
Strathprints Institutional Repository

Dubouilh, Pierre-Louis and Paul, Greig and Irvine, James (2015)

Performance of WebRTC in the context of a decentralised storage

solution. In: Wireless World Research Forum Meeting 35 (WWRF35),

2015-10-14 - 2015-10-16, Aalborg University, Copenhagen Campus. ,

This version is available at http://strathprints.strath.ac.uk/55039/

Strathprints is designed to allow users to access the research output of the University of

Strathclyde. Unless otherwise explicitly stated on the manuscript, Copyright © and Moral Rights

for the papers on this site are retained by the individual authors and/or other copyright owners.

Please check the manuscript for details of any other licences that may have been applied. You

may not engage in further distribution of the material for any profitmaking activities or any

commercial gain. You may freely distribute both the url (http://strathprints.strath.ac.uk/) and the

content of this paper for research or private study, educational, or not-for-profit purposes without

prior permission or charge.

Any correspondence concerning this service should be sent to Strathprints administrator:

strathprints@strath.ac.uk

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Strathclyde Institutional Repository

https://core.ac.uk/display/42592439?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://strathprints.strath.ac.uk/
mailto:strathprints@strath.ac.uk

Performance of WebRTC in the Context of a

Decentralised Storage Solution

Pierre-Louis Dubouilh

University of Strathclyde

Department of Electronic

& Electrical Engineering

Glasgow, United Kingdom

gfb13141@uni.strath.ac.uk

Greig Paul

University of Strathclyde

Department of Electronic

& Electrical Engineering

Glasgow, United Kingdom

greig.paul@strath.ac.uk

James Irvine

University of Strathclyde

Department of Electronic

& Electrical Engineering

Glasgow, United Kingdom

j.m.irvine@strath.ac.uk

Abstract—Distributed Hash Table-based storage solutions pro-
vide a secure means for the storage and retrieval of data. While
DHTs present interesting features, specifically around their inher-
ently decentralised nature, in contrast to most Internet services,
they also experience a significant reduction in performance when
the latency increases between two peers. The challenge of latency
is a particular concern for mobile users, and those using cellular
connections to the Internet, which typically encounter higher
network latencies than users on fixed-line wired connections.
This paper proposes that the challenge can be partially mitigated
by using the DHT only once, for peer discovery, to coordinate
the initiation of data transfer directly between two peers using
WebRTC. This raises potential for the deployment of such
techniques in the near future, on account of the widespread
availability of WebRTC technology in modern Internet browsers,
both on desktop and mobile platforms.

Keywords—decentralisation, DHT, Kademlia, peer-to-peer,
WebRTC

I. INTRODUCTION

A common technology used in the creation of decentralised
storage and data transmission networks is the Distributed
Hash Table (DHT), one of the first of which was presented
in [1]. A DHT is a logical construct within which data can
be stored across a large number of computers, which are
themselves distributed around the world. To achieve secure
storage of private data within a DHT, without a central point
of failure (such as a server, or other company providing a
storage service), user data must be sent to the DHT in an
encrypted form. This prevents other users from being able
to read the data. Additionally, in order to achieve reliability
of storage, and protect against computers on the DHT going
offline, the encrypted data should be split into smaller chunks,
which are then replicated. This replication of chunks allows
for the recovery of data when some systems on the DHT
are offline or have failed. One of the key characteristics of
a DHT is that, in addition to its ability to store data, it
also efficiently and scalably routes requests for data, while
maintaining reasonably-sized routing tables on each node. This
means that every member of the network need not have direct
knowledge of each other network member, since requests for
any given piece of data can be routed via known nodes.

Our previous work has investigated the real-world perfor-
mance limitations of DHT-based storage and service imple-
mentations [2], [3]. This highlighted the significance of latency

within DHT-based networks, on account of DHT member
nodes being organised based on arbitrary uniformly generated
addresses, rather than based on geographic location. While this
improves the resiliency of a network, since logically-adjacent
nodes are likely to be uniformly distributed around the world
(and thus adjacent nodes are not likely to be lost at one time), it
also means that many of these logically close nodes are likely
to encounter significant latencies between each other.

This paper considers an alternative approach to resolving
these performance challenges, by restricting the use of the
DHT to the discovery of peers, and then carrying out all subse-
quent data transfers directly between sender and recipient using
a technology such as WebRTC, which is designed to allow
for the direct communication of data between web browsers.
This allows for geographical proximity (or rather, network
proximity, measured by latency or another performance metric)
to be used when carrying out data transfers, while ensuring
that the robustness of a geographically distributed hash table
continues to provide resiliency against network disruption,
even on a large scale.

II. THE DISTRIBUTED HASH TABLE

A. Overview

A DHT is fundamentally a decentralised key-value pair
store. Data (the value) is stored at a given address (the
key), and this key is selected based upon the output of a
cryptographic hash function. This prevents collisions within
the hash-space, which would occur if an attempt was made
to store another, different, piece of data at the same address.
It is therefore possible to retrieve an arbitrarily large quantity
of data from a DHT, holding only the knowledge of a single
cryptographic hash output (DHT key).

Data is retrieved from the network by making a request
for the corresponding value of a known key. The DHT client
then carries out recursive lookup operations, querying known
neighbouring nodes which are members of the DHT, enquiring
as to if they know of a route to reach the address of the key.
Since the nodes holding a given value are those closest to the
address of the key, this operation allows a user to retrieve a
given piece of data even when they do not know of a means to
communicate with a node currently holding the data, provided
another member of the network does.

This allows for a highly scalable decentralised network,
where it is not necessary for every member of the network
to know about (or receive and propagate signalling messages
about) every other node. Rather than carrying out flood-based
requests (which would severely impair the network’s ability to
grow), users of a DHT communicate with a small selection
of neighbours. Every member of the DHT has a different set
of neighbours, and nodes are identified by their own address
(within the same hash address-space as data chunks), making
it is possible to evaluate available neighbours’ connectivity, to
locate the desired data.

The DHT implementation used for this work is a variant
of Kademlia [4]. Using a XOR based metric system, this DHT
allows to find peers with a difficulty of O(log(n)). Compared
to other DHT implementations, Kademlia is highly efficient
and scalable, and is commonly used for various large DHT
implementations. For example, Kademlia is at the heart of
BitTorrent’s mainline DHT, meaning it is used on a daily basis
by millions of users throughout the world to discover peers
sharing a given set of files.

B. DHT Limitations

While DHTs can be very flexible, they suffer from an
efficiency issue. Various lookups are needed in order to locate
a given piece of data on the network. These frequent requests
require a lightweight means of data exchange between the
peers, in order for them to be performed quickly. For this
reason, lightweight UDP datagram packets are typically pre-
ferred over regular TCP links (which have greater overhead
and setup time). While UDP packets allow for rapid, low-
overhead lookup requests and responses, actual data packets
have a very constrained payload - the maximum theoretical
size for a datagram packet is 65KB, although as discussed
in [2] this is not typically achieved. In real deployments, UDP
packets of under 8KB are preferred in order to prevent the loss
of packets — many networks are not designed to handle larger
UDP packets (which themselves are not widely used).

While the use of a DHT presents significant benefits for
decentralisation and scalability of services, its performance
is highly dependent on the average latency between a node
and the nodes it is required to communicate with, when
locating the required required data [2]. As such, we found
when a user’s network latency is significant, the actual data
throughput significantly decreases when the latency increases.
This issue hinders the use of such a technology in real-world
applications, as the latency would naturally fluctuate between
the various peers of the network, causing poor performance, as
we identified in our previous work. Specifically, this presents a
challenge for mobile users, whose connections may encounter
higher (and more variable) latencies than users with fixed-line
connections. Nonetheless, the performance impact of inter-
node latency was still visible when carrying out experiments
between servers, each with gigabit connectivity, that were
geographically distributed throughout the world. Since chunks
may be uniformly located around the world, it is therefore
necessary to carry out worldwide searches for the chunk.

This results in significant query latency, since the requests
to locate the chunk will require attempts to be made to
distant (geographically) nodes, with high latencies. This poses

a limitation on the chunk lookup, and therefore blocks access
to the file until it is located. If retrieval of a given piece of
data depends on communicating with high-latency nodes, as
a DHT typically entails, this poses a significant delay on the
retrieval of each chunk. In scenarios (such as storage systems
like MaidSafe [5]) where data is encrypted using chain-mode
ciphers (such as the AES cipher in used in CBC mode),
it is necessary for previous chunks to be retrieved prior to
decryption of the next chunk. This means that access to a file
is constrained by the access performance of the slowest chunk
to be retrieved.

III. CHANNELLING DIRECTLY

The solution this paper proposes is to use the DHT
to establish a direct connection between the various peers,
where peers are prioritised based on their relative latencies.
This direct connection can be established following different
various protocols. For the purpose of this paper, we used the
Web RealTime Communication API (WebRTC), as a mean to
exchange data directly between the peers.

WebRTC [6], is an API defined by the W3C, with the
aim of extending the capacities of modern web-browsers.
This recent technology created a means for direct browser-to-
browser communications, allowing various applications from
in-browser video chat, to peer-to-peer file sharing services. The
WebRTC protocol handles and works around NAT and other
connectivity challenges typically faced when attempting to
directly connect to other users directly. Significantly, WebRTC
is available in modern web browsers, and is itself standardised,
and allows for the potential use of decentralised services
through an interface which users are already familiar with —
the web browser.

WebRTC presents various advantages compared to usual
peer-to-peer protocols. First of all, the availability is techni-
cally very broad, as a simple updated web-browser is required
to connect to the network. This reduces the barrier-to-entry of
using a decentralised network, and makes it possible for other
web-based software to potentially access content from the
decentralised network, in a manner in which users are familiar
with. WebRTC has also been developed with a “security by
default” design, so all communications are encrypted. The
protocol also handles the signalling process, so there is no need
for every user to have the directly routable public IP address
to allow data-exchange. Interactive Connectivity Establishment
(ICE) [7] is used, alongside Traversal Using Relays around
NAT (TURN) [8] servers to circumvent NAT limitations that
peers may encounter.

In order to allow for the web browser to facilitate such
networks, it would be necessary to include DHT support in
the browser. This would facilitate the discovery and location
of other peers, and is itself the subject of a standards track
RFC [9] for Resource Location and Discovery. Having the
ability to use these technologies directly within standards-
complaint web browsers would also be of benefit for mobile
users, where application and service developers may build their
software for a single standardised platform, rather than for each
different, incompatible mobile platform.

Fig. 1: Interested Peer Discovery Process

IV. PEER DISCOVERY

Unlike the solution proposed by Maidsafe [5], which stores
encrypted blobs of data within a DHT, we propose that the
data be exchanged directly between the peers. The discovery
of interested peers will still be performed with the DHT, in
order to keep the service decentralised and prevent reliance
upon centrally controlled discovery servers.

The Mainline BitTorrent DHT (Kademlia) has been used
in the scope of this project, as it is very reliable, and already
used by millions of users. With our solution, unlike a purely
DHT-based solution, a DHT-lookup is carried out only once, to
locate peers. Subsequent data transfers may take place outwith
the DHT, with peers selected as having the lowest round-
trip latency. By directly communicating with discovered peers,
rather than locating content within the DHT, there is no need
for latency-sensitive queries (such as identifying files available
in a folder, when the user enters the folder) to be passed around
the DHT.

For instance, an interested peer in the United Kingdom
wishing to store encrypted chunks will locate another party
also wishing to do the same, and they will exchange chunks.
To carry this out, the users initially query the DHT, requesting
information on users sharing the a DHT key of uk (their
approximate geographical location). Users may query several
locations, if they are happy to accept users from a variety
of nearby countries. All users who wish to be a part of this
approximate geographical region may become a member of it.
The DHT returns a list of IP addresses which are holding this
virtual chunk, which indicates peers that would be potentially
interested exchanging data. The client is then able to select one
(or more) of the IP addresses returned, and start an exchange
directly with it, using WebRTC. The process is illustrated in
Figure 1.

V. RELATED WORKS

While this solution can be compared to Bittorent’s
BTSync[10] (and to a certain extend to Bittorent), there are
some fundamental differences. BTSync is a service offered by

Bittorent to synchronise a user’s data between their devices.
BTSync advertises that it is not relying on a “cloud”, as it,
indeed, does not rely on one single point of storage, and
the data is actually spread between a user’s running instances
using the Bittorent protocol. The main difference between the
proposed solution and this protocol is that while the BTSync
DHT is used as a means of discovering peers sharing a given
file on the Bittorent network, our solution aims at using the
DHT to discover peers that are willing to accept and store files
from the current user. Therefore, while BTSync is designed to
retrieve a user’s files from their own devices wherever they
may be, our protocol is designed to find a place to store a
user’s data, and then retrieve it later, even though this will
(most likely) be on someone else’s system. Therefore, while
BTSync finds a device based on it holding a particular file, we
propose that the DHT can instead be used to identify suitable
low-latency peers, which can then be used for future storage
requests.

VI. IMPLEMENTATION AND TESTS RESULTS

In order to measure the efficiency of the presented so-
lution, an implementation has been created in NodeJS. The
chunk self-encryption is identical to that used in the Maidsafe
network [11]. Using the hybrid solution, the peer discovery
process took an average of 15 seconds to find the IP address
of an interested peer. Although, using this solution, the data
transfer itself is much faster; depending on the bandwidth
available, we found it possible to use (and saturate) the entire
connection capacity between two users, once the connection
was established. Significant here is that the DHT is only used
for peer discovery, meaning that while the latency remains
present for this discovery process, data can be directly ex-
changed after this is complete. There are therefore no further
latency-prone DHT requests needed in order to begin exchang-
ing data, or indeed to query this node for data. Additionally,
once peers are discovered, it is possible to re-use them for
future requests (or to gather a small group of such peers, and
then use them without re-locating them on the DHT). A DHT
discovery request would only be needed in the event of a user
wishing to identify new peers if their existing ones were going
offline.

It is important to note, however, that careful consideration
must be given to the selection of peers for resiliency. For
example, a user should not place all their chunks on a single
peer node (or indeed a small group of nodes), as this would
result in the effective re-centralisation of their data on that one
node. Provided that adequate replication takes place, however,
across multiple nodes, users should have similar levels of
protection of data compared to a purely DHT-based solution.

Figure 2 shows the difference in throughput between the
two solutions. While the DHT-only solution provides satisfac-
tory results in a low latency environment (approximately 420
kB/s on a 3.5ms latency connection), the actual throughput is
drastically reduced when encountering higher latency, falling
to 50kB/s on a 100ms latency connection. On the other hand,
while the hybrid solution takes approximately 12 seconds to
fetch the information related to the IP address of the interested
peer, the throughput afterwards is saturating the available
bandwidth.

Fig. 2: Throughtput between the proposed solutions

It is worth noting that due to technical constraints on the
use of the mainline DHT, the measurements performed on the
purely DHT based solution were achieved on a local DHT
composed of only two nodes. These conditions were therefore
favourable for the DHT’s performance (the benchmark for
our proposal), and the resulting throughput is the maximum
throughput achievable using such a solution. The results for
our proposed hybrid solution were obtained using Bittorent’s
Mainline DHT. This public DHT is composed of million of
users, therefore giving less favourable performance. It also
highlights the performance benefits of the proposed hybrid
solution, which we found could achieve a higher throughput
than the best-case situation where the DHT was used directly
for the storage of data.

VII. CONCLUSION

This paper presented our proposal for a solution to the
challenge of DHT-latency when attempting to deploy a decen-
tralised storage network. Our proposal uses WebRTC, which
is widely available in modern web browsers, and which allows
for new and interesting web-based applications to leverage
decentralised storage technologies. Making decentralised ser-
vices available through the web browser is a major benefit for
users of mobile devices, as it offers a platform-agnostic base
upon which these services can run. Rather than use a DHT
for location of chunks and transfer of data, we propose the
use of the DHT solely for the discovery of peers which are
somewhat geographically close (i.e. within the same region), to
reduce latency between peers. We found our approach yielded
significant performance gains over traditional DHT-based data

transfers, as carried out in our previous work. Our proposed
solution was able to avoid the extensive lookup phases required
for each chunk of each file, allowing for lower latency access to
data, and higher throughput in general. Being less dependent to
the intrinsic challenges of network latency when dealing with a
worldwide network allows our proposed solution to offer high
data transfer performance, while still remaining decentralised,
without any single entity able to bring the network down
through their failure.

ACKNOWLEDGEMENT

This work was partly funded by EPSRC Doctoral Training
Grant EP/K503174/1 and MaidSafe.Net.

REFERENCES

[1] I. Stoica, R. Morris, D. Karger, M. F. Kaashoek, and
H. Balakrishnan, “Chord: A scalable peer-to-peer lookup service
for internet applications,” SIGCOMM Comput. Commun. Rev.,
vol. 31, no. 4, pp. 149–160, Aug. 2001. [Online]. Available:
http://doi.acm.org/10.1145/964723.383071

[2] G. Paul, P. Dubouilh, and J. Irvine, “Performance challenges
of decentralised services (in press),” in Vehicular Technology

Conference (VTC Fall), 2015 IEEE 82nd, September 2015, pp.
1–5. [Online]. Available: https://pure.strath.ac.uk/portal/files/43605996/
Paul et al VTC2015 challenges of decentralised services.pdf

[3] G. Paul and J. Irvine, “5G-enabled decentralised services,” in Vehicular

Technology Conference (VTC Spring), 2015 IEEE 81st, May 2015, pp.
1–5.

[4] P. Maymounkov and D. Mazieres, “Kademlia: A peer-to-peer infor-
mation system based on the XOR metric,” in Peer-to-Peer Systems.
Springer, 2002, pp. 53–65.

[5] D. Irvine, J. Irvine, and S. K. Goo, “Sigmoid (x): Secure distributed
network storage,” in WWRF27, 2011. [Online]. Available: https://pure.
strath.ac.uk/portal/files/8395548/wwrf 27 sigmoid system EPS.pdf

[6] A. Bergkvist, D. Burnett, C. Jennings, and A. Narayanan, “WebRTC
1.0: Real-time communication between browsers,” World Wide Web

Consortium WD WD-webrtc-20120821, 2012.

[7] J. Rosenberg, “Interactive connectivity establishment (ICE): A protocol
for network address translator (NAT) traversal for offer/answer proto-
cols,” Tech. Rep., 2010.

[8] S. Perreault and J. Rosenberg, “Traversal using relays around NAT
(TURN) extensions for TCP allocations,” 2010.

[9] C. Jennings, B. Lowekamp, E. Rescorla, S. Baset, and H. Schulzrinne,
“REsource LOcation And Discovery (RELOAD) base protocol,” Inter-
net Requests for Comments, RFC Editor, RFC 6940, January 2014.

[10] “BTSync,” https://www.getsync.com/, 2015, [Online; accessed 10-Sept-
2015].

[11] G. Paul, F. Hutchison, and J. Irvine, “Security of the MaidSafe vault
network,” in WWRF32, 2014. [Online]. Available: https://pure.strath.

ac.uk/portal/files/34898763/Paul etal wwrf32 vault network.pdf

