x ,  (A.12) 

 

In light of Fig. A.1, it can be explicitly evaluated as 

 

 
2

2 2

0 0 0

3
sin

4
m d d d V

  

          ,  (A.13) 

 

The scalar weighted volume can be viewed as a quantity that serves as volume averaging 

of the product of a scalar and vector states, a X .   

 

 
 

Figure A.1.  Components of the position vector, ȟ , between material points at x  and x . 

 

 

Appendix B -  Peridynamic microconductivity 

 

The microconductivity can be determined by equating the peridynamic thermal potential 

to the classical thermal potential at a point arising from a simple linear temperature field.   

 

One-dimensional analysis 

For one-dimensional analysis, a simple linear temperature field of the form,  x x   

results in the PD temperature difference of 

 

   x x x x        .  (B.1) 

 

Invoking this temperature difference into Eq. (44) results in the PD microthermal 

potential as 

 
2

2
z


ȟ

.  (B.2) 
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where x x ȟ .  Substituting for z  from Eq. (B.2) into Eq. (42) and performing the 

integration leads to PD thermal potential as 

 

 
2 2

0

1

2 2 4
H

A
Z z dV Ad

   
 

    
 

 ȟ ȟ
  (B.3) 

 

where A is the cross-sectional area of the volume associated with the material point x .  

The corresponding classical thermal potential from Eq. (31b) is obtained as  

 

1ˆ
2

Z k .  (B.4) 

 

Equating the peridynamic thermal potential in Eq. (B.3)  to the classical thermal potential 

given in Eq. (B.4) and solving for   result in the PD microconductivity for one-

dimensional analysis as 

 

2

2k

A



 .  (B.5) 

 

Two-dimensional analysis 

For two-dimensional analysis, a simple linear temperature field of the form, 

   ,x y x y    results in the PD temperature difference of 

 

   , ,x y x y x y           (B.6) 

 

for the material point of interest, x  located at the origin ( 0, 0)x y    Invoking this 

temperature difference into Eq. (44) results in the PD microthermal potential as 

 

 2

2

x y
z 

 


ȟ
  (B.7) 

 

where 2 2x y  ȟ .  Substituting for z  from Eq. (B7) into Eq. (42) and performing 

the integration over the horizon leads to PD thermal potential as 

 

   22 3

0 0

( ) ( )1
,

2 2 6

Cos Sin h
Z t h d d

          


  x
ȟ

 (B.8) 

 

in which polar coordinates, ( , )   are utilized to perform the integration over a disk with 

thickness, h  and radius,  .  The corresponding classical thermal potential from Eq. 

(31b) is obtained as  
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Ẑ k   (B.9) 

 

Equating the PD thermal potential in Eq. (B8) to the classical thermal potential given in 

Eq. (B9) and solving for   result in the PD microconductivity for two-dimensional 

analysis as 

 

3

6k

h


 
 .  (B.10) 

 

Three-dimensional analysis 
For three-dimensional analysis, a simple linear temperature field of the form, 

 , ( )x y x y z     results in the PD temperature difference of 

 

     , , , ,x y z x y z x y z              (B.11) 

 

for the material point of interest, x  located at the origin ( 0, 0, 0)x y z     Invoking this 

temperature difference into Eq. (44) results in the PD microthermal potential as 

 

 2

2

x y z
z 

   


ȟ
  (B.12) 

 

where 2 2 2x y z    ȟ .  Substituting for z  from Eq. (B12) into Eq. (42) and 

performing the integration over the horizon leads to PD thermal potential as 

 

      2
2

2

0 0 0

4

( ) ( ) ( )1
,

2 2

4

Cos Sin Sin Sin Cos
Z t Sin d d d

          
    



 




  x
ȟ

 (B.13) 

 

in which spherical coordinates, ( , , )    are utilized to perform the integration over a 

sphere with radius,  .  The corresponding classical thermal potential from Eq. (31b) is 

obtained as  

 

3ˆ
2

Z k .  (B.14) 

 

Equating the peridynamic thermal potential in Eq. (B13) to the classical thermal potential 

given in Eq. (B14) and solving for   result in the PD microconductivity for three-

dimensional analysis as 
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4

6k


 .  (B.15) 

 

Appendix C - Surface effects 

 

Since the presence of free surfaces is problem dependent, it is impractical to resolve this 

issue analytically.  The correction of the material parameters is achieved by numerically 

integrating the PD thermal potential at each material point inside the body for simple 

temperature distribution and comparing to its counterpart obtained from classical thermal 

potential.   

 
 

Figure  C.1. Surface effects in the domain of interest.  

 

 

The simple temperature distribution can be linear in form, and the corresponding thermal 

potential, Z  of a point completely embedded in the material is calculated using Eq. 

(31b).   Subsequently, the PD thermal potential due to the applied linear temperature 

distribution is computed for each material point through numerical integration over its 

horizon from 

 

     ( )( )

1

1 1

2 2

N

i ji j
jH

Z z dV z V


   ȟ   (C.1) 

 

in which the micropotential, ( )( )i jz  between material points, ( )ix  and ( )jx  depends on the 

material microconductivity.   

 

As shown in Fig. C.2, the material point, ( )ix  may interact with material points ( )jx  and 

( )mx .  Material points ( )ix  and ( )jx  are embedded in material 1, and ( )mx  is embedded in 

material 2.  Thus, the microconductivity between points ( )ix  and ( )jx  is   i j
 , and it 
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differs from   i m
  between material points ( )ix  and ( )mx .  Because the material points 

( )ix  and ( )mx  are embedded in two different materials, their microconductivity,   i m


 

can 

be expressed in terms of an equivalent thermal conductivity as  

 

  
1 2

1 2

1 2





i m

k

k k

  (C.2) 

 

in which 
1

 

represents the segment of the distance between material points ( )ix  and ( )mx  

in material 1 whose thermal conductivity is 
1k , and 

2

 

represents the segment in material 

2 whose thermal conductivity is 
2k .  

 

 
 

Figure C.2 Material point ( )ix  close to an interface 

The thermal potential of material point, ( )ix  is denoted by  iZ .  The correction factor is 

determined for each material point in the domain as 

 

 
 

i

i

Z
g

Z

 .  (C.3) 

 

Therefore, the discretized thermal diffusion equation including the correction factor for 

point ( )ix  becomes 

 

                 
1

N
n n n

bi v i i i j h i j j i i
j

c g f V s 


   ,  (C.4) 

 

where        / 2
i j i j

g g g  .  Finally, the discretized equation of motion for material point 

( )ix , including surface and volume correction, c , is rewritten as 
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                    
1

N
n n n

bi v i i i j h i j c j j i i
j

c g f V s  


   . (C.5) 

 

Also, the thermal response functions between material points ( )ix  and ( )jx  and ( )ix  and 

( )mx  are modified to reflect the change in microconductivity as 

 

     
  

  
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   and      
  

  

n

i jn

h i j i j

i j

f

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. (C.6)
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FIGURE CAPTIONS 

 

Fig. 1 Peridynamic material points and their interaction with each other 

Fig. 2 Boundary conditions: (a) heat fluxes through the cross-sectional area, (b) heat flow 

rate in classical heat conduction theory, (c) heat flow density of a material point in 

domain 
  with other material points in domain

 , (d) heat flux density from domain 
 due to domain 

  

Fig. 3 Boundary layers for imposing temperature, heat flux, convection, and radiation  

Fig. 4 (a) Material point and its image in a fictitious domain (b) constant temperature 

condition (c) zero temperature condition 

Fig. 5 Material point and its image in a fictitious region for imposing zero flux 

Fig. 6 Discretization of one-dimensional region with collocation points 

Fig. 7 Thermal interaction of points with the horizon of i 

Fig. 8 Discretization of the finite slab and the fictitious boundary regions for 

temperatures 

Fig. 9 Temperature variations from peridynamics and classical analytical solutions 

Fig. 10 Discretization of the finite slab and boundary regions for convection 

Fig. 11 Temperature variations from peridynamics and classical analytical solutions 

Fig. 12 Peridynamic model of the plate 

Fig. 13 Temperature variation from peridynamics and BEM at 0y   [24]  
Fig. 14 Peridynamic model of a three-dimensional block 

Fig. 15 Temperature variations from peridynamics and classical analytical solutions 

Fig. 16 Peridynamic model of a plate with an insulated interface crack 

Fig. 17 Temperature variations along 0x , across the interface of the plates with 

thermal conductivity 1k  for the upper half and 2k  for the lower half at 0.5 st   

Fig. 18 Three-dimensional peridynamic model of a plate with a crack 

Fig. 19 Temperature field from two- and three-dimensional peridynamic analyses for 

1 2k k k   at 0.5 st  (two-dimensional model = solid line, three-dimensional model = 

dashed line) 

Fig. 20 Peridynamic model of the thick plate: (a) boundary conditions type I; (b) 

boundary conditions type-II 

Fig. 21 Three-dimensional peridynamic temperature predictions on the mid-plane with a 

normal in the z  direction at 0.45 st   for boundary conditions type-I o

0( 100 C)   

Fig. 22 Three-dimensional peridynamic temperature predictions on the mid-plane with a 

normal in the z  direction at 0.45 st   for boundary conditions type-II o

0( 100 C)   

Fig. A.1. Components of the position vector, ȟ , between material points at x  and x . 

Fig. C.1 Surface effects in the domain of interest 

Fig. C.2 Material point ( )ix  close to an interface 

 


