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Abstract 24 

Objectives: To investigate the use of 405 nm light for inhibiting the growth of selected species of 25 

dermatophytic and saprophytic fungi.  Background data: The increasing incidence and resilience 26 

of dermatophytic fungal infections is a major issue, and alternative treatment methods are being 27 

sought.   Methods: The sensitivity of the dermatophytic fungi Trichophyton rubrum and 28 

Trichophyton mentagrophytes to 405 nm violet-blue light exposure was investigated, and the 29 

results compared with those obtained with the saprophytic fungus Aspergillus niger.  30 

Microconidia of T. rubrum and T. mentagrophytes and conidia of A. niger were seeded onto 31 

Sabauroud dextrose agar plates and irradiated with 405 nm light from an indium-gallium-32 

nitride 99-DIE light-emitting diode (LED) array and the extent of inhibition was measured.   33 

Results: Germination of the microconidia of the Trichophyton species was completely inhibited 34 

using an irradiance of 35 mW/cm2 for 4 h (dose of 504 J/cm2). Results: A. niger conidia showed 35 

greater resistance, and colonial growth developed after light exposure.  In liquid suspension 36 

tests, 405 nm light dose levels of 360, 720, and 1440 J/cm2 resulted in complete inactivation of 37 

T. rubrum microconidia, whereas A. niger showed greater resistance, and at the highest dose 38 

level applied (1440 J/cm2 ) although A niger hyphae were completely inactivated, only a 3-log10 39 

reduction of a 5-log10 conidial suspension was achieved. Conclusions: The study results 40 

demonstrate the relatively high sensitivity of Trichophyton microconidia to 405 nm violet-blue 41 

light, and this is may be of potential interest regarding the control and treatment of 42 

dermatophyte infections. 43 

 44 

 45 

 46 

 47 

 48 
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1. Introduction 49 

Dermatophytic fungi are the causative organisms of a variety of skin, hair and nail infections 50 

due to their ability to colonise the surface tissues of humans and animals, using keratin as 51 

nutrient source. The incidence of infections caused by dermatophytic fungi has greatly 52 

increased over the past 20 years with dermatophytes now being the most common cause of 53 

fungal infections1. Trichophyton rubrum and Trichophyton mentagrophytes are the most 54 

commonly isolated causative agents of dermatophytic infections2. Trichophyton fungi can 55 

produce several types of conidia including single-celled microconidia, multicellular 56 

macroconidia as well as arthroconidia, and it is the latter that are generally associated with the 57 

transmission of Trichophyton infections between humans3. Although arthrospores are regarded 58 

as the main transmissible agent, microconidia are the fungal structure preferably used in 59 

antifungal susceptibility testing for dermatophytes3,4 as they can be conveniently produced and 60 

prepared as a single-celled and uniform suspension.  61 

Although there are a number of antifungal agents available for topical and systemic treatment of 62 

dermatophyte infections, nail infections are particularly difficult to treat with recurrence 63 

reported in up to 25 to 40% of cases5. It is currently unknown if the fungal recurrence is due to 64 

inefficient clearance of the infection or re-emergence of disease; at present terbinafine is 65 

considered the most powerful treatment6.  66 

An alternative treatment strategy for dermatophyte infections is the use of photodynamic 67 

antimicrobial chemotherapy (PACT) which involves the use of photosensitiser chemicals and 68 

irradiation with specific wavelengths of light. Smij and Schuitmaker7 demonstrated the 69 

inactivation of T. rubrum using the photosensitisers 5,10,15-tris(4-methylpyridinium)-20-70 

phenyl-[21H,23H]-porphine trichloride (Sylsens B) and deuteroporphyrin monomethylester 71 

(DP mme) in conjunction with broadband white light irradiation. More recently Rodrigues et al.4 72 

demonstrated successful PACT inactivation of both T. mentagrophytes and T. rubrum 73 

microconidia using novel phenothiazinium photosensitizers and red light. 74 
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Whilst the PACT approach requires the use of both photosensitive chemicals and light, it has 75 

also been found possible to photo-inactivate a wide range of microorganisms using violet-blue 76 

light from the visible-spectrum without the use of exogenous photosensitisers, with 77 

comparative doses being safe for mammalian cell exposure8-13. Microbial inactivation by violet-78 

blue light is accredited to the photoexcitation of intracellular porphyrin molecules within 79 

microorganisms, which have an absorption maxima in the region of 400 nm14, which causes the 80 

production of reactive oxygen species (ROS)15,16.  Cell death has been attributed to oxidative 81 

damage to cell components including DNA and membranes9,12. It has previously been 82 

established that 405 nm light has antifungal effects as Murdoch et al.17 demonstrated the 83 

inactivation of the fungal species Saccharomyces cerevisiae, Candida albicans and dormant and 84 

germinating spores of Aspergillus niger.  85 

The current report highlights the fungicidal activity of 405 nm violet-blue light against the 86 

dermatophytes T. rubrum and T. mentagrophytes, and the high sensitivity of these fungi to 405 87 

nm light was compared against the saprophyte Aspergillus niger, with results opening up the 88 

possibility of the development of 405 nm light treatments against dermatophytic infections. 89 

  90 
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2. Materials and Methods 91 

2.1. Fungal strains and conidia preparation 92 

The dermatophytic fungi used in this study were Trichophyton rubrum MUCL 11954 and 93 

Trichophyton mentagrophytes MUCL 9823, obtained from the Mycotheque de l╆Universite 94 

catholique de Louvain Culture Collection in Belgium. The saprophytic mould fungus Aspergillus 95 

niger MUCL 38993 was also used in comparative light sensitivity studies with the two 96 

dermatophytic species.  97 

T. rubrum and T. mentagrophytes spores were obtained by fungal cultivation on sabauroud 98 

dextrose agar (SDA) plates (Oxoid, UK) at 28°C for 14 days. Following incubation, 9 ml 99 

phosphate buffered saline (PBS; Oxoid Ltd, UK) containing 0.01% tween-80 was added to the 100 

dish, and an L-shaped spreader used to agitate and release the microconidia. Agitation was 101 

carried out for 2 minutes. The resulting suspension was stored at 4°C. 102 

To obtain A. niger spores, A. niger was inoculated onto a SDA slope and incubated at 26°C for a 103 

minimum of 7 days, after which a conidial suspension was obtained by agitation in an aqueous 104 

0.01% tween-80 PBS solution. Agitation was carried out for 5 minutes.  The population density 105 

of the spore suspensions was enumerated using an Improved Neubauer haemocytometer 106 

(Weber Scientific International, UK), and suspensions diluted as required prior to light 107 

exposure.  108 

2.2. Light transmission through conidial extracts 109 

For light transmission tests on conidial extracts, the centrifuged pellets of conidia of A. niger and 110 

T. rubrum were extracted with 100% ethanol and the light transmission spectrum of the ethanol 111 

extracts was determined using a Biomate 5 UV-Visible Spectrophotometer (Thermo Spectronic). 112 

 113 

 114 



6 

 

2.3. Light source and irradiance measurements 115 

An indium-gallium-nitride 99-DIE light emitting diode (LED) array (OptoDiode Corp, CA, USA) 116 

was used to generate high-intensity 405-nm light with a bandwidth of 14 nm. The LED array 117 

was powered by a DC power supply, and a cooling fan and heat sink were attached to the array, 118 

allowing heat to dissipate from the source thereby minimizing heat transfer to the fungal 119 

samples. Irradiance was measured using a radiant power meter and detector (L.O.T.-Oriel ltd, 120 

UK). The dose of light exposure (Jcm-2) was calculated as the product of the irradiance (mWcm-121 

2) multiplied by the exposure time (seconds). Doses selected for use in this study were between 122 

500 and 1,500 Jcm-2 as these were within the region of those used in previous fungal 123 

inactivation studies16. 124 

2.4. Light exposure of Trichophyton and Aspergillus conidia 125 

The inhibitory effects of 405 nm light on conidia were assessed using surface irradiated and 126 

liquid irradiated exposure conditions. For surface irradiation tests, 10 づl conidial suspension of 127 

the test fungus was spot inoculated onto the centre of a SDA plate. The test plate was exposed to 128 

405 nm light, at an irradiance of 35 mWcm-2 for 1 and 4 hr, giving doses of 126 and 504 Jcm-2. 129 

Identical control samples were prepared and left exposed to normal laboratory lighting. Plates 130 

were incubated for 3 or 10 days for Aspergillus and Trichophyton, respectively, before being 131 

analysed for characteristic differences between the test and control. Colony diameters were 132 

measured across the broadest section of the colony on the SDA plate using a ruler. The results 133 

were also recorded photographically for illustrative purposes using a Sony Cybershot DSC-T2 134 

digital camera (Sony, Japan). 135 

For liquid irradiation comparisons, a 3 ml volume of spore suspension of test fungi was 136 

transferred into the well of a 12-well multidish with the LED housing array then placed 137 

approximately 3 cm above. The suspension was exposed to 50 mWcm-2 405 nm light, for 2, 4 138 
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and 8 hr, giving doses of 360 Jcm-2, 720 Jcm-2 and 1.44 kJcm-2. Control samples were held under 139 

the same conditions but exposed to normal laboratory lighting. 140 

2.5. Light exposure of Aspergillus niger hyphal suspension 141 

Following 24 hr incubation of A. niger on an SDA slope, the top layer of fungal growth was 142 

removed and then fragmented in 50 ml PBS for 5 minutes using a stomacher (Colworth, UK). 3 143 

ml of the hyphal suspension was pipetted into one well of a 12-well multidish and exposed to 144 

405 nm light as described above for conidia suspension tests. 145 

2.6. Plating and Enumeration 146 

For suspension experiments, post-exposure, samples (50づl, 100づl or 500づl) were inoculated 147 

onto SDA and spread using an L-shaped spreader. Plates were then incubated for 1 or 5 days (A. 148 

niger and T. rubrum, respectively), with each sample being plated at least in triplicate. Following 149 

incubation the plates were enumerated and recorded as colony forming units per millilitre 150 

(CFUml-1). Data presented in this paper represent the mean results of two or more independent 151 

experiments. Significant differences in fungal population were calculated at the 95% confidence 152 

interval (P<0.05) using one-way analysis of variance (ANOVA), with Minitab statistical software 153 

package version 16 (Minitab Inc., Pennsylvania). 154 

 155 

3. Results 156 

The inhibitory effects of 405 nm light on the growth of surface irradiated T. rubrum and T. 157 

mentagrophytes spores are shown in Fig 1.  The results demonstrate that after seeding the 158 

conidia onto SDA plates and exposure to 126 Jcm-2, followed by incubation for 10 days, a 159 

substantial reduction in growth was observed with T. rubrum, with the diameters of the non-160 

light exposed colonies and light-exposed colonies measuring 43±1 mm and 12±1 mm in 161 

diameter, respectively (Fig 1 A,B).  Following exposure to a dose of 504 Jcm-2, both T. rubrum 162 
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and T. mentagrophytes were completely inactivated and failed to develop colonies, with the non-163 

exposed controls developing colonies of 21-22 mm diameter (Fig 1 C,D,E,F).  Exposure of 164 

surface deposited conidia of Aspergillus niger to the same dose of 504 Jcm-2, followed by 165 

incubation for 3 days demonstrated that complete inactivation of the spores was not achieved, 166 

with substantial conidial growth observed following incubation: light-exposed colonies grew to 167 

38±1 mm diameter, compared to 33±1 mm for unexposed colonies (~13% reduction in size; 168 

P=0.049). 169 

Suspensions of T. rubrum conidia, A. niger hyphal fragments and A. niger conidia were exposed 170 

to 405 nm light at an irradiance of 50 mWcm-2 over time periods that delivered a dose of 360, 171 

720 Jcm-2 and 1.44 kJcm-2. Following exposure to a dose of 360 Jcm-2, complete inactivation of T. 172 

rubrum conidia was achieved (~2.3-log10 CFUml-1). The results in Figure 2 demonstrate that A. 173 

niger hyphae are more sensitive to 405 nm light than their corresponding conidia, with 174 

complete inactivation of a 103 CFUml-1 hyphal suspension found after exposure to a dose of 1.44 175 

kJcm-2 while A. niger conidia demonstrated approximately a 50% reduction following exposure 176 

to the same dose of 1.44 kJcm-2 (Fig 2.). Use of an increased irradiance or longer exposure time 177 

(meaning an increased applied dose) would lead to further decreases in the A. niger population, 178 

as previously reported16. 179 

The light transmission through ethanol extracts of A. niger and T. rubrum spores was measured 180 

to determine the effect of spore pigments on the transmission of 405 nm light through 181 

suspensions of both A. niger and T. rubrum; in Figure 3 the transmission spectra are shown 182 

alongside the emission spectrum of the 405 nm LED.  183 

 184 

4. Discussion 185 

The results shown in Figure 1 demonstrate a substantial reduction in microconidial growth of T. 186 

rubrum is achieved following exposure to 405 nm light at a dose of 126 Jcm-2.  Furthermore, the 187 
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results demonstrate that 405 nm light, at a dose of 504 Jcm-2, can completely inactivate the 188 

microconidia of T. rubrum and T. mentagrophytes such that hyphal and colony growth do not 189 

occur. By contrast, exposure of surface deposited conidia of A. niger to a similar dose of 504 Jcm-190 

2 did not result in a substantial reduction in conidial growth so that on subsequent incubation of 191 

the SDA plates colony growth occurred and the colony diameter achieved after 3 days of 192 

incubation was only marginally less than observed with the control non-irradiated plates 193 

(Fig.1). Even after an increased light dose of 1.008 kJcm-2, A. niger conidia were not completely 194 

inactivated, and colony growth occurred although the extent of growth was considerably less 195 

than the non-exposed control: colony diameter of 22 mm for light exposed and 39 mm for 196 

control (photograph not shown). These results demonstrate the higher susceptibility of the 197 

dermatophytic conidia of both T. rubrum and T. mentagrophytes to inactivation using 405 nm 198 

light compared to A. niger conidia.  199 

It is known that exposure of microbiological culture media to light can result in the formation of 200 

toxic compounds18.  To ensure that the results obtained were due to direct light induced 201 

inactivation of the fungal conidia as opposed to an indirect media-induced toxic effect, 202 

experiments were also conducted using liquid suspensions of the fungal conidia and hyphae. 203 

Comparison of the susceptibility of T. rubrum conidia, the conidia and hyphae of A. niger to 405 204 

nm light, at doses of 360, 720 Jcm-2 and 1.44 kJcm-2, demonstrated the much higher 205 

susceptibility of T. rubrum to inactivation using 405nm light than that of A. niger with complete 206 

inactivation achieved at 360 Jcm-2 (Fig 2).  The conidia of A. niger were much more resistant to 207 

405 nm light and although the CFU count decreased with increasing dose, complete inactivation 208 

was not achieved with the doses used in the present study.  As we reported in a previous 209 

study11, complete inactivation of A. niger conidia, with higher populations of 105 CFUml-1, 210 

required a dose of 2.3 kJcm-2. Whilst conidia of A. niger are highly resistant to 405 nm light it 211 

was of interest to compare the sensitivity of A. niger hyphae to that of the conidia. The results, 212 

shown in Figure 2, demonstrate that A. niger hyphae are more sensitive to 405 nm light than 213 

their corresponding conidia, with complete inactivation of a 103 CFUml-1 hyphal suspension 214 
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found after exposure to a dose of 1.44 kJcm-2. It was interesting to note however that the A. niger 215 

hyphae demonstrated more resistance to the 405 nm light than the T. rubrum conidia.  216 

The mechanism of the antifungal effect mediated by violet-blue light occurs following exposure 217 

of the organism to light photons in the region of 405 nm.  Endogenous porphyrins within the 218 

cells absorb these photons, resulting in their photoexcitation, and electron transfer via the type I 219 

or type II pathway resulting in the production of reactive oxygen species (ROS), most notably 220 

singlet oxygen (1O2)15,19 . The ROS produced then react with various cellular components 221 

causing an imbalance in cellular homeostasis resulting in damage to cytoplasmic organelles and 222 

nucleic acids, and consequently cell death by apoptosis, necrosis, or autophagy20. This 223 

hypothesis is supported by a study by Baltazar et al which demonstrated the photodynamic 224 

inactivation of T. rubrum, via increased levels of NO., ROS and ONOO., using 630 nm light and the 225 

exogenous photosensitiser toluidine blue19. 226 

Fungi possess mitochondria and, although there are some enzyme differences when compared 227 

with mitochondria of mammalian cells, the production of the endogenous photosensitive 228 

protoporphyrin IX molecule has been demonstrated21,22,23. Protoporphyrin IX may be activated 229 

by wavelengths ranging from UVA to the visible wavebands with a maximum peak in the Soret 230 

band at 375‒405 nm and a lower peak at 630‒ 633 nm21,22,23. The presence of porphyrins in 231 

fungi indicates that both bacteria and fungi may be affected by a similar porphyrin 232 

photoexcitation and ROS induced inactivation mechanism following exposure to visible light17,13. 233 

Further evidence that a similar underlying inactivation mechanism is involved is the finding17 234 

that light exposure under aerobic and anaerobic conditions, together with results obtained 235 

using oxygen scavengers, has revealed that 405 nm light inactivation in fungi involves an oxygen 236 

dependent mechanism, which is also the case with bacteria. Whilst the inactivation mechanism 237 

may be similar, the physiological status of the organism is an important factor influencing the 238 

degree of susceptibility of the light exposed cells, with bacterial and fungal spores being 239 
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understandably more resistant than their vegetative counterparts, an innate resistance that 240 

rapidly disappears during spore germination17.   241 

Although most previous research on the use of light to inactivate fungi has involved the use of 242 

added photosensitiser chemicals, a previous study by Smijs et al22 demonstrated the ability of 243 

UVA-light alone, at a dose of 40 Jcm-2, to kill T. rubrum without the use of exogenous 244 

photosensitisers.  In addition to this, irradiation with broadband visible light at a dose of 20‒50 245 

Jcm-2 in the absence of exogenous sensitizers was found to produce oxygen dependent lethal 246 

effects on the plasma membranes and mitochondria of Candida guilliermondii24.  Within 247 

bacterial cells, porphyrin-mediated violet-blue light inactivation has been associated with 248 

severe cell wall damage and leakage of intracellular substances, presence of cytoplasmic 249 

vacuoles, and disruption of intracellular structures13,12.  250 

It is believed that pigments such as melanin, which are black or dark brown pigments, 251 

commonly occurring as wall components in fungal spores, have a protective role against 252 

photochemical damage25. To investigate the effects of spore pigment on 405 nm light 253 

transmission, ethanol extracts of A. niger and T. rubrum spore suspensions were prepared and 254 

the wavelength transmission spectra were compared (Fig. 3). Results demonstrate that the 255 

transmission of light across the measured spectrum (300-800 nm) is much lower for the A. niger 256 

than the T. rubrum spore extract, with 18.4% and 41.3% transmission at 405 nm, respectively. 257 

The high resistance of A. niger spores to 405 nm light is most likely due to possession of a multi-258 

layered pigmented spore coat containing aspergillin, a black coloured melanin-like compound 259 

making the spores particularly difficult to inactivate when exposed to visible light26 and pulsed 260 

UV-light27,28. The presence of the aspergillin pigment explains why A. niger conidia are more 261 

resistant to 405 nm radiation than the conidia of T. rubrum, and indeed to the A. niger hyphae 262 

which is non-pigmented.  Although T. rubrum also produces several melanin-type pigments29 263 

these either do not occur in the conidia, or at least not at sufficient levels to provide protection 264 

against 405 nm light irradiation.  265 
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The results of this study demonstrate that the microconidia of the Trichophyton spp tested are 266 

much more sensitive to inactivation by 405 nm light than the conidia of the saprophytic fungus 267 

Aspergillus niger.  Whilst the resistance of A. niger conidia to light inactivation is not surprising 268 

due to the dark pigment present, it is of interest that the Trichophyton microconidia were more 269 

sensitive to 405 nm light than the non-pigmented hyphae of A. niger.  Although Trichophyton 270 

microconidia are not the main transmissible agents of these dermatophytic fungi they are 271 

regarded as the preferred fungal structure for dermatophytic antifungal susceptibility testing3,4. 272 

The findings of this study, demonstrating the relatively high sensitivity of Trichophyton 273 

microconidia to 405 nm light is therefore of potential interest regarding the control and 274 

treatment of dermatophyte infections. 275 
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 378 

Figure 1. Inhibitory effects of 405 nm light on the growth of Trichophyton rubrum (A,B,C,D), 379 

Trichophyton mentagrophytes (E,F) and Aspergillus niger (G,H) conidia spot-inoculated on SDA 380 

plates. Samples were exposed to doses of 126 J cm-2 (A) and 504 Jcm-2 (C,E,G), followed by a 381 

period of incubation (3 days for Aspergillus and 10 days for Trichophyton spp.) and colony 382 

diameters assessed. Photographs in the right-hand column (B,D,F,H) represent light-exposed 383 

samples; Photographs in the left-hand column (A,C,E,G) were non-exposed control samples. 384 

 385 

Figure 2. Exposure of Trichophyton rubrum and Aspergillus niger conidial suspensions to 405 386 

nm light using an irradiance of 50 mWcm-2 to deliver dose levels of 360 Jcm-2, 720 Jcm-2 and 1.44 387 

kJcm-2. Inactivation of A. niger hyphal fragments was included as a comparison. Surviving fungi 388 

were enumerated by mean CFUml-1 counts (± SD) and results reported as the % log10 reduction 389 

compared to non-exposed control samples. Asterisks (*) represent where a significant 390 

difference was detected between the exposed and non-exposed samples, at 95% confidence 391 level ゅPズど┻どのょ┻ 392 

 393 

Figure 3. The transmission of light, over the wavelength range 300‒800 nm, through ethanol 394 

extracts of the conidia of Trichophyton rubrum and Aspergillus niger. The emission spectra of the 395 

405 nm LED array, measured using a high resolution spectrometer (Ocean Optics Inc, USA), is 396 

included for reference. 397 

 398 
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 400 
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