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 This paper provides a fully analytical method to describe a satellite constellation reconfiguration manoeuvre. By 

making use of low-thrust propulsion and exploiting the Earth’s natural perturbing forces it is possible to analytically 

describe the reconfiguration of a constellation, achieving a desired separation of both Right Ascension of Ascending 

Node (RAAN) and Argument of Latitude between satellites. An inherent trade-off exists between the time taken for 

a manoeuvre and the required ǻV, however the analytical solution presented here allows for a rapid visualisation of 

the trade-space and determination of the ideal transfer trajectory for a given mission. The general method presented 

can be applied across a range of scenarios, including constellation deployment and repurposing. The results show 

that for a scenario with an initial orbit semi-major axis of 6878.14km, and a desired final semi-major axis of 

6778.14km it is possible to achieve a separation of 180° argument of latitude between a manoeuvring and a non-

manoeuvring reference satellite in approximately 68 hours with a ǻV of 200m/s. To achieve the maximum possible 

RAAN separation of 90° with a ǻV of 200m/s requires a much longer time of over 218 days. Using two 

manoeuvring satellites with the same total manoeuvre ǻV was found to be more efficient only for short manoeuvre  

times. This is quantified and for the case considered it is found that using a 2-satellite manoeuvre is advantageous 

when changing the argument of latitude and when changing the RAAN <10° approximately. The ability to identify 

this turning point clearly is a distinct advantage of the analytical solution presented. 

 

  

I. INTRODUCTION 

Satellite constellations, whether for Earth 

observation or for telecommunications, are 

traditionally used to achieve global coverage of the 

Earth. This requires that a large number of satellites 

be distributed into, and within, a number of orbit 

planes to allow for continuous or regular observation 

of selected ground targets. Current methods for 

deploying constellations vary but generally consist of 

a number of satellites being launched at once into the 

same orbital plane and then being distributed within 

that plane by either the launcher upper-stage or the 

satellite’s own on-board propulsion system [1]. This 

requires the use of a dedicated launch to populate 

each orbit plane – a costly method which rapidly 

reduces the value of constellations with more than a 

few orbital planes and makes launching a 

constellation of low-cost small satellites essentially 

impossible [2]. 

 An alternative deployment option, as 

demonstrated by the FORMOSAT-3/COSMIC 

mission in 2006 [3, 4], is to launch multiple satellites 

into the same plane at the required inclination, and 

then later distribute them into the required planes. To 

facilitate this plane change manoeuvre each satellite 

would need to possess an on board propulsion system 

and sufficient propellant which would increase the 

system mass. However, by taking advantage of the 

Earth’s natural J2 effect, the perturbing force 

experienced by a spacecraft due the oblateness of the 

central body, the propellant cost required to change 

the Right Ascension of the Ascending Node (RAAN) 

can be reduced at the expense of a longer manoeuvre 

time. A similar technique can be used to distribute the 

satellites within their final orbit plane, allowing for 

the complete deployment of a large constellation with 

only a single launch. 

Reconfiguring and repurposing existing 

constellations can also be carried out using a similar 

method, allowing constellations to respond to real-

time market demands and significantly increase their 

commercial potential [5]. 

To date, the problem of manoeuvring satellite 

constellations has primarily been dealt with 

numerically [6, 7]. A semi-analytical method has 

been defined to analyse the deployment of a 

constellation of small satellites [8], however this 

requires full knowledge of the mission and 

constellation parameters and must be iterated to find 

an appropriate solution. 

In this paper an analytical solution to the problem 

is presented which allows for a complete exploration 

of the solution space, without complete knowledge of 

the mission parameters. This allows for the mission 

trade-offs to be rapidly visualised and the most 

appropriate constellation deployment strategy 

selected to fulfil the mission requirements. 

mailto:ciara.mcgrath@strath.ac.uk
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II. METHOD 

Two different manoeuvres are considered for the 

deployment of a satellite constellation. One is to 

change the position of a satellite within the orbit 

plane, and the other is to change the RAAN of the 

orbit plane itself. These manoeuvres are considered 

individually in the following sections. 

 

II.I. Argument of Latitude Separation 

The position of a satellite within an orbit can be 

described by the true anomaly or by the argument of 

latitude, which is a sum of the true anomaly and the 

argument of perigee. The perturbed rate of change of 

true anomaly  is given in the Gauss version of the 

Lagrange equations by 

 

 [1] 

 

where  is the semi-major axis,  is the 

eccentricity,  is time,  is the mean motion,  is the 

radius of the orbit,  is the perturbing acceleration 

in the radial direction, and  is the perturbing 

acceleration acting in the direction of satellite motion 

[9].    

Assuming that all manoeuvres are to be carried 

out using low-thrust propulsion, it is acceptable to 

assume that the satellite remains in a circular orbit 

throughout the manoeuvre ( , )  and that 

all applied thrust is in-plane (  = 0). In this case, 

equation 1 is undefined and instead the unperturbed 

rate of change of true anomaly is applied. As the 

argument of perigee is undefined for a circular orbit, 

this gives the rate of change of argument of latitude   

as 

 

.  [2] 

  

From equation 2 it is clear that the rate of change 

of argument of latitude is inversely proportional to the 

semi-major axis, meaning that satellites in a lower 

orbit will experience a higher rate of change of 

argument of latitude compared to those in higher 

orbits, assuming all other orbital parameters are 

constant. Thus, by raising or lowering the altitude of a 

satellite it is possible to utilise these effects to create a 

separation in argument of latitude between two 

satellites. 

It is of note that the effect of drag is not 

considered in this investigation as it is assumed to be 

negligible over the manoeuvre times considered. 

 

II.I.I. Governing Equations 

For a non-manoeuvring satellite the change in 

argument of latitude is simply given by 

 

  [3]  

 

assuming that the semi-major axis remains constant 

throughout, where a subscript of 0 denotes the value 

at the beginning of the manoeuvre [9]. 

To describe the motion of the manoeuvring 

satellite the Gauss version of the Lagrange planetary 

equations are manipulated. With the assumption that 

the applied thrust and spacecraft mass remain 

constant ( ), this gives the change in 

semi-major axis over a given thrust period as 

 

 [4] 

 

where a subscript 1 indicates the value at the end of 

the manoeuvre period [10]. The change in argument 

of latitude as a function of the change in semi-major 

axis is given as 

 

. [5] 

 

Any coasting phase in which there is no thrusting 

will be governed by equation 3. 

In order to describe these results in terms of ǻV, 

the change in velocity, 

  

      [6] 

 

is used where A is the applied thrust in m/s [11]. Note 

that a positive A value corresponds to an increase in 

semi-major axis, while a negative A value 

corresponds to a reduction in semi-major axis. 

 

II.I.II. 1-Satellite Manoeuvre  

In the case of the 1-satellite manoeuvre, one 

satellite dubbed the reference satellite performs no 

manoeuvres while the other manoeuvring satellite 

varies its altitude to achieve the required argument of 

latitude separation between them. An initial time 

 and initial argument of latitude  is 

assumed for simplicity. 

While other manoeuvres are possible, this paper 

focusses on the most general case. This is a 3-Phase 

manoeuvre which consists of an initial spiral thrusting 

manoeuver to either increase or decrease the semi-

major axis (Phase 1), a coasting phase during which 
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the semi-major axis is constant (Phase 2), and another 

spiral thrusting manoeuver to reach the final desired 

semi-major axis (Phase 3). The reference satellite is 

assumed to begin in the final desired orbit with the 

same argument of latitude as the reference satellite.  

The total separation in argument of latitude 

between the manoeuvring satellite and the reference 

satellite over the entire manoeuvre is described by  

  

 [7] 

 

where a subscript 3 indicates the value at the end 

of the third phase and a subscript t indicates the total 

value required for the full 3-Phase manoeuvre. Here, 

 

  [8] 

 

and 

 

  [9] 

 

where a ‘+’ corresponds to the case where the satellite 
decreases its semi-major axis in Phase 1 and increases 

its semi-major axis in Phase 3, and a ‘-‘ corresponds 
to the case where the satellite increases its semi-major 

axis in Phase 1 and decreases its semi-major axis in 

Phase 3. 

 

II.I.III. 2-Satellite Manoeuvre 

It is also possible to describe the problem by 

considering two manoeuvrable satellites and no 

reference satellite. In this case one satellite will 

initially decrease its semi-major axis while the other 

increases its semi major axis. The total argument of 

latitude separation achieved is simply the separation 

between the two manoeuvring satellites. 

While it is possible to vary the semi-major axis of 

each satellite by a different amount to optimise the 

manoeuvre, a simple case is considered here in which 

both satellites begin and end at the same final altitude 

making use of equal amounts of ǻV. For this case, the 

total argument of latitude separation can be described 

by  

 

    [10] 

 

where 

 

     [11] 

 

and  

 

. [12] 

 

 

II.II. RAAN Separation 

Separating the satellites’ orbital planes can be 

achieved by utilising the J2 effect, causing the RAAN 

and the argument of perigee of the orbit to drift away 

from their initial values. The rate of change of RAAN 

 is described by 

 

       [13] 

 

where  is the orbit inclination and  is the radius of 

Earth [9]. The rate of change of the argument of 

perigee  is given as 

 

.       [14] 

 

From equation 13 it is clear that the rate of change 

of RAAN is inversely proportional to the square of 

the semi-major axis, meaning that satellites in a lower 

orbit will experience a higher rate of change of 

RAAN compared to those in higher orbits, assuming 

all other orbital parameters are constant. Thus, by 

raising or lowering the altitude of a satellite it is 

possible to utilise these effects to vary the RAAN 

separation between satellites. 

In investigating the effectiveness of this 

technique, it is assumed that all manoeuvres are 

carried out using low-thrust propulsion, and hence 

that all satellites considered remain in circular orbits 

throughout. As such, the rate of change of argument 

of perigee can be ignored. The effect of drag is 

considered negligible for the missions analysed and 

as such is not considered. 
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II.II.I. Governing Equations 

Considering the J2 effect, a non-manoeuvring 

satellite’s change in RAAN over a time t will be 

given by 

 

.  [15] 

 

From the Gauss version of the Lagrange planetary 

equations, with the assumption that the orbit remains 

circular throughout the manoeuvre ( , )  

and that all applied thrust is in-plane, it is possible to 

describe the rate of change of RAAN as a function of 

the semi-major axis where  is the in-plane 

acceleration (with the positive direction being in the 

direction of travel) [9]. Assuming that the inclination 

as well as the applied thrust and spacecraft mass 

remain constant ( , ), this 

gives 

 

 [16] 

 

where, as before, a subscript 0 indicates the value 

at the start of the manoeuvre and a subscript 1 

indicates the value at the end of the thrusting phase. 

The time taken for this manoeuvre is given by 

 

.       [17] 

 

A coast phase in which no thrusting occurs will be 

governed by equation 15. 

To rewrite the equations in terms of ǻV, equation 

6 is used as in the case of the argument of latitude 

separation. 

 

II.II.II. 1-Satellite Manoeuvre  

In the case of the 1-satellite manoeuvre one 

satellite, dubbed the reference satellite, performs no 

manoeuvres while the other manoeuvring satellite 

varies its altitude to achieve the required RAAN 

separation. An initial time  and initial RAAN 

 is assumed for simplicity. 

While other manoeuvres are possible, this paper 

focuses on a general 3-Phase manoeuvre which 

consists of an initial spiral thrusting manoeuver to 

either increase or decrease the semi-major axis (Phase 

1), a coasting phase during which the semi-major axis 

is constant (Phase 2), and another spiral thrusting 

manoeuver to reach the required final semi-major axis 

(Phase 3).  The reference satellite is assumed to begin 

in the final desired orbit with the same RAAN as the 

reference satellite. 

For this 3-Phase manoeuvre, equations 15-17 

reduce to give the total final RAAN separation 

between the manoeuvring satellite and the reference 

satellite as 

 

 [18] 

 

where, as before, 

 

. [19] 

 

A subscript 3 indicates the value at the end of the 

third phase and a subscript t indicates the total value 

required for the full 3-Phase manoeuvre. As in the 

argument of latitude case, a ‘+’ corresponds to the 

case where the satellite decreases its semi-major axis 

in Phase 1 and increases its semi-major axis in Phase 

3, and a ‘-‘ corresponds to the case where the satellite 
increases its semi-major axis in Phase 1 and decreases 

its semi-major axis in Phase 3. 

 

II.II.III. 2-Satellite Manoeuvre  

In the case of the RAAN separation manoeuvre it 

is also possible to describe the problem considering 

two manoeuvrable satellites. In this case one satellite 

will initially decrease its semi-major axis while the 

other will increase its semi major axis. In this case the 

total RAAN separation achieved is the separation 

between the two satellites at the end of the 

manoeuvre. 

Again, while a more general case is possible, here 

a simple 3 Phase manoeuvre is considered in which 

the satellites both begin and end at the same altitude 

and use equal amounts of ǻV. Assuming that the 

satellites have the same thrust magnitude A but 

applied in opposite directions, the total RAAN 

separation can be described by 

  

.[20] 



 
 

IAC-15.C1.9.4         Page 5 of 9 

IV. RESULTS 

Table 1 gives the value of the orbital constants 

used in the evaluation of the following results, 

assuming an Earth orbiting satellite. Table 2 gives the 

assumed acceleration of the propulsion system as well 

as the value used for the initial and final semi-major 

axes.  

 

Parameter Symbol Value Units 

Gravitational 

Parameter 
µ 3.986E14 m

3
/s

2
 

Radius of Earth Re 6.371E3 km 

J2 Parameter J2 1.0827E-3 - 

Table 1: Orbital Constants 

 

Parameter Symbol Value Units 

Propulsion 

acceleration 
A ± 0.001 m/s

2 

Initial semi-

major axis  6878.14 km 

Final semi-

major axis   ± 100 km 

Table 2: Mission Parameters 

 

 

IV.I. Argument of Latitude Separation 

Using the equations defined in Section II, the 

achievable argument of latitude separation for a given 

ǻV and transfer time can be determined analytically. 

 

 

IV.I.I. 1-Satellite Manoeuvre 

For a given initial and a final semi-major axis it is 

possible to calculate the achievable argument of 

latitude separation as a function of the ǻV and the 

manoeuvre time for the 3-Phase manoeuvre described 

in Section II.I. Fig. 1 and Fig. 2 show this up to a 

maximum separation of ±180° for the case in which 

the semi-major axis is lowered in Phase 1 and the 

case in which the semi-major axis is increased in 

Phase 1 respectively.  

In order to reflect only manoeuvres which are 

physically possible, the graphs here are plotted for 

cases in which the total manoeuvre time is greater 

than the time taken for the two thrust phases. In 

addition, the results plotted here are only for cases in 

which the ǻV applied is sufficient to reach the 

required final semi-major axis and also give a positive 

or negative change in argument of latitude as 

required. This is because even if the satellite reaches 

the required final orbit, it may have lagged behind the 

reference satellite over all, when in fact it was 

required to lead, and vice versa. 

These results show that with an initial semi-major 

axis of 6878.14km, and a final semi-major axis of 

6778.14km it is possible to achieve a separation of 

180° argument of latitude in just over 68 hours with a 

ǻV of 200m/s in the case where the semi-major axis 

is decreased in Phase 1. For the case in which the 

manoeuvring satellite increases its semi-major axis in 

Phase 1, a separation of -180° can be achieved with a 

ǻV of 200m/s in just over 69 hours with an initial 

semi-major axis of 6878.14km, and a final semi-

major axis of 6978.14km. 

As demonstrated by the below graphs, there is a 

significant trade-off between the ǻV cost and the time 

taken for the manoeuvre, with a lower ǻV 

necessitating a longer manoeuvre time to achieve the 

same argument of latitude separation. For example, 

with a ǻV of 100m/s the time required to achieve a 

separation of 180° increases to just over 130 hours in 

the decreasing altitude case and just under 130 hours 

in the increasing altitude case. 

 

 

 

 

 
Fig. 1: ǻu for 3-Phase Manoeuvre separating 

argument of latitude, decreasing altitude 

 

 

 

 
Fig. 2: ǻu for 3-Phase Manoeuvre separating 

argument of latitude, increasing altitude 
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IV.I.II. 2-Satellite Manoeuvres 

In the case where a 2-satellite manoeuvre is used 

to separate the argument of latitude, it is assumed that 

both satellites begin and end their manoeuvres at the 

same altitude, with one satellite initially lowering its 

semi-major axis whilst the other raises its semi-major 

axis. In this case the total separation is the sum of the 

separation achieved by each satellite in relation to the 

starting reference point. 

Fig. 3 shows the achievable argument of latitude 

separation for such a manoeuvre as a function of the 

total ǻV (i.e. each satellite requires ǻV/2), and the 

manoeuvre time up to a maximum separation of 180°. 

Fig. 4 shows the same results (blue) plotted against 

the results for a 1-satellite manoeuvre using the same 

ǻV and the same manoeuvre time (green) for a case 
in which the semi-major axis is initially lowered. Fig. 

5 gives the same comparison but for the 1-satellite 

case in which the semi-major axis is initially raised. It 

is clear from Fig. 5 that the 2-satellite manoeuvre will 

always be more efficient than the 1-satellite altitude 

raising manoeuvre. However, Fig. 4 shows that if an 

argument of latitude separation manoeuvre of greater 

than approximately 5000° was required, then a 1-

satellite manoeuvre with a decreasing altitude would 

be most efficient. This is because in the 1-satellite 

manoeuvre there is a greater relative difference in the 

rate of argument of latitude drift between the 

manoeuvring and the non-manoeuvring satellite, than 

there is between the two manoeuvring satellites in the 

2-satellite case. Over a certain time period this higher 

variation in rate of drift overrides the advantages 

offered through the use of two satellites. However, as 

a separation of >360° corresponds to multiple 

revolutions, the concept of a >5000° separation is 

purely theoretical. 

 

 

 

 
Fig. 3: ǻu for 2-satellite manoeuvre, separating 

argument of latitude 

 

 

 
Fig. 4: Comparison of 2-satellite (blue) and 1-satellite 

decreasing altitude (green) manoeuvres, 

separating argument of latitude 

 

 
Fig. 5: Comparison of 2-satellite (blue) and 1-satellite 

increasing altitude (green) manoeuvres, separating 

argument of latitude 

 

 

IV.II. RAAN Separation 

Using the equations defined in Section II, the 

achievable RAAN separation for a given ǻV and 
transfer time can be determined analytically. 

 

IV.II.I. 1-Satellite Manoeuvre 

For a given initial and a final semi-major axis it is 

possible to calculate the achievable RAAN separation 

as a function of the ǻV and the manoeuvre time. Fig. 

6 and Fig. 7 show this up to a maximum RAAN 

separation of ±90° for the case in which the semi-

major axis is lowered in Phase 1 and the case in 

which the semi-major axis is increased in Phase 1 

respectively. 

As in the argument of latitude case, the graphs 

here are plotted for cases in which the total time is 

greater than the time taken for the two thrust phases. 

and in which the ǻV applied is sufficient to reach the 
required final semi-major axis and also give a positive 

or negative change in RAAN as required.  
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Fig. 6: ǻΩ for 3-Phase Manoeuvre separating RAAN, 

decreasing altitude 

 

 

 
Fig. 7: ǻΩ for 3-Phase Manoeuvre separating RAAN, 

increasing altitude 

 

These results show that with an initial semi-major 

axis of 6878.14km, and a final semi-major axis of 

6778.14km it is possible to achieve a separation of -

90° RAAN in 218 days with a ǻV of 200m/s in the 
case where the semi-major axis is decreased in Phase 

1. For the case in which the manoeuvring satellite 

increases its semi-major axis in Phase 1, a separation 

of 90° can be achieved with a ǻV of 200m/s in 249 
days with an initial semi-major axis of 6878.14km, 

and a final semi-major axis of 6978.14km. 

As before, there is a trade-off between the ǻV  

cost and the time taken for the manoeuvre as 

demonstrated in the graphs, with a lower ǻV 

necessitating a longer manoeuvre time to achieve the 

same argument of latitude separation. For example, 

with a ǻV of 150m/s the time required to achieve a 

separation of ±90° increases to almost 336 days in the 

decreasing altitude case and over 375 days in the 

increasing altitude case. 

IV.II.II. 2-Satellite Manoeuvres 

In the case where a 2-satellite manoeuvre is used 

to achieve the RAAN separation, it is assumed that 

both satellites begin and end their manoeuvres at the 

same altitude, with one satellite initially lowering its 

semi-major axis whilst the other raises its semi-major 

axis. Here the total RAAN separation is the sum of 

the separation achieved by each satellite in relation to 

the starting reference point. 

Fig. 8 shows the achievable RAAN separation up 

to a maximum of -90° for the 2-satellite manoeuvre as 

a function of the total ǻV (i.e. each satellite requires 

ǻV/2) and the manoeuvre time. Fig. 9 shows the same 

results (blue) plotted against the results for a 1-

satellite manoeuvre using the same ǻV and the same 
manoeuvre time (green) for a case in which the semi-

major axis is initially lowered. Fig. 10 gives the same 

comparison but for the 1-satellite case in which the 

semi-major axis is initially raised. It is clear from Fig. 

10 that the 2-satellite manoeuvre will always be more 

efficient than the 1-satellite altitude raising 

manoeuvre. However, Fig. 9 shows that when a small 

RAAN separation manoeuvre is required (in this case 

less than approximately 10°) a 2-satellite manoeuvre 

is most efficient, while for RAAN separations larger 

than this a 1-satellite manoeuvre in which the altitude 

is decreased is more effective. This is because in the 

1-satellite manoeuvre there is a greater relative 

difference in the rate of RAAN drift between the 

manoeuvring and the non-manoeuvring satellite, than 

there is between the two manoeuvring satellites in the 

2-satellite case. As in the argument of latitude case, 

this results in a turning point for the RAAN 

separation beyond which the 1-satellite manoeuvre is 

in fact faster than the 2-satellite manoeuvre for the 

same total ǻV. 

 

 

 
Fig. 8: ǻΩ for 2-satellite manoeuvre, separating 

RAAN 
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Fig. 9: Comparison of 2-satellite (blue) and 1-satellite 

decreasing altitude (green) manoeuvres, 

separating RAAN 

 

 

 
Fig. 10: Comparison of 2-satellite (blue) and 1-

satellite increasing altitude (green) manoeuvres, 

separating RAAN 

 

 

IV.III. Combined Argument of Latitude and RAAN 

Separation 

As both the RAAN and the Argument of Latitude 

Separation manoeuvres are performed by varying the 

satellite’s semi-major axis, it is impossible to vary 

one value without affecting the other. To investigate 

this, the resultant RAAN change is calculated for the 

case in which the argument of latitude is changed by 

180°. This is the maximum separation that would 

realistically be required and as such is a worst case.  

The results are shown in Table 3 and demonstrate 

that the RAAN angle drifts by less than 0.5° even 

during the largest possible argument of latitude 

manoeuvre. 

 

 

ǻV 
Total 

time 

Argument of 

latitude separation 

RAAN 

Separation 

200 m/s 68 hrs 180° -0.459° 

Table 3: RAAN separation during maximum 

argument of latitude separation manoeuvre 

 

V. CONCLUSIONS 

It is possible to analytically describe a 3-Phase 

manoeuvre to separate either the RAAN or the 

argument of latitude of two satellites. There is a 

distinct trade-off to be had in both cases between the 

amount of propellant used and the total manoeuvre 

time. 

Separating two satellites by 180° argument of 

latitude will take less than 1 week for a ǻV value of 
50-200m/s when using a 1-satellite manoeuvre. This 

time can be significantly reduced using a 2-satellite 

manoeuver. While the results show that for very large 

argument of latitude separations (in this case >5000°) 

a 1-satellite manoeuvre is faster, this would never be 

required in reality and so for all argument of latitude 

separation manoeuvres a 2-satellite manoeuvre is 

recommended. 

The RAAN separation manoeuvre takes a much 

longer time than the argument of latitude separation, 

with a manoeuvre designed to separate two satellites 

by 90° taking 6-18 months for a ǻV value of 100-

200m/s when using a 1-satellite manoeuvre. For 

smaller manoeuvres (in this case <10°) a 2-satellite 

manoeuvre can offer a reduction in manoeuvre time 

for a given ǻV, however for values above this the 1-

satellite manoeuvre is more efficient. 

Whilst it is impossible to perform either an 

argument of latitude or a RAAN separation 

manoeuvre in isolation from the other, the change in 

RAAN during an argument of latitude manoeuvre 

will be relatively small since the time required to 

change the RAAN is much larger than the time 

required to change the argument of latitude. As such, 

effective deployment of a constellation could be 

achieved by first obtaining the required RAAN 

separation and then adjusting the argument of latitude 

to the required value. 
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