
Strathprints Institutional Repository

Dong, Changyu (2015) Efficient data intensive secure computation :

fictional or real. In: Security Protocols XXIII. Security and Cryptology,

9379 (1). Springer International Publishing AG, pp. 1-11. ISBN 978-3-319-

26095-2 ,

This version is available at http://strathprints.strath.ac.uk/54925/

Strathprints is designed to allow users to access the research output of the University of

Strathclyde. Unless otherwise explicitly stated on the manuscript, Copyright © and Moral Rights

for the papers on this site are retained by the individual authors and/or other copyright owners.

Please check the manuscript for details of any other licences that may have been applied. You

may not engage in further distribution of the material for any profitmaking activities or any

commercial gain. You may freely distribute both the url (http://strathprints.strath.ac.uk/) and the

content of this paper for research or private study, educational, or not-for-profit purposes without

prior permission or charge.

Any correspondence concerning this service should be sent to Strathprints administrator:

strathprints@strath.ac.uk

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Strathclyde Institutional Repository

https://core.ac.uk/display/42592325?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://strathprints.strath.ac.uk/
mailto:strathprints@strath.ac.uk

Efficient Data Intensive Secure Computation:

Fictional or Real?

Changyu Dong

Department of Computer and Information Sciences,

University of Strathclyde, Glasgow, UK

changyu.dong@strath.ac.uk

Abstract. Secure computation has the potential to completely reshape the cyber-

secruity landscape, but this will happen only if we can make it practical. Despite

significant improvements recently, secure computation is still orders of magni-

tude slower than computation in the clear. Even with the latest technology, run-

ning the killer apps, which are often data intensive, in secure computation is still

a mission impossible. In this paper, I present two approaches that could lead to

practical data intensive secure computation. The first approach is by designing

data structures. Traditionally, data structures have been widely used in computer

science to improve performance of computation. However, in secure computa-

tion they have been largely overlooked in the past. I will show that data structures

could be effective performance boosters in secure computation. Another approach

is by using fully homomorphic encryption (FHE). A common belief is that FHE

is too inefficient to have any practical applications for the time being. Contrary to

this common belief, I will show that in some cases FHE can actually lead to very

efficient secure computation protocols. This is due to the high degree of inter-

nal parallelism in recent FHE schemes. The two approaches are explained with

Private Set Intersection (PSI) as an example. I will also show the performance

figures measured from prototype implementations.

1 Introduction

In the past a few years, we have seen a dramatic increase in the scale and financial

damage caused by cyber attacks. Data security is now of paramount importance for

most organizations. Compounding the problem, changes in computing – particularly

the booming of Cloud computing and collaborative data analysis – has added another

layer of complexity to the security landscape. Traditionally, an organization can lock

their data in secure storage and process it within an in-house facility operated by trusted

staff. But increasingly, data processing is moving out of the trusted zone and security

mechanisms that used to be effective do not work any more. A promising solution to

solve this problem is secure computation. Secure computation allows for computation

of arbitrary functions directly on encrypted data and hides all information about the data

against untrusted parties, even if the untrusted parties are involved in the computation.

It is a transformative technology that will completely change the game. One prediction

says that within 15 years, the secure computation sector will be bigger than the anti-

malware sector which currently has the largest share of the IT security industry [1].

Secure computation research started in the 1980s. Yao first defined the concept of

secure computation in his seminal paper [2]. The goal of secure computation is to allow

multiple parties to jointly compute a function over their inputs, and keeping these inputs

private. There are several different approaches for achieving this goal. One prominent

secure computation technique is Yao’s garbled circuits protocol [3]. In this protocol, a

function converted into an encrypted Boolean circuit and the parties evaluate the circuit

with encrypted inputs. Another Boolean circuit based technique is the GMW proto-

col by Goldreich et al. [4]. Also Cramer et al. showed that secure computation can be

done with arithmetic circuits and secret shared inputs [5]. Gordon et al. proposed a tech-

nique for secure computation in a von Neumann-style Random Access Machine (RAM)

model by using an Oblivious RAM [6]. Recently, the development of Fully Homomor-

phic Encryption (FHE) provided a new direction in secure computation [7]. Apart from

those generic secure computation techniques, there are also many special-purpose pro-

tocols that are designed for specific secure computation problems, e.g. private set inter-

section [8] and oblivious polynomial evaluation [9]. Secure computation is an obvious

solution for a class of problems in which parties must provide input to a computation,

but no party trusts any other party with that data. Examples include e-voting, auctions,

information retrieval, data sharing, data mining and many more. Despite the fact that it

has so many potential applications, secure computation has remained purely theoretical

for many years. Efficiency is one of the main reasons.

Recently there have been a few efforts aiming to turn secure computation from

a theorists’ toy to a real world tool. Significant progress has been made in the last five

years to improve the efficiency of secure computation by algorithmic advancements. For

example, various protocols designed to efficiently compute a specific function securely;

improvements on garbled circuits including free XOR [10], efficient OT extension [11]

and fast cut-and-choose [12]; more efficient share-based multiparty secure computation

protocols including Sharemind [13] and SPDZ [14]; more efficient RAM program based

secure computation [15]; optimizations for FHE including SIMD operations [16] and

polylog FHE [16]. The improvement is significant. Taking garbled circuit based secure

computation as an example, after integrating many optimizations to date, the FastGC

framework [17] is 104 times faster than FairPlay [18] which was implemented in 2004.

That said, secure computation is still far from being practical. Despite all the im-

provements, secure computation is still tens of thousand to billions times slower than

computation in the clear. The overhead might be acceptable if the data to be processed

were small, but can be prohibitive when the data is big. Imagine we have a secure com-

putation mechanism which slows down the computation by 10,000 times, then what we

can do in the clear in 10 seconds now needs more than 1 day to complete, and what

we can do in the clear in 10 hours now needs more than 10 years! Paradoxically, when

talking about the killer apps of secure computation, people often use examples such as

companies having so much data that they do not have resources to process and have to

process it in untrusted clouds, or two mutually untrusted parties have to mine their mas-

sive datasets together. Although the examples show the necessity of secure computation,

current secure computation technology is incapable of handling such data-intensive ap-

plications. This becomes a major impediment to widespread use of secure computation.

How to make data intensive secure computation practical? In the rest of this paper,

I will show two new approaches that have great potential: by designing data structures

and by using newly developed FHE techniques. I will present the ideas using Private

Set Intersection (PSI) protocols as an example.

2 Private Set Intersection: Background

A PSI protocol is a two-party protocol in which a client and a server want to jointly

compute the intersection of their private input sets in a manner that at the end the client

learns the intersection and the server learns nothing. PSI protocols have many practical

applications. For example, PSI has been proposed as a building block in applications

such as privacy preserving data mining [19, 20], human genome research [21], home-

land security [22], Botnet detection [23], social networks [24], location sharing [25] and

cheater detection in online games [26]. Many applications requires massive datasets as

inputs. The first PSI protocol was proposed by Freedman et al. [8]. There are several

approaches for PSI protocols. Some of them are based on oblivious polynomial evalua-

tion [8, 27, 28], some are based on oblivious pseudorandom function (OPRF) evaluation

[29, 30, 22, 31], and some are based on generic garbled circuits [32].

3 Data Structural Approach

In computer science, traditionally an effective approach to improve the efficiency of

data intensive computation is by using an appropriate data structure, but in secure com-

putation, the power of data structures has been largely overlooked. The reason for that

is probably because in the past secure computation research focused on showing feasi-

bility and the use cases were limited to those with small data input. But when we are

moving towards real world applications in which data plays the central role and drives

the computation, data structural design will become an indispensable part of secure

computation. A good example of this data structural approach is the garbled Bloom

Filter and the PSI protocol based on this data structure [33].

3.1 From Bloom Filter to Garbled Bloom Filter

A Bloom filter [34] is a compact data structure for probabilistic set membership testing.

It is an array of m bits that can represent a set S of at most n elements. A Bloom filter

comes with a set of k independent uniform hash functions H = {h0, ..., hk−1} that

each hi maps elements to index numbers over the range [0,m−1] uniformly. Let us use

BFS to denote a Bloom filter that encodes the set S, and use BFS [i] to denote the bit

at index i in BFS . Initially, all bits in the array are set to 0. To insert an element x ∈ S

into the filter, the element is hashed using the k hash functions to get k index numbers.

The bits at all these indexes in the bit array are set to 1, i.e. set BFS [hi(x)] = 1 for

0 ≤ i ≤ k − 1. To check if an item y is in S, y is hashed by the k hash functions, and

all locations y hashes to are checked. If any of the bits at the locations is 0 , y is not in

S, otherwise y is probably in S.

Private Set: C Private Set: S

BFS

Secure AND

BFC∩S

BFC

client server

Fig. 1: The Naive PSI protocol Based on Bloom Filters

A standard Bloom filter trick is that if there are two Bloom filters, each encodes

a set S1 and S2, and both are of the same size and built using the same set of hash

functions, we can obtain another Bloom filter BFS1∩S2
by bit-wisely ANDing BFS1

and BFS2
. The resulting Bloom filter BFS1∩S2

encodes the set intersection S1 ∩ S2.

It seems that we can obtain an efficient PSI protocol (Fig. 1) immediately from this

trick. However, this naive protocol is not secure. The reason is that due to collisions, the

resulting Bloom filter BFC∩S usually contains more 1 bits than the Bloom filter built

from scratch using C ∩ S. This means BFC∩S leaks information about elements in S.

To avoid information leakage, we designed the garbled Bloom filters (GBF). A gar-

bled Bloom filter is much like a Bloom filter: it is an array of size m with k hash func-

tions. The difference is that at each position in the array, it holds a λ-bit string rather than

a bit, where λ is the secure parameter. The bit string is either a share of a set element or

a random string. To encode a set S, each element s ∈ S is inserted as follows: initially

all positions in the GBF is set to NULL. We then hash the element using the k hash

functions. For 0 ≤ j ≤ k − 2, If GBF [hj(s)] = NULL then we put an λ-bit random

string at this position, and then we set GBF [hk−1(s)] = s ⊕ (
⊕k−2

j=0 GBF [hj(s)]).
We can see that each of the k position GBF [hj(s)] holds a share of s. The shares has

the property that if all k shares are present, we can reconstruct the element from the

shares s =
⊕k−1

j=0 GBF [hj(s)]); however any subset that has less than k shares reveals

no information about the element. After inserting all elements in s to the GBF, we put

a λ-bit random string at each position that is still NULL. To query an element y, y is

hashed by the k hash functions and we test
⊕k−1

j=0 GBF [hj(y)]
?
= y. If the test is true,

then y is in the set S.

A secure PSI protocol can then be built using a Bloom filter and a garbled Bloom

filter (Fig. 2). In the protocol, the client encodes its set into a Bloom filter BFC , the

server encodes its set into a garbled Bloom filter GBFS . The server also generates an

array contains m random bit strings of length λ. For each position 0 ≤ i ≤ m − 1,

the client and server run a (2,1)-Oblivious Transfer protocol [35] such that if the bit

BF [i] = 1, the client receives GBF [i], if the bit BF [i] = 0, the client receives the ith

string from the random string array. At the end of the protocol, the result is a garbled

Bloom filter GBFC∩S that encodes the intersection.

By using a garbled Bloom filter, we fix the information leakage problem. In the

intersection garbled Bloom filter GBFC∩S , there might still exist residue shares that

belong to elements not in the intersection. However, if an element s is not in C ∩ S,

then the probability of all its shares remain in GBFC∩S is negligible. Then by the

*

*

*

*

*

*

*

s11

s21

s12

s31

s22

*

*

*

*

*

*

*

*

s11

s21

s12

s31

0

0

0

1

0

0

1

1

1

1

1

0

Private Set: C Private Set: S

BFC GBFS

*

*

*

*

*

*

*

*

*

*

*

*

GBFC∩S

oblivious

transfer

client server

Fig. 2: The Oblivious Bloom Intersection Protocol

property of the shares, the residue shares of s in GBFC∩S leak no information about s.

For example, in Fig 3, s12 in GBFC∩S is a share of x2 which is not in the intersection.

The element x2 has 3 shares and one of the share s22 is not transferred to the client in the

protocol. Then the other two shares remain in GBFC∩S look uniformly random and do

not leak information about x2.

x1 x2

* * * * * * *s11 s2
1

s12 s3
1

s2
2

* * * * * * **s11 s2
1

s12 s3
1

GBFC∩S

GBFS

* * * * * * **s11 s2
1

s3
1

* GBF{x1}

Fig. 3: Indistinguishability of the Intersection Garbled Bloom Filter

3.2 Performance Comparison

The PSI protocol obtained from garbled Bloom filter has many advantages: it has lin-

ear complexity, is easy to parallelize, relies mainly on symmetric key operations and

it is much efficient than previous best protocols. We compared the performance with

68X$
106X$

163X$

227X$

640X$

757X$

13X$ 17X$ 18X$ 18X$ 18X$ 17X$

0$

100$

200$

300$

400$

500$

600$

700$

800$

1,024$ 4,096$ 16,384$ 65,536$ 262,144$ 1,048,576$

Set$Size$

Huang's$

De$Cristofaro's$

Fig. 4: Performance Comparison

the previous best protocols. One protocol is by Huang et al based the garbled circuits

approach [32], and another is by De Cristofaro et al based on ORPF evaluation[22]. Fig

4 shows the performance improvement at 128-bit security. The numbers displayed in

the figure are ratios of running time (previous protocol to our protocol).

4 Fully Homomorphic Encryption Approach

FHE is a newly established area in cryptography. An FHE scheme allows (any) com-

putation to be carried out on encrypted data directly. FHE is a powerful tool and at

the same time is notorious for its inefficiency. It is a common belief that FHE is too

inefficient to be practical yet. However, this common belief is not always true. In this

section I will show how to build a more efficient PSI protocol using fully homomorphic

encryption.

4.1 The BGV FHE Scheme

In 2009, Gentry [7] developed the first FHE scheme. Following the breakthrough,

several FHE schemes based on different hardness assumptions have been proposed,

e.g. [36, 37].

The RLWE variant of BGV [37] is among the most efficient FHE schemes; it op-

erates in certain polynomial rings. Namely, let Φm(x) be the m-th cyclotomic poly-

nomial with degree φ(m), then we have a polynomial ring A = Z[x]/Φm(x), i.e. the

set of integer polynomials of degree up to φ(m) − 1. Here φ(·) is the Euler’s totient

function. The ciphertext space of the BGV encryption scheme consists of polynomials

over Aq = A/qA, i.e. elements in A reduced modulo q where q is an odd integer1.

The plaintext space is usually the ring Ap = A/pA, i.e. polynomials of degree up to

φ(m)− 1 with coefficients in Zp for some prime number p < q.

There are three basic algorithms in the BGV scheme:

1 In the BGV encryption scheme, there are actually a chain of moduli q0 < q1 < · · · < qL

defined for modulus switching. But for simplicity we just use q throughout the paper.

– G(p, λ, L): The key generation algorithm. Given p, λ and L such that p is the prime

number that defines the plaintext space, λ is the security parameter and L is the

depth of the arithmetic circuit to be evaluated, generate a secret key, the corre-

sponding public key and a set of public parameters.

– Epk(m̄): The encryption algorithm. Given a public key pk, encrypt an element

m̄ ∈ Ap.

– Dsk(c): The decryption algorithm. Given the secret key sk, decrypt a ciphertext c.

Being a fully homomorphic encryption scheme, the BGV scheme supports both

multiplication and addition operations over ciphertexts. Let us denote homomorphic

addition by ⊞ and homomorphic multiplication by ⊠. We can homomorphically add

or multiply two ciphertexts together. We can also homomorphically add or multiply a

ciphertext with a plaintext.

4.2 Polynomial Representation of a Set

Freedman et al [8] first proposed to use a polynomial for representing a set in PSI. Given

a set S, we can map each element in S to an element in a sufficiently large field R.

Then S can be represented as a polynomial (in a ring R[x]). The polynomial is defined

as ρ(x) =
∏

si∈S(x − si). The polynomial ρ(x) has the property that every element

si ∈ S is a root of ρ(x). For two polynomials ρ1 and ρ2 that represent the two sets S1

and S2 respectively, the the greatest common divisor of the two polynomials gcd(ρ1, ρ2)
represents the set intersection S1∩S2. Based on this, we can design protocols to securely

obtain the set intersection. Without loss of generality, let both ρ1 and ρ2 to be of degree

δ and let γ1 and γ2 to be two uniformly random degree δ polynomials in R[x], Kissner

and Song proved in [27] that γ1 ·ρ1+γ2 ·ρ2 = µ ·gcd(ρ1, ρ2) such that µ is a uniformly

random polynomial. This means if ρ1 and ρ2 are polynomials representing sets S1 and

S2, then the polynomial γ1 ·ρ1 +γ2 ·ρ2 contains only information about S1∩S2 and no

information about other elements in S1 or S2. This forms the basis of their PSI protocol

in which a party obtains γ1 ·ρ1+γ2 ·ρ2 to find the set intersection but learns nothing more

about elements in the other party’s set. However, Kissner’s protocol is not practical due

to the facts that it uses expensive Paillier encryption and the computational complexity

is quadratic in the size of the sets.

4.3 The Private Set Intersection Protocol Based on FHE

We parallelize computation by utilizing the native plaintext space of BGV to load mul-

tiple data items. The native plaintext space of BGV is a polynomial ring, therefore a set

can be easily represented in the plaintext space. To simplify the description, I will start

from the case where |C| = |S| = φ(m)
2 − 1. In the protocol, the client has a BGV key

pair (pk, sk) and a set C. The server has a set S. The two parties encode their sets into

ρC and ρS that are polynomials in Ap. The protocol is shown in Figure 5:

1. The client encrypts its set polynomial ρC and sends the ciphertext c to the server.

2. The server chooses random polynomial γC and γS in Ap, each of degree
φ(m)

2 − 1,

then the server computes homomorphically c′ = (c ⊠ γC) ⊞ (ρS · γS). The server

client server

pC, ρC , pk, skq pS, ρSq

c1 “ pc b γCq ‘ pρS ¨ γSq

c

c1

ρC ¨ γC ` ρS ¨ γS Ð pDskpc1qq

c = Epk(ρC)

C \ S ← gcd(ρC , ρS)

Fig. 5: The PSI protocol

sends c′ to the client, who then decrypts the ciphertext and obtains the polynomial

⇢C · γC + ⇢S · γS .

3. The client then evaluates the polynomial obtained in the last step with elements in C.

For each element, if it is a root then it is in the intersection. The client then outputs

the intersection C ∩ S.

To compute the intersection of sets whose sizes are larger than
φ(m)

2 − 1, we can

use bucketization. Bucketization is a process to partition a large set into disjoint subsets

(buckets). The two parties use a public uniform hash function H : {1, 0}∗ → [1, k]
to map their set elements into k buckets. This is done by hashing each element to get

a bucket number and putting the element into the bucket with this number. If the size

of the set to be bucketized is n, then each bucket will have around n/k elements. The

two parties can choose k so that with a high probability, each bucket has no more than
φ(m)

2 − 1 elements. To prevent information leakage through bucket size, the two parties

pad each bucket with random elements so that all buckets have the same size
φ(m)

2 − 1.

They then run the PSI protocol k times. In the ith run, each party uses its ith bucket as

the input to the PSI protocol. The union of outputs is the intersection of the two sets.

4.4 Efficiency

The protocol is very efficient. This is due to the high degree of parallelism provided

by the BGV scheme. In the protocol, we process a set of
φ(m)

2 − 1 elements in one

go, rather than processing them individually. Therefore the total computational cost is

amortized by
φ(m)

2 − 1. The parameter φ(m) is large, therefore the amortized cost is

small.

2
10

2
12

2
14

2
16

2
18

2
20

GBF-PSI 0.67 1.99 8.21 32.41 130.42 530.36

FHE-PSI 0.11 0.14 0.45 1.55 5.91 23.48

Improvement 6X 14X 18X 21X 22X 23X

* Running Time in seconds

Table 1: Performance of PSI Protocols

Table 1 shows the performance comparison of the GBF based and the FHE based

PSI protocols. In the experiment, security parameter is set to 128-bit. The parameters

for the BGV keys were |p| = 32, L = 1, |q| = 124, φ(m) = 5002. The set size varied

from 210 (1024) to 220 (1,048,576). As we can see, the FHE based PSI protocol is much

faster. For two 1 million elements input sets, the running time is less than half a minute,

which is only 1 - 2 orders of magnitude slower than the computation in the clear.

5 Conclusion

In this paper, I presented two approaches that could lead to practical data intensive

secure computation. One approach is by designing better data structures. The rationale

behind this approach is that when the data to be processed is big, arranging it into certain

data structures may make it more amendable for computation. Another approach is by

using fully homomorphic encryption. Recent fully homomorphic encryption schemes

provide us facilities to parallelize computation, which can greatly reduce the overall

cost if the computation task is data parallel. The two approaches can be combined. For

example, when using bucketization in the PSI protocol, the list of buckets is essentially

a hash table data structure. The research along these two lines is still in an early stage,

but further investigation will lead to fruitful results.

References

1. Evans, D.: Secure computation in 2029: Boom, bust, or bonanza. Applied Multi-Party

Computation Workshop 2014

2. Yao, A.C.: Protocols for secure computations (extended abstract). In: 23rd Annual Sym-

posium on Foundations of Computer Science, Chicago, Illinois, USA, 3-5 November 1982.

(1982) 160–164

3. Yao, A.C.: How to generate and exchange secrets (extended abstract). In: 27th Annual

Symposium on Foundations of Computer Science, Toronto, Canada, 27-29 October 1986.

(1986) 162–167

4. Goldreich, O., Micali, S., Wigderson, A.: How to play any mental game or A complete-

ness theorem for protocols with honest majority. In: Proceedings of the 19th Annual ACM

Symposium on Theory of Computing, 1987, New York, New York, USA. (1987) 218–229

5. Cramer, R., Damgård, I., Maurer, U.M.: General secure multi-party computation from any

linear secret-sharing scheme. In: Advances in Cryptology - EUROCRYPT 2000, Interna-

tional Conference on the Theory and Application of Cryptographic Techniques, Bruges, Bel-

gium, May 14-18, 2000, Proceeding. (2000) 316–334

6. Gordon, S.D., Katz, J., Kolesnikov, V., Krell, F., Malkin, T., Raykova, M., Vahlis, Y.: Secure

two-party computation in sublinear (amortized) time. In: ACM Conference on Computer

and Communications Security. (2012)

7. Gentry, C.: Fully homomorphic encryption using ideal lattices. In: Proceedings of the 41st

Annual ACM Symposium on Theory of Computing, STOC 2009, Bethesda, MD, USA, May

31 - June 2, 2009. (2009) 169–178

8. Freedman, M.J., Nissim, K., Pinkas, B.: Efficient private matching and set intersection.

In: Advances in Cryptology - EUROCRYPT 2004, International Conference on the The-

ory and Applications of Cryptographic Techniques, Interlaken, Switzerland, May 2-6, 2004,

Proceedings. (2004) 1–19

9. Naor, M., Pinkas, B.: Oblivious transfer and polynomial evaluation. In: Proceedings of the

Thirty-First Annual ACM Symposium on Theory of Computing, May 1-4, 1999, Atlanta,

Georgia, USA. (1999) 245–254

10. Kolesnikov, V., Schneider, T.: Improved garbled circuit: Free XOR gates and applications.

In: ICALP (2). (2008)

11. Asharov, G., Lindell, Y., Schneider, T., Zohner, M.: More efficient oblivious transfer and

extensions for faster secure computation. In: ACM Conference on Computer and Commu-

nications Security. (2013)

12. Lindell, Y.: Fast cut-and-choose based protocols for malicious and covert adversaries. In:

CRYPTO (2). (2013)

13. Bogdanov, D., Niitsoo, M., Toft, T., Willemson, J.: High-performance secure multi-party

computation for data mining applications. Int. J. Inf. Sec. 11(6) (2012)

14. Damgård, I., Pastro, V., Smart, N.P., Zakarias, S.: Multiparty computation from somewhat

homomorphic encryption. In: CRYPTO. (2012)

15. Liu, C., Huang, Y., Shi, E., Katz, J., Hicks, M.W.: Automating efficient ram-model secure

computation. In: 2014 IEEE Symposium on Security and Privacy, SP 2014, Berkeley, CA,

USA, May 18-21, 2014. (2014) 623–638

16. Gentry, C., Halevi, S., Smart, N.P.: Fully homomorphic encryption with polylog overhead.

In: EUROCRYPT. (2012)

17. Huang, Y., Evans, D., Katz, J., Malka, L.: Faster secure two-party computation using garbled

circuits. In: 20th USENIX Security Symposium, San Francisco, CA, USA, August 8-12,

2011, Proceedings. (2011)

18. Malkhi, D., Nisan, N., Pinkas, B., Sella, Y.: Fairplay - secure two-party computation system.

In: Proceedings of the 13th USENIX Security Symposium, August 9-13, 2004, San Diego,

CA, USA. (2004) 287–302

19. Aggarwal, C.C., Yu, P.S., eds.: Privacy-Preserving Data Mining - Models and Algorithms.

Volume 34 of Advances in Database Systems. Springer (2008)

20. Dong, C., Chen, L.: A fast secure dot product protocol with application to privacy preserving

association rule mining. In: PAKDD (1). (2014)

21. Baldi, P., Baronio, R., Cristofaro, E.D., Gasti, P., Tsudik, G.: Countering gattaca: efficient

and secure testing of fully-sequenced human genomes. In: ACM Conference on Computer

and Communications Security. (2011) 691–702

22. Cristofaro, E.D., Tsudik, G.: Practical private set intersection protocols with linear complex-

ity. In: Financial Cryptography. (2010) 143–159

23. Nagaraja, S., Mittal, P., Hong, C.Y., Caesar, M., Borisov, N.: Botgrep: Finding p2p bots with

structured graph analysis. In: USENIX Security Symposium. (2010) 95–110

24. Mezzour, G., Perrig, A., Gligor, V.D., Papadimitratos, P.: Privacy-preserving relationship

path discovery in social networks. In: CANS. (2009) 189–208

25. Narayanan, A., Thiagarajan, N., Lakhani, M., Hamburg, M., Boneh, D.: Location privacy

via private proximity testing. In: NDSS. (2011)

26. Bursztein, E., Hamburg, M., Lagarenne, J., Boneh, D.: Openconflict: Preventing real time

map hacks in online games. In: IEEE Symposium on Security and Privacy. (2011) 506–520

27. Kissner, L., Song, D.X.: Privacy-preserving set operations. In: CRYPTO. (2005) 241–257

28. Hazay, C., Nissim, K.: Efficient set operations in the presence of malicious adversaries. In:

Public Key Cryptography. (2010) 312–331

29. Hazay, C., Lindell, Y.: Efficient protocols for set intersection and pattern matching with

security against malicious and covert adversaries. In: TCC. (2008) 155–175

30. Jarecki, S., Liu, X.: Efficient oblivious pseudorandom function with applications to adaptive

ot and secure computation of set intersection. In: TCC. (2009) 577–594

31. Cristofaro, E.D., Kim, J., Tsudik, G.: Linear-complexity private set intersection protocols

secure in malicious model. In: ASIACRYPT. (2010) 213–231

32. Huang, Y., Evans, D., Katz, J.: Private set intersection: Are garbled circuits better than

custom protocols? In: NDSS. (2012)

33. Dong, C., Chen, L., Wen, Z.: When private set intersection meets big data: an efficient and

scalable protocol. In: ACM Conference on Computer and Communications Security. (2013)

34. Bloom, B.H.: Space/time trade-offs in hash coding with allowable errors. Commun. ACM

13(7) (1970) 422–426

35. Ishai, Y., Paskin, A.: Evaluating branching programs on encrypted data. In: TCC. (2007)

36. van Dijk, M., Gentry, C., Halevi, S., Vaikuntanathan, V.: Fully homomorphic encryption

over the integers. In: EUROCRYPT. (2010) 24–43

37. Brakerski, Z., Gentry, C., Vaikuntanathan, V.: (leveled) fully homomorphic encryption with-

out bootstrapping. In: ITCS. (2012) 309–325

