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Abstract: Two optimal experimental design (OED) problems for an enzymatic biodiesel production 

system are investigated to improve parameter estimation quality. An orthogonalized sensitivity analysis 

method is firstly implemented to select important parameters. Next the design of measurement set and 

sampling strategy is developed in the form of two convex optimization problems which are solved by the 

interior-point algorithm and the Powell’s method, respectively. Simulation results demonstrate the 

function of OED in reducing parameter estimation errors. The biodiesel concentration is identified to be 

the most valuable state variable observation, and the parameter estimation accuracy can be improved 

through optimal sampling design. 

Keywords: optimal experimental design (OED), enzymatic biodiesel reaction system, measurement set 
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1. INTRODUCTION 

The purpose of optimal experimental design (OED) is to 

devise necessary dynamic experiments in such a way that 

model parameters can be estimated from the resulting 

experimental data with the best possible statistical quality. 

There is a growing interest in OED in recent years 

particularly in biological and biochemical systems where 

performing experiments to obtain rich data are usually time-

consuming and cost expensive. Informative measurement 

data can be generated for parameter identification and model 

calibration through the model-based experimental design. 

Also experiment efforts can be reduced since the modelling 

efficiency is improved. Various OED methods have been 

developed for nonlinear dynamic systems and many have 

been successfully applied to a wide range of systems (Hagen 

et al., 2013; Martinez et al., 2009; Atkinson and Bogacka, 

2002). Useful reviews can be found in (Franceschini and 

Macchietto, 2008; Chaloner and Verdinelli, 1995; Maria, 

2004; Kreutz and Timmer, 2009), to name a few. 

In general, experimental design for parameter estimation can 

be divided into two categories according to design factors. 

One is on design of manipulations such as initial conditions, 

input variables, length of perturbation time, etc., which are 

factors that drive/excite the dynamic processes (Balsa-Canto 

et al., 2007; Faller et al., 2003; Asprey and Macchietto, 2002; 

Banga et al., 2002). The other category is on design of 

measurements which is to answer the question of what, where 

and when to measure in order to collect the most ‘useful’ data. 

Two challenging problems in the latter category are sampling 

(time) scheduling and selection of measured variables. In 

chemical and biochemical processes, uniformed sampling in 

time domain is widely accepted which is convenient for 

operation but may not be the best solution for parameter 

estimation. Through design of optimal sampling points, the 

parameter estimation accuracy can be improved and the 

number of samples to be drawn is reduced (Bauer et al., 2000; 

Kutalik et al., 2004; Pagendam and Pollett, 2013; Asyali, 

2010). On the other hand, the variables to be measured are 

normally determined following expert knowledge and are 

mainly selected from the control and monitoring point of 

view rather than modelling. Earlier work on optimal design 

of measurement set selection can be found in (He et al., 2010; 

Yue et al., 2008), where the design tasks were formulated as 

constrained nonlinear optimization problems. 

In this work, we aim to tackle the design problems of non-

uniform sampling scheduling and selection of measurement 

variables for a biodiesel production system. In the design of 

optimal sampling strategy, multiple measurement variables 

will be considered. The employed model was developed for 

an enzyme-catalyzed biodiesel process and tested on lab-

scaled fed-batch experiments for the transesterification of 

rapeseed oil with methanol using Callera™ Trans L (Price et 

al., 2013). In this reaction scheme, there are a lot of unknown 

kinetic parameters need to be estimated from experimental 

data, where accurate estimation is highly dependent on the 

experimental data. A systematic experimental design is 

therefore crucial for assuring modelling quality.  

The rest of the paper is organized as follows. Preliminaries 

on relevant methodologies are briefed in Section 2. The OED 

techniques on sampling time design and measurement set 

selection are presented in Section 3. In Section 4, OED for 

the enzymatic biodiesel production system is implemented. 

Finally, conclusions and discussions are made in Section 5.  

2. PRELIMINARIES 

A general ordinary differential equations (ODEs) model is 

considered for nonlinear dynamic systems: 
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where  f   is the set of state transition functions which is 

assumed to be continuous and first-order derivative. nX  

denotes the vector of state variables with initial condition 
0X , 

and n  is the number of state variables. mし  is the vector 

of model parameters with m  being the number of parameters. 
ru  represents the vector of input variables, r  is the 

number of input variables. pY  is the measurement 

output vector with p  being the number of measurement 

variables, and  h   is the measurement function, normally 

used for selecting which variables to be measured. つ  is the 

measurement error assumed to be independently and 

identically distributed (i.i.d.), zero-mean Gaussian noise. In 

practice, unknown parameters can be estimated by comparing 

the output values from the model prediction with the 

measurement data. The commonly used least-squares 

algorithm can be employed to estimate those practically 

identifiable parameters through minimizing the sum of the 

squared residuals. 

Most OED techniques are developed based on measures of 

the Fisher information matrix (FIM) which quantifies 

information content of parameter estimation. A formulated 

scalar function of FIM contains experimental design factors, 

and the design process is to optimize those design factors so 

that parameter estimation errors are minimized. The local 

(parametric) sensitivity analysis (LSA) plays a major part in 

formulating FIM, thus is crucial for performing experimental 

design. LSA is also used to identify key parameters that 

strongly affect the system output. The local sensitivity is 

defined as the partial derivative of the output states with 

respect to system parameters. Denoting T

1 2[ , , , ]nx x xX  

and T

1 2[ , , ]mk k kし , the absolute sensitivity matrix is 

 ijs   S X し with 
ij i js x k    for 1,2, ,i n  and 

1,2, ,j m . This sensitivity matrix can be easily obtained 

by partial differentiation of (1) with respect to し  which 

results in a set of sensitivity differential equations: 

  0 0, t  S JS F S S   (3) 

where f  J X  and f  F し  are the Jacobian matrix 

and the parametric Jacobian matrix, respectively. For 

biochemical systems, kinetic parameters often have different 

orders of magnitude. In order to compare their influence on 

the system output directly, relative sensitivities are used 

instead, i.e.,    .ij i j j is x k k x       

For high-dimensional systems, normally not all the unknown 

parameters are identifiable due to: (1) small influence of 

some parameters on the measured system output; (2) high 

correlations between parameter pairs. It is therefore necessary 

to perform identifiability analysis. This in turn will reduce the 

number of parameters to be estimated. Several methods have 

been developed for parameter identifiability analysis and 

parameter reduction of complex system models such as a 

hybrid technique that integrates conservation analysis, LSA, 

principal component analysis and flux analysis together (Jia 

and Yue, 2008); a method using collinearity index (Brun et 

al., 2001); a relative gain array method (Sandink et al., 2001); 

a method based on Hanken singular value (Sun and Hahn, 

2006), etc. In this work, the orthogonalization-based 

technique (Yao et al., 2003) is employed for choosing 

parameters that are both sensitive and identifiable. This 

method was applied to work on a signal transduction pathway 

model where both the influence of parameters to the system 

output and the cross-correlation between parameters were 

examined (Yue et al., 2006). 

3. OPTIMAL EXPERIMENTAL DESIGN 

3.1  Basics of Optimal Experimental Design 

OED is aimed at devising dynamic experiments by 

optimizing design factors こ  which include initial conditions 

 0tX , input variables u , sampling schedule
spt , valuable 

measured response  spy t , etc. so that model parameters can 

be estimated most precisely.  

    0[ , t , , , ]sp spt t Tこ u X y   (4) 

T is the experimental duration. The FIM which combines 

parameter influence with measurement noise is represented as 

a nonlinear function of local sensitivity matrix. 

      T 1, , ,FIM し こ S し こ Q S し こ   (5) 

Q is a weighting matrix which is usually chosen to be the 

measurement error covariance matrix. When the model is 

linear in parameters, and the measurement noise is additive 

i.i.d. Gaussian white noise, the inverse of FIM is 

approximately equal to the lower bound of the parameter 

estimation error covariance matrix (Cramer-Rao bound). The 

OED problem can therefore be cast as minimization of 

parameter covariance matrix measure or maximization of 

measures of FIM, i.e.   

   * argmax ,


 
こ っ

こ FIM し こ   (6) 

where っ  is the admissible space of design parameters.     

is a function used to scalarize the information content. The 

most commonly used ‘alphabet’ optimization criteria are A-

optimal, D-optimal, E-optimal, and modified E-optimal 

design. There are also other scalar functions developed for 

OED based on FIM which can been seen in (Ljung, 1998) 

and other papers. All these criteria have advantages and 

disadvantages and some may be superior to others for certain 

systems. By using these design criteria, the OED problem can 

be transferred into a convex optimization problem when the 

FIM is an appropriate function of the design parameters. 

3.2  Design of Measurement Set Selection 



 

 

     

 

The purpose of measurement set selection is to choose the 

most informative measurable state variables as observations 

to get the best parameter estimation. This will also reduce the 

experiment cost when only relevant variables are measured. 

The measurement set selection design can be represented as 

(He et al., 2010): 
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where 
i  is an integer weight with values of 0 or 1, relating 

to the i-th state variable. The variance of measurement noise, 
2 , is taken as constant and the same for all the noise 

channels therefore has no effect to the optimization design. 

This integer optimization problem can be transferred into a 

continuous optimization problem by relaxing the weighting 

factors to a continuous value within the range of [0, 1]. By 

using different scalar OED criteria, the problem of 

measurement set selection can be written into different 

optimization problems (Boyd and Vandenberghe, 2004). For 

instance, the E-optimal design of the covariance matrix can 

be cast as a semi-definite program (SDP): 
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This can be easily solved by optimization tools such as 

SeDuMi. When using the D-optimal criterion, the design 

problem can be written as a finite dimensional constrained 

linear optimization problem which can be solved by the 

interior-point method.  

3.3  Design of Optimal Sampling Strategy 

The task of optimal sampling design is to find the best 

sampling strategy for the measurement variables that will 

give most informative experimental data for parameter 

estimation. This design can be formulated as an integer 

optimization problem: 
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where  T1 N の  is the weighting vector for available 

measurement points, the number of which is N. 
spN  is the 

number of sampling points to be selected. In this case, 1i   

means the i-th time point is selected, while those sampling 

points with weight value of 0 are not selected. This integer 

optimization problem can be relaxed to a continuous 

optimization problem by applying rounding heuristics to the 

solution (Bauer et al., 2000). However, the optimal solution 

may be affected by the rounding. A more computationally 

efficient procedure, named Powell’s quadratically convergent 

method, is introduced in (Kutalik et al., 2004). In the latter 

algorithm, an initial sampling strategy is given to start with 

(normally an equally-spaced sampling). In each iteration, one 

sampling point in the selected sequence is replaced by a 

sampling point from the available measurement points which 

gives the best result. The iteration process will continue until 

the optimal solution is obtained.  

4. EXPERIMENTAL DESIGN OF AN ENZYMATIC 

BIODIESEL PRODUCTION SYSTEM  

4.1  Model Description 

The kinetic model used in this work was established to 

describe an enzymatic transesterification reaction of rapeseed 

oil with methanol in a biphasic oil–water system using a 

liquid lipase, Callera™ Trans L, based on several 

assumptions (Price et al., 2014). In this reaction scheme, the 

free enzyme (
bulkE ) contained in the polar phase is absorbed 

at the water oil interface (
fA ) and forms the penetrated 

enzyme ( E ), which further reacts with triglyceride ( T ), 

diglyceride ( D ) and monoglyceride ( M ) to form enzyme 

substrate complexes ET , ED  and EM . Then these enzyme 

substrates can be decomposed into the acyl enzyme complex 

and D , M  and glycerol ( G ), respectively. The acyl enzyme 

complex can then react with water (W ) or methanol ( CH ) 

and produce the free fatty acid ( FFA ) and biodiesel ( BD ). 

Additionally, the competitive methanol inhibition is also 

considered in this reaction process in which CH reacts with 

E  to form ECH . From these kinetic reactions a set of 

ordinary differential equations (ODEs) can be formulated 

following the mass-balance principle (Price et al., 2014).  

4.2  Sensitivity Analysis and Parameter Identifiability 

In this fed-batch process, the experiment length is set to be 25 

hours and sampling takes place every 15 minutes in the first 

hour and then once each hour. The unit for all reactant 

concentrations is in mol/L. The initial condition and the 

feeding rates are provided in Error! Reference source not 

found. in the Appendix. Fig. 1 illustrates the concentration 

time profiles of the five measurable state variables where the 

red points represent the real experimental values and the blue 

lines describe the simulated concentration trajectories. It can 

be seen that the model predicts well the trends of the 

experimental data except for FFA  which shows a clear 

deviation. This over prediction of FFA  may be due to 



 

 

     

 

processes that are not taken into account (such as the change 

of viscosity of the reaction media) or some statistical 

measurement errors.  

In order to compare the effects of different kinetic parameters 

on the system output variables, relative local sensitivities and 

their 2-norms are first calculated. A bar chart is shown in Fig. 

2 to demonstrate the overall influence of each parameter to 

all the 5 measurable states, from which it can be observed 

that 
5k , 

8k  and 
8k  are the most sensitive parameters.  

 

Fig. 1. Time profiles for 5 measurable state variables 

 

Fig. 2. Overall parameter ranking via LSA 

LSA suggests that not all the parameters are influential to the 

measurable outputs and some of the parameters may be non-

identifiable. To further examine correlations between 

parameters, the collinearity index was calculated to determine 

estimable parameters for this system (Price et al., 2014). It 

was found that the maximum number of parameters that can 

be estimated is 10, but it was still difficult to estimate all the 

10 parameters using the experimental data. In this work, 

based on the LSA results, the orthogonalization-based 

method (Yao et al., 2003) is applied to examine parameter 

correlations and to rank parameters so as to select the set of 

identifiable parameters. This alternative method gives 

consistent results regarding the 10 estimable parameters 

using the collinearity index. The 3 most important parameters 

identified in this analysis are 
5k , 

8k  and 
6k  (shown in Fig. 3). 

Compared to the LSA ranking results (Fig. 2), both 
5k  and 

8k  are always regarded as the most important parameters. 

The influence of 
8k  is reduced in the latter group of analysis 

mainly because it is partially correlated with 
8k .  

 

Fig. 3. Parameter ranking via orthogonalization 

4.3  Design of Measurement Set 

Taking the three most important parameters, 
5k , 

8k  and 
6k , 

into the parameter estimation scheme, OED has been applied 

to determine the most valuable observation from the five 

measurable state variables. The optimal weights calculated 

from E- and D-optimal design are listed in Table 1. 

The E-optimal design result shows that the state variable T  

has the largest weight (more than 0.9) and it should be 

selected as the most valuable observation. However, the D-

optimal design reveals that the state variable BD  is the most 

important measurement target and FFA  which has a weight 

of 0.33 can also contribute considerable data information, 

while the state variable T  is not important at all. To analyze 

these conflicting results, parameter estimation errors are 

compared by using different measurement sets. Fig. 4 

compares the confidence intervals (CI) using the parameter 

pair (
5k , 

8k ) with different set of observations. The largest 

dash-dot ellipsoid corresponds to the situation when only T is 

used as the measurement signal. The solid curve corresponds 

to the results by using BD as the only measurement variable. 

The smallest dashed ellipsoid is from the estimation when all 

the 5 measurements are used. It can be observed that using 

BD  as the observation leads to a smaller parameter 

estimation error compared with simply using T. Also, the 

results from the D-optimal design are very close to that 

including all the five measurable state variables. From 

numerical viewpoint, the E-optimal design only focuses on 

the improvement of the most uncertain parameter, therefore 

the generated measurement data from E-optimal design may 

lack information for other parameters contained in FIM. 

Therefore, the D-optimal design is regarded as the most 

suitable for this system. 



 

 

     

 

Table 1 Weighting coefficients for measurable states from 

measurement set selection 

 T D M BD FFA 

E- 0.902 0.087 0.009 0.001 6.23e-4 

D- 1.539e-7 1.705e-7 1.842e-6 0.671 0.329 

 

Fig. 4. CI ellipsoids for (k5, k8) with different observations 

4.4  Design of Optimal Sampling Strategy 

D-optimal design is employed to determine the optimal 

sampling strategy, i.e., at which time points to collect the 

measurement data. Without loss of generality, it is assumed 

that the measurement errors are time independent and are 

equal for each observation. The design problem can be 

formulated as the following optimization problem: 
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The minimum sampling interval is set to be 5 minutes. The 

total number of (time) sampling points is set to be 28 which 

was used in the lab experiments (see Table 2). By using 

Powell’s quadratically convergent algorithm, the optimal 

sampling points are calculated as given in Table 2.  

Table 2 OED and Experience sampling strategies 

 Measurement time points (unit: minutes) 

D-Optimal 

sampling 

96, 101, 106, 111, 116, 121, 126, 131, 

136, 660, 665, 670, 675, 680, 685, 690,  

695, 700, 705, 1460, 1465, 1470, 1475, 

1480, 1485, 1490, 1495, 1500 

Experimental 

sampling 

0, 15, 30, 45, 60, 120, 180, 240, 300, 

360, 420, 480, 540, 600, 660, 720, 780, 

840, 900, 960, 1020, 1080, 1140, 1200, 

1260, 1320, 1380, 1440 

It is found that the optimal sampling strategy favours those 

time points where the sensitivities are relatively high for the 

designed parameters. The CI ellipsoids for (
5k , 

8k ) are 

shown in Fig. 5. It is not surprising that the designed sampling 

points lead to smaller CIs which indicate possibly more 

accurate parameter estimation using the designed sampling 

schedule.  

 

Fig. 5. CI ellipsoids for (k5, k8) under optimal and 

experience-based sampling strategies 

6. CONCLUSIONS 

In this work, we have developed OED methods for 

measurement set selection and sampling scheduling, 

respectively. Using a kinetic model developed for a lab-scale 

enzyme-catalysed biodiesel reaction process, the two OED 

methods are implemented following the real experimental 

conditions. Through the design of measurement set, it is 

suggested that the state variable BD  may provide the most 

informative experimental data than other measurable 

variables for those important parameters to be estimated. The 

information available by observing only BD  is close to that 

of using all 5 measurable output variables. Therefore, it can 

be considered as the major observation for modelling. It is 

also observed that using different criteria in OED could give 

different, in fact conflicting, results for the design of 

measurement set. Therefore, carefully choosing design 

criteria is important. There are no widely accepted rules for 

how to choose OED criteria. Trial-and-error effort is a 

common practice. The optimal sampling design is achieved 

by using Powell’s method which leads to significant 

improvement for parameter estimation. The result shows that 

measurement points chosen at regions with higher parameter 

sensitivities can generate more informative data.  

The next work is to validate and test the OED results in the 

experimental system. The two experimental designs were 

implemented separately in this work. We firstly determine 

the measurement set; then take the designed measurement set 

into OED of time sampling strategy. Although this seems to 

be a reasonable sequence, the OED results could be different 

if the sampling strategy is designed first. A better solution is 

to integrate multiple experimental design factors into one 

optimization scheme. This will be a challenging task for 

problem formulation and optimization. For this enzymatic 

biodiesel reaction system, design of the time varying input 

(methanol) is also an important aspect which has attracted 

lots of attention by experimenters and control engineers. 

Design of the optimal feeding strategy in order to reduce 



 

 

     

 

parameter uncertainties as well as increase the production 

rate is undergoing research. 
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APPENDIX 

Table A. 1 Initial input values and feeding rate of methanol 

Initial conditions (unit: mol/L)   

T 0.9536 W 2.3854 EM 0 

D 0.0195 CH 0.5850 ECH 0 

M 0.0014 E 0 Ef 9.7165e-6 

B 1e-4 EX 0 Vp 0.0661 

FFA 0.0224 ET 0 V 1.5383 

G 1e-6 ED 0   

Methanol feed 

rate [eq./h] 

Initial dose 

methanol [eq.] 

Water   

[wt.% oil] 

Enzyme 

[wt.% oil] 

0.185 first 2hrs. 

0.06 thereafter 
0.2 5 0.5 

 


