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Abstract: Two optimal experimental design (OED) problems for an enzymatic biodiesel production
system are investigated to improve parameter estimation quality. An orthogonalized sensitivity analysis
method is firstly implemented to select important parameters. Next the design of measurement set and
sampling strategy is developed in the form of two convex optimization problems which are solved by the
interior-point algorithm and the Powell’s method, respectively. Simulation results demonstrate the
function of OED in reducing parameter estimation errors. The biodiesel concentration is identified to be
the most valuable state variable observation, and the parameter estimation accuracy can be improved
through optimal sampling design.

Keywords: optimal experimental design (OED), enzymatic biodiesel reaction system, measurement set

selection, optimal sampling strategy, parameter estimation, local sensitivity analysis (LSA).

1. INTRODUCTION

The purpose of optimal experimental design (OED) is to
devise necessary dynamic experiments in such a way that
model parameters can be estimated from the resulting
experimental data with the best possible statistical quality.
There is a growing interest in OED in recent years
particularly in biological and biochemical systems where
performing experiments to obtain rich data are usually time-
consuming and cost expensive. Informative measurement
data can be generated for parameter identification and model
calibration through the model-based experimental design.
Also experiment efforts can be reduced since the modelling
efficiency is improved. Various OED methods have been
developed for nonlinear dynamic systems and many have
been successfully applied to a wide range of systems (Hagen
et al., 2013; Martinez et al., 2009; Atkinson and Bogacka,
2002). Useful reviews can be found in (Franceschini and
Macchietto, 2008; Chaloner and Verdinelli, 1995; Maria,
2004; Kreutz and Timmer, 2009), to name a few.

In general, experimental design for parameter estimation can
be divided into two categories according to design factors.
One is on design of manipulations such as initial conditions,
input variables, length of perturbation time, etc., which are
factors that drive/excite the dynamic processes (Balsa-Canto
et al., 2007; Faller et al., 2003; Asprey and Macchietto, 2002;
Banga et al., 2002). The other category is on design of
measurements which is to answer the question of what, where

and when to measure in order to collect the most ‘useful’ data.

Two challenging problems in the latter category are sampling
(time) scheduling and selection of measured variables. In
chemical and biochemical processes, uniformed sampling in
time domain is widely accepted which is convenient for
operation but may not be the best solution for parameter
estimation. Through design of optimal sampling points, the

parameter estimation accuracy can be improved and the
number of samples to be drawn is reduced (Bauer et al., 2000;
Kutalik et al., 2004; Pagendam and Pollett, 2013; Asyali,
2010). On the other hand, the variables to be measured are
normally determined following expert knowledge and are
mainly selected from the control and monitoring point of
view rather than modelling. Earlier work on optimal design
of measurement set selection can be found in (He et al., 2010;
Yue et al., 2008), where the design tasks were formulated as
constrained nonlinear optimization problems.

In this work, we aim to tackle the design problems of non-
uniform sampling scheduling and selection of measurement
variables for a biodiesel production system. In the design of
optimal sampling strategy, multiple measurement variables
will be considered. The employed model was developed for
an enzyme-catalyzed biodiesel process and tested on lab-
scaled fed-batch experiments for the transesterification of
rapeseed oil with methanol using Callera™ Trans L (Price et
al., 2013). In this reaction scheme, there are a lot of unknown
kinetic parameters need to be estimated from experimental
data, where accurate estimation is highly dependent on the
experimental data. A systematic experimental design is
therefore crucial for assuring modelling quality.

The rest of the paper is organized as follows. Preliminaries
on relevant methodologies are briefed in Section 2. The OED
techniques on sampling time design and measurement set
selection are presented in Section 3. In Section 4, OED for
the enzymatic biodiesel production system is implemented.
Finally, conclusions and discussions are made in Section 5.

2. PRELIMINARIES

A general ordinary differential equations (ODEs) model is
considered for nonlinear dynamic systems:



X=f(X,0,uz), X(t)=X,
Y =h(X,0,¢)+&
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where f(-) is the set of state transition functions which is

assumed to be continuous and first-order derivative. X e R”
denotes the vector of state variables with initial condition X,

and » is the number of state variables. @ e R” is the vector
of model parameters with m being the number of parameters.

u e R" represents the vector of input variables, r is the

number of input variables. Y eR” is the measurement
output vector with p being the number of measurement

variables, and h() is the measurement function, normally

used for selecting which variables to be measured. & is the

measurement error assumed to be independently and
identically distributed (i.i.d.), zero-mean Gaussian noise. In
practice, unknown parameters can be estimated by comparing
the output values from the model prediction with the
measurement data. The commonly used least-squares
algorithm can be employed to estimate those practically
identifiable parameters through minimizing the sum of the
squared residuals.

Most OED techniques are developed based on measures of
the Fisher information matrix (FIM) which quantifies
information content of parameter estimation. A formulated
scalar function of FIM contains experimental design factors,
and the design process is to optimize those design factors so
that parameter estimation errors are minimized. The local
(parametric) sensitivity analysis (LSA) plays a major part in
formulating FIM, thus is crucial for performing experimental
design. LSA is also used to identify key parameters that
strongly affect the system output. The local sensitivity is
defined as the partial derivative of the output states with

respect to system parameters. Denoting X =[x,,x,,"-*,x,]'
and 0=[k.,k,,--k,]",

S=0X/00=(s,) with s; =ax,/ok, for i=12,--n and

Jj=12,---,m . This sensitivity matrix can be easily obtained

the absolute sensitivity matrix is

by partial differentiation of (1) with respect to @ which
results in a set of sensitivity differential equations:

S=JS+F, S(t,)=S, )

where J=0f/0X and F=0f/00 are the Jacobian matrix

and the parametric Jacobian matrix, respectively. For
biochemical systems, kinetic parameters often have different
orders of magnitude. In order to compare their influence on
the system output directly, relative sensitivities are used

instead, i.e., 5, =(ax,/ok, )-(ok, /ox, ).

For high-dimensional systems, normally not all the unknown
parameters are identifiable due to: (1) small influence of
some parameters on the measured system output; (2) high
correlations between parameter pairs. It is therefore necessary
to perform identifiability analysis. This in turn will reduce the
number of parameters to be estimated. Several methods have
been developed for parameter identifiability analysis and

parameter reduction of complex system models such as a
hybrid technique that integrates conservation analysis, LSA,
principal component analysis and flux analysis together (Jia
and Yue, 2008); a method using collinearity index (Brun et
al., 2001); a relative gain array method (Sandink et al., 2001);
a method based on Hanken singular value (Sun and Hahn,
2006), etc. In this work, the orthogonalization-based
technique (Yao et al, 2003) is employed for choosing
parameters that are both sensitive and identifiable. This
method was applied to work on a signal transduction pathway
model where both the influence of parameters to the system
output and the cross-correlation between parameters were
examined (Yue et al., 20006).

3. OPTIMAL EXPERIMENTAL DESIGN

3.1 Basics of Optimal Experimental Design

OED is aimed at devising dynamic experiments by
optimizing design factors { which include initial conditions

X(to) , input variables u, sampling schedule t,, , valuable

measured response y(tsp) , etc. so that model parameters can

be estimated most precisely.

§=lut,.X(5),¥(t,).71] &
T is the experimental duration. The FIM which combines
parameter influence with measurement noise is represented as
a nonlinear function of local sensitivity matrix.

FIM(6,5)=5(0,5)' Q'S(8.¢) (5)
Q is a weighting matrix which is usually chosen to be the
measurement error covariance matrix. When the model is
linear in parameters, and the measurement noise is additive
i.i.d. Gaussian white noise, the inverse of FIM is
approximately equal to the lower bound of the parameter
estimation error covariance matrix (Cramer-Rao bound). The
OED problem can therefore be cast as minimization of
parameter covariance matrix measure or maximization of
measures of FIM, i.e.

¢ =argmax ®(FIM(0,()) (6)

{eQ

where Q is the admissible space of design parameters. <D()

is a function used to scalarize the information content. The
most commonly used ‘alphabet’ optimization criteria are A-
optimal, D-optimal, E-optimal, and modified E-optimal
design. There are also other scalar functions developed for
OED based on FIM which can been seen in (Ljung, 1998)
and other papers. All these criteria have advantages and
disadvantages and some may be superior to others for certain
systems. By using these design criteria, the OED problem can
be transferred into a convex optimization problem when the
FIM is an appropriate function of the design parameters.

3.2 Design of Measurement Set Selection



The purpose of measurement set selection is to choose the
most informative measurable state variables as observations
to get the best parameter estimation. This will also reduce the
experiment cost when only relevant variables are measured.
The measurement set selection design can be represented as
(He et al., 2010):

-1
min ) =0’ (Z/l,.sfs,.j @)
i=1
st A, €{0,1}
1"A=n

where A is an integer weight with values of 0 or 1, relating

i

to the i-th state variable. The variance of measurement noise,

o’ , is taken as constant and the same for all the noise

channels therefore has no effect to the optimization design.
This integer optimization problem can be transferred into a
continuous optimization problem by relaxing the weighting
factors to a continuous value within the range of [0, 1]. By
using different scalar OED criteria, the problem of
measurement set selection can be written into different
optimization problems (Boyd and Vandenberghe, 2004). For
instance, the E-optimal design of the covariance matrix can
be cast as a semi-definite program (SDP):

min —¢
st Y 2SS -1l ®)

i=1

A0, Vi, 174=1

This can be easily solved by optimization tools such as
SeDuMi. When using the D-optimal criterion, the design
problem can be written as a finite dimensional constrained
linear optimization problem which can be solved by the
interior-point method.

3.3 Design of Optimal Sampling Strategy

The task of optimal sampling design is to find the best
sampling strategy for the measurement variables that will
give most informative experimental data for parameter
estimation. This design can be formulated as an integer
optimization problem:

tl tZ e tN
(=
a)l a)z e a)N

N
§ = argmin(UZZa)iS(ti )TS(ti)] 9)
0—->Q i=1
st w e{0,1}

where @ =[@,---@,] is the weighting vector for available
measurement points, the number of which is N. N, is the

number of sampling points to be selected. In this case, @, =1

means the i-th time point is selected, while those sampling
points with weight value of 0 are not selected. This integer
optimization problem can be relaxed to a continuous
optimization problem by applying rounding heuristics to the
solution (Bauer et al., 2000). However, the optimal solution
may be affected by the rounding. A more computationally
efficient procedure, named Powell’s quadratically convergent
method, is introduced in (Kutalik et al., 2004). In the latter
algorithm, an initial sampling strategy is given to start with
(normally an equally-spaced sampling). In each iteration, one
sampling point in the selected sequence is replaced by a
sampling point from the available measurement points which
gives the best result. The iteration process will continue until
the optimal solution is obtained.

4. EXPERIMENTAL DESIGN OF AN ENZYMATIC
BIODIESEL PRODUCTION SYSTEM

4.1 Model Description

The kinetic model used in this work was established to
describe an enzymatic transesterification reaction of rapeseed
oil with methanol in a biphasic oil-water system using a
liquid lipase, Callera™ Trans L, based on several
assumptions (Price et al., 2014). In this reaction scheme, the
free enzyme ( E,,, ) contained in the polar phase is absorbed

at the water oil interface ( 4, ) and forms the penetrated

enzyme ( E ), which further reacts with triglyceride (7 ),
diglyceride ( D) and monoglyceride (M ) to form enzyme
substrate complexes ET, ED and EM . Then these enzyme
substrates can be decomposed into the acyl enzyme complex
and D, M and glycerol ( G), respectively. The acyl enzyme
complex can then react with water (# ) or methanol (CH )
and produce the free fatty acid ( FFA) and biodiesel ( BD ).
Additionally, the competitive methanol inhibition is also
considered in this reaction process in which CH reacts with
E to form ECH . From these kinetic reactions a set of
ordinary differential equations (ODEs) can be formulated
following the mass-balance principle (Price et al., 2014).

4.2 Sensitivity Analysis and Parameter Identifiability

In this fed-batch process, the experiment length is set to be 25
hours and sampling takes place every 15 minutes in the first
hour and then once each hour. The unit for all reactant
concentrations is in mol/L. The initial condition and the
feeding rates are provided in Error! Reference source not
found. in the Appendix. Fig. 1 illustrates the concentration
time profiles of the five measurable state variables where the
red points represent the real experimental values and the blue
lines describe the simulated concentration trajectories. It can
be seen that the model predicts well the trends of the
experimental data except for FFA which shows a clear
deviation. This over prediction of FFA may be due to



processes that are not taken into account (such as the change
of viscosity of the reaction media) or some statistical
measurement errors.

In order to compare the effects of different kinetic parameters
on the system output variables, relative local sensitivities and
their 2-norms are first calculated. A bar chart is shown in Fig.
2 to demonstrate the overall influence of each parameter to
all the 5 measurable states, from which it can be observed
that k;, k; and k ¢ are the most sensitive parameters.
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Fig. 1. Time profiles for 5 measurable state variables
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Fig. 2. Overall parameter ranking via LSA

LSA suggests that not all the parameters are influential to the
measurable outputs and some of the parameters may be non-
identifiable. To further examine correlations between
parameters, the collinearity index was calculated to determine
estimable parameters for this system (Price et al., 2014). It
was found that the maximum number of parameters that can
be estimated is 10, but it was still difficult to estimate all the
10 parameters using the experimental data. In this work,
based on the LSA results, the orthogonalization-based
method (Yao et al., 2003) is applied to examine parameter
correlations and to rank parameters so as to select the set of
identifiable parameters. This alternative method gives
consistent results regarding the 10 estimable parameters
using the collinearity index. The 3 most important parameters

identified in this analysis are k,, k, and &, (shown in Fig. 3).
Compared to the LSA ranking results (Fig. 2), both k, and
k, are always regarded as the most important parameters.
The influence of k , is reduced in the latter group of analysis

mainly because it is partially correlated with k.

Integrated paramatric effect
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Fig. 3. Parameter ranking via orthogonalization

4.3 Design of Measurement Set

Taking the three most important parameters, k;, k, and &,

into the parameter estimation scheme, OED has been applied
to determine the most valuable observation from the five
measurable state variables. The optimal weights calculated
from E- and D-optimal design are listed in Table 1.

The E-optimal design result shows that the state variable T
has the largest weight (more than 0.9) and it should be
selected as the most valuable observation. However, the D-
optimal design reveals that the state variable BD is the most
important measurement target and FFA which has a weight
of 0.33 can also contribute considerable data information,
while the state variable 7 is not important at all. To analyze
these conflicting results, parameter estimation errors are
compared by using different measurement sets. Fig. 4
compares the confidence intervals (CI) using the parameter
pair (k,, k;) with different set of observations. The largest

dash-dot ellipsoid corresponds to the situation when only 7' is
used as the measurement signal. The solid curve corresponds
to the results by using BD as the only measurement variable.
The smallest dashed ellipsoid is from the estimation when all
the 5 measurements are used. It can be observed that using
BD as the observation leads to a smaller parameter
estimation error compared with simply using 7. Also, the
results from the D-optimal design are very close to that
including all the five measurable state variables. From
numerical viewpoint, the E-optimal design only focuses on
the improvement of the most uncertain parameter, therefore
the generated measurement data from E-optimal design may
lack information for other parameters contained in FIM.
Therefore, the D-optimal design is regarded as the most
suitable for this system.



Table 1 Weighting coefficients for measurable states from
measurement set selection

T D M BD FFA
E- | 0.902 0.087 0.009 0.001 | 6.23e-4
D- | 1.539e-7 | 1.705e-7 | 1.842e-6 | 0.671 | 0.329
x10°
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Fig. 4. CI ellipsoids for (ks, kg) with different observations

4.4 Design of Optimal Sampling Strategy

D-optimal design is employed to determine the optimal
sampling strategy, i.e., at which time points to collect the
measurement data. Without loss of generality, it is assumed
that the measurement errors are time independent and are
equal for each observation. The design problem can be
formulated as the following optimization problem:

max det(ﬁ:S(t, ) S(t ))

i=1

s.t. t—t,>5 (10)
120

t, <1500

N=28

The minimum sampling interval is set to be 5 minutes. The
total number of (time) sampling points is set to be 28 which
was used in the lab experiments (see Table 2). By using
Powell’s quadratically convergent algorithm, the optimal
sampling points are calculated as given in Table 2.

Table 2 OED and Experience sampling strategies

Measurement time points (unit: minutes)
96, 101, 106, 111, 116, 121, 126, 131,
136, 660, 665, 670, 675, 680, 685, 690,
695, 700, 705, 1460, 1465, 1470, 1475,
1480, 1485, 1490, 1495, 1500

0, 15, 30, 45, 60, 120, 180, 240, 300,
360, 420, 480, 540, 600, 660, 720, 780,
840, 900, 960, 1020, 1080, 1140, 1200,
1260, 1320, 1380, 1440

It is found that the optimal sampling strategy favours those
time points where the sensitivities are relatively high for the
designed parameters. The CI ellipsoids for ( kg, k, ) are

D-Optimal
sampling

Experimental
sampling

shown in Fig. 5. It is not surprising that the designed sampling

points lead to smaller CIs which indicate possibly more
accurate parameter estimation using the designed sampling
schedule.

=== equally-spaced sampling
— ptimal sampling

Fig. 5. CI ellipsoids for (ks, kg) under optimal and
experience-based sampling strategies

6. CONCLUSIONS

In this work, we have developed OED methods for
measurement set selection and sampling scheduling,
respectively. Using a kinetic model developed for a lab-scale
enzyme-catalysed biodiesel reaction process, the two OED
methods are implemented following the real experimental
conditions. Through the design of measurement set, it is
suggested that the state variable BD may provide the most
informative experimental data than other measurable
variables for those important parameters to be estimated. The
information available by observing only BD is close to that
of using all 5 measurable output variables. Therefore, it can
be considered as the major observation for modelling. It is
also observed that using different criteria in OED could give
different, in fact conflicting, results for the design of
measurement set. Therefore, carefully choosing design
criteria is important. There are no widely accepted rules for
how to choose OED criteria. Trial-and-error effort is a
common practice. The optimal sampling design is achieved
by using Powell’s method which leads to significant
improvement for parameter estimation. The result shows that
measurement points chosen at regions with higher parameter
sensitivities can generate more informative data.

The next work is to validate and test the OED results in the
experimental system. The two experimental designs were
implemented separately in this work. We firstly determine
the measurement set; then take the designed measurement set
into OED of time sampling strategy. Although this seems to
be a reasonable sequence, the OED results could be different
if the sampling strategy is designed first. A better solution is
to integrate multiple experimental design factors into one
optimization scheme. This will be a challenging task for
problem formulation and optimization. For this enzymatic
biodiesel reaction system, design of the time varying input
(methanol) is also an important aspect which has attracted
lots of attention by experimenters and control engineers.
Design of the optimal feeding strategy in order to reduce



parameter uncertainties as well as increase the production
rate is undergoing research.
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APPENDIX

Table A. 1 Initial input values and feeding rate of methanol

Initial conditions (unit: mol/L)

T 0.9536 W 23854 EM 0

D 0.0195 CH 05850 ECH 0

M 0.0014 E 0 Ef 9.7165e-6
B le-4 EX 0 Vp 0.0661
FFA 0.0224 ET O \" 1.5383

G le-6 ED 0

Methanol feed Initial dose Water Enzyme
rate [eq./h] methanol [eq.] [wt.% oil]  [wt.% oil]
0.185 first 2hrs.

0.06 thereafter W : e




