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Abstract

In quantum reading, a quantum state of light (transmitter) is applied to read classical information. In
the presence of noise or for sufficiently weak signals, quantum reading can outperform classical read-
ing by reason of enhanced state distinguishability. Here we show that enhanced quantum efficiency
depends on the presence in the transmitter of a particular type of quantum correlations, the discord of
response. Different encodings and transmitters give rise to different levels of efficiency. Considering
noisy quantum probes, we show that squeezed thermal transmitters with non-symmetrically dis-
tributed noise among the field modes yield higher quantum efficiency compared with coherent ther-
mal quantum states. The noise-enhanced quantum advantage is a consequence of the discord of
response being a non-decreasing function of increasing thermal noise under constant squeezing, a
behavior that leads to increased state distinguishability. We finally show that, for non-symmetric
squeezed thermal states, the probability of error, as measured by the quantum Chernoff bound, van-
ishes asymptotically with increasing local thermal noise with finite global squeezing. Therefore, with
fixed finite squeezing, noisy but strongly discordant quantum states with a large noise imbalance
between the field modes can outperform noisy classical resources as well as pure entangled transmit-
ters with the same finite level of squeezing.

1. Introduction

In the context of quantum information and quantum technology the idea of reading classical data by means of
quantum states arises quite naturally [1, 2]. In general, the standard implementations of reading are based on
optical technologies: the task is the readout of a digital optical memory, where information is stored by means of
the optical properties of the memory cells that are in turn probed by shining light, e.g., a laser beam, on them.
The probing light is usually denoted as the transmitter. Interesting features arise in the regime in which the
transmitter has to be treated quantum mechanically. The maximum rate of reliable readout defines the quantum
reading capacity [2]. The latter can overcome the classical reading capacity, obtained by probing with classical
light, in a number of relevant settings. The (possibly quantum) transmitter that is needed to extract the encoded
information is prepared in some initial state. By scanning a particular cell the transmitter changes its properties
in a way that depends on the cell. The task is to recognize which cell occurs based on the output state of the
transmitter after it has been detected and measured. Therefore, the problem of reading is reduced to the problem
of distinguishing the output states of the transmitter.

In such optical settings one needs to consider two main coding protocols depending on the trade-off
between the energy and coherence of the transmitters and the channels that are being used. The first protocol is
the so-called amplitude shift keying (ASK), in which changes in the state of the transmitter are caused by cell-
dependent losses in the intensity of the transmitted signal [ 1-5]. The second main protocol is the so-called phase
shift keying (PSK) [6—11]. This is a type of coding which does not produce energy dissipation. On the other hand,
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it requires very high coherence of the transmitter, a feature that might be realized in realistic
implementations [7].

If the transmitter is quantum, the cells play the role of effective quantum channels. The ASK protocol then
corresponds to a dissipative channel coding, wheareas the PSK protocol is a particular case of unitary coding
corresponding to a unitary channel. Within the ASK protocol, it can be shown that in the low-energy regime
there is an energy threshold above which the maximally entangled transmitter, i.e., a two-mode squeezed state,
yields better reading efficiency than any of the classical states with the same energy [1, 2, 4]. The general result is
still valid in the presence of some noise-induced decoherence. Within the ASK protocol, coding is then carried
out by local channels corresponding to cells with different reflectivities.

In the PSK protocol, the coding is carried out by means of local unitary operations, specifically, local phase
shifts [6, 7]. In the ideal, noise-free, protocol the transmitter is taken to be in a pure Gaussian quasi-Bell state,
i.e., a Bell-type superposition of quasi-orthogonal coherent states. In this scheme, the resulting quantum
advantage is absolute in the sense that quantum reading of the classical information encoded via a phase shift of 7
is achieved with vanishing error, whereas any classical state of the transmitter always yields a finite error
probability.

Inboth the ASK and PSK protocols the transmitter is assumed to be a bipartite system such that only one
part of it scans the memory cell. This choice is motivated by the fact that it maximizes distinguishability at the
output when the state of the transmitter is quantum. As already mentioned, the reading efficiency is
characterized by the probability of error. Information is encoded in binary memory cells with the indices 0 and 1.
It is thus written using only two local channels that are assumed to occur with equal a priori probabilities. Given
the bi-partite input transmitter ¢ , 5, the two possible output states will be denoted by Q/(S; and QXB) .

The probability of error in distinguishing the two output states when reading a memory cell by means of the
same input g 45 is given by the well-known Helstrom formula [12]:

B, =

dTr(ng%)s Q/(&;))> (1)

SN

1
2

wheredr, = || g/(&) - ngg |l is the trace distance, with || X ||, = Tr \/ﬁ . With our normalization
convention, the trace distance ranges from 0 to a maximum of 2 for orthogonal pure states.

In the original reading protocols the goal is to minimize P,,, over the set of possible transmitter states ¢ ,5
with fixed encoding in the memory cells [2, 7]. The problem is thus dependent on the type of memory device
being used.

Here instead we want to provide a device-independent characterization of a given transmitter by considering
the worst-case scenario that maximizes the probability of the error P,,, over all possible codings. Once the worst-
case the scenario is identified, one can then compare different classes of transmitter states to identify the ones
that minimize the maximum probability of error P{™*,

We will show that the maximum probability of error P™*) is a monotonically decreasing function of the
amount of quantum correlations present in the transmitter state ¢ , 5, as quantified by a recently introduced
measure of quantum correlations, the so-called discord of response [13] in its Gaussian version [14]. (For
general reviews of quantum correlations and distinguishability of quantum states and of discord-like
correlations, see [15, 16].) As a consequence, every state with non-vanishing discord of response is able to read
any type of memory device with maximal B, < 1/2. On the other hand, for each classical transmitter, i.e., fora
transmitter with vanishing discord of response, at least one memory device will always exist which is completely
invisible, i.e., for which P, = 1/2. In these considerations we exclude the situations when two channels are
chosen to be arbitrarily similar. In this case the probability of error always approaches1/2 independently of the
chosen transmitter.

In section 2 we derive the exact analytical relation between the maximum probability of error and the
Gaussian discord of response. In section 3 we discuss the properties of classical and quantum Gaussian
transmitters, comparing squeezed thermal, thermal squeezed and coherent thermal states; in section 3.1 we
derive upper and lower bounds for the maximum probability of error, and in section 3.2 we identify the unitary
coding that maximizes the quantum Chernoff bound, namely the upper bound for the maximum probability of
error, for the classes of quantum Gaussian transmitters considered. The unitary channel which maximizes the
bounds for the probability of error turns out to be a particular PSK coding, namely the unique traceless one,
which is carried out for a 7/2 phase shift.

In section 4 we compare the performance of Gaussian quantum states of light with classical states (coherent
thermal states). We show that strongly discordant squeezed thermal states possess higher reading efficiency than
the corresponding classical states of light, that is, non-discordant Gaussian coherent thermal transmitters with
the same total number of photons (fixed energy). This points up an important instance of the advantage of
noise-enhanced quantum resources over the corresponding noisy classical resources.

2
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In section 5 we compare different families of discordant Gaussian states, the squeezed thermal and thermal
squeezed states with a fixed total number of photons or squeezing. Although for both classes of states the
entanglement obviously decreases with increasing thermal noise, we show that for squeezed thermal states the
discord is an increasing function of the number of thermal photons with fixed squeezing, whereas the opposite
holds for thermal squeezed states. Moreover, for squeezed thermal transmitters, the quantum Chernoffbound is
independent of thermal noise. As a consequence, this type of transmitter plays a privileged role in the considered
class of quantum Gaussian resources because the associated quantum efficiency is either enhanced or unaffected
by increasing the thermal noise. Thus squeezed thermal transmitters realize an instance of noise-enhanced or
noise-independent quantum resources with fixed squeezing. Both in the classical-to-quantum comparison and
in the comparison of different quantum resources, the key enhancement of quantum advantage is realized in the
situation of strongest asymmetry of the distribution of thermal noise among the field modes: local noise
enhancement leads to global enhancement of quantum correlations.

The main results are summarized and some prospects for future work are discussed in section 6. Detailed
calculations and auxiliary reasoning are reported in five appendixes.

2. Probability of error, bounds, and discord of response

In protocols of quantum reading with unitary coding the two local channels acting on the input probe state ¢,

are unitary and are denoted byU'” and U Therefore, in this type of protocol Qg = U0 AB U "and

ng}g) = UV, UT, s0 the probability of error reads
1 1

B =2 = (UL 04 ULT, UL e, UDT). (2)

Since the trace norm is invariant under local unitary transformations, one has equivalently

E, =

dTr(QAB: 5A3)> (3)

| =

1
2
whered,; = Wy, Wiand Wy = UPTUYY is still alocal unitary transformation acting on the transmitted
subsystem A. The absolute upper bound for the probability of error is thus1/2, corresponding to a situation in
which there is no way to distinguish the two output states and therefore the memory device becomes completely
invisible to the transmitter.

In general, computing the trace distance proves to be extremely challenging [ 17], even more so for Gaussian
states of infinite-dimensional continuous-variable systems [18]. Therefore one has to look for analytically
computable a priori upper and lower bounds. A natural upper bound for the probability of error, equation (1), in

distinguishing two states ¢, and ¢, occurring with the same probability, is provided by the quantum Chernoff
bound QCB[19]:

— 1 : t 11—t
Perr < QC = E|:teu(}){,:l)Tr (Ql Q, ):I (4)
If the states ¢, and g, are not arbitrary but are qubit—qudit states related by a local single-qubit unitary
transformation, as in the case of the quantum reading protocol with unitary coding, for which ¢, = ¢,z and

0, = 0,5 then the quantum Chernoffbound QCB s achieved fort = 1/2 in equation (4), as discussed in
appendix D:

QCB = %[Tr(@@)], (5)

and its expression coincides with the quantum Bhattacharyya coefficient [ 18, 20], which provides an upper
bound for QCB for arbitrary quantum states. The same result, equation (5), holds for Gaussian states related by
traceless local symplectic transformations, as discussed in the following sections and in appendix D.

Next, considering the Uhlmann fidelity yields a complete hierarchy of lower and upper bounds [18]:

LBE,;» < R < QCB, (6)
where the lower bound for the probability of error LBE,, = (1 — /1 — F)/2 and the Uhlmann fidelity

2
between two quantum states ¢;, @, is definedasF (g, ¢,) = (Tr NG )

For the quantum reading protocol with unitary coding, let us consider the maximum probability of error in
distinguishing the output of a binary memory cell encoded using one identity and one arbitrary unitary channel
W, chosen in the set of local unitary operations with non-degenerate harmonic spectrum. The latter is the
spectrum of the complex roots of the unity and its choice is motivated by observing that it unambiguously

3
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excludes the identity from the set of possible operations: indeed, unitary operations with harmonic spectrum are
orthogonal (in the Hilbert-Schmidt sense) to the identity. We further assume that the coding is unbiased, that s,
the two channels are equiprobable.

The worst-case scenario is defined by the probability of error from equation (3) being the largest possible:

. 1 1. .
P = max By, = — — — min dr, (045 8Os )- (7)
{wi} 2 4w
Let us now consider a recently introduced measure of quantum correlations, the so-called discord of
response [13]:

Di(o4p) = ?3\}1; N;Id)%(QAB’ GAB)’ (8)
A

where the index x denotes the possible different types of well-behaved contractive metrics under completely

positive and trace-preserving (CPTP) maps. The normalization factor N, depends on the given metrics and is

chosen in such away as to ensure that D7 varies in the interval [0, 1]. Finally, the set oflocal unitary operations

{W, }includes all and only those local unitaries with harmonic spectrum.

In the following, we will need to consider both the probability of error and different types of upper and lower
bounds for it. Therefore, we will be concerned with three different discords of response corresponding to three
types of contractive distances: trace, Hellinger, and Bures.

The trace distance dr, between any two quantum states ¢, and ¢, is defined as

dr; (0, @) = Tr[\/(al - 02)2]- 9)

The Bures distance, directly related to the fidelity F, is defined as

dpu (0> 0,) = \/2(1 - JF (o 0,) ) (10)

Finally, the Hellinger distance is defined as

dualen ¢) = \/Tr[(@ - &) ()

For each discord of response, trace, Hellinger, and Bures, the normalization factor in equation (8) is,
respectively, N7, = 1/4, Ny = Ngo = 1/2.

If the two states ¢, and g, are bipartite Gaussian states related by local traceless symplectic transformations or
bipartite qubit—qudit states related by a local single-qubit unitary operation, thatis, ¢, = ¢, and

0, = 045 = Wao,3 W, then, by exploiting equation (5), it is straightforward to show that the quantum
Chernoffbound is a simple, monotonically non-increasing simple function of the Hellinger distance:

QCB = i(z - dI%Iell(QAB’ 5AB))- (12)

It can then be immediately shown that the maximum of QCB over the set of local unitary operations { W, } with
completely non-degenerate harmonic spectrum is a simple linear function of the Hellinger discord of response:

1
QCB™> = E<1 - DI (04p)). (13)

The discord of response quantifies the response of a quantum state to least-disturbing local unitary perturbations
and satisfies all the basic axioms that must be obeyed by a bona fide measure of quantum correlations [ 13]: it
vanishes ifand only if ¢ , 5 is a classical-quantum state; it is invariant under local unitary operations; by fixing a
well-behaved metric such as trace, Bures, or Hellinger, it is contractive under CPTP maps on subsystem B, i.e.,
the subsystem that is not perturbed by the local unitary operation W,; and it reduces to an entanglement
monotone for pure states, for one of which it also assumes the maximum possible value (1).

By comparing equations (7) and (8) with x = Tr, it is immediately possible to relate the maximum
probability of error PM®) to the trace discord of response DX :

max 1 1
P = 7" EW/D? (Qap) - (14)

From equation (14) it follows that half of the square root of the trace discord of response yields the difference
between the absolute maximum of the probability of error (i.e.,1/2) and the maximum probability of error in
the fixed transmitter state g, .
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A vanishing trace discord of response implies that at least one memory exists that cannot be read by classical—
quantum transmitters. A maximum trace discord of response (D% = 1) implies that, irrespective of the coding,
the maximally entangled transmitter will read any memory without errors: indeed, any local unitary operation
with harmonic spectrum transforms a maximally entangled state into another maximally entangled state
orthogonal to it, and therefore yields perfect distinguishability at the output.

3. Quantum reading with squeezed thermal states

In the following, in order to compare the efficiency of classical (non-discordant) and quantum noisy
sources of light in reading protocols, we will consider two-mode Gaussian states of the electromagnetic field.
The states with vanishing first moments of the quadratures are fully described by their covariance matrix ¢
[21-23]:

a 0 ¢ O

110 a 0 ¢
°%la 0o b of (15)

0 Cy 0 b

The range of values ofa, b, ¢}, and ¢, for which the corresponding states are physical (i.e., correspond to positive
density matrices) is determined by the Heisenberg uncertainty relation stated in symplectic form:

0'+%a)€Ba)>O, (16)

10
a = b.In the following we will focus on two rather general classes of (undisplaced) Gaussian states: the squeezed
thermal states (STS) and the thermal squeezed states (TSS). The former are defined by two-mode squeezing
S(r) = exp {ra,' a; — r*a,a,}applied on possibly non-symmetric, two-mode thermal states. Note that the
denomination STS is sometimes used in the literature to denote any Gaussian states characterized by the
covariance matrix (equation (15)) with¢; = —c,.

In this work we adopt the convention that STSs describe a physically rather frequent situation in
which the thermal noise acts possibly non-symmetrically on the two modes, that is, Ny, # N, and thus the
total number of thermal photons is Ny, + Ny,. Here ris the two-mode squeezing parameter and a; are
the annihilation operators in each of the two modes (i =1, 2). The diagonal and off-diagonal covariance
matrix elements for these states, respectivelya = aq_p,b = bgg_pandc; = —c; = ¢y, read as follows:
where

wherew = [ 0 1 ] is the symplectic form. Throughout this paper, if we refer to the symmetric states we mean

Agg—im = cosh (2r) + 2Ny, cosh?(r) + 2Ny, sinh?(r),
bsg—m = cosh (2r) + 2Ny, cosh?(r) + 2Ny, sinh?(r),
¢y =1+ Ny, + Ny, ) sinh (2r), (17)

where N, = sinh?(r) is the number of squeezed photons.

Thermal squeezed states (TSSs) describe the reverse physical situation: an initially two-mode squeezed
vacuum is allowed to evolve at later times in a noisy channel and eventually thermalizes with an external
environment characterized by a total number of thermal photons Ny, + Ny,. The covariance matrix elements of
TSSs, respectivelya = agy_g,b = by_ggandc; = —c; = ¢y, are

Ath—sq = 2N; + 1 + 2Ny,
bth—sq =2N;+ 1+ 2Nthz)

Ciimsg = 2,/ Ne( N+ 1) . (18)

The same covariance matrix, equation (15), also describes classical uncorrelated tensor product states, which we
assume to be Gaussian. Thermal states are obtained by lettingc = ¢; = 0,a = ag = 1 + 2N, and

b = by =1 + 2Ny,,. These Gaussian states are classical in the sense that they can be written as convex
combinations of coherent states, and, moreover, they are the only Gaussian states with vanishing discord
[24,25]. Note that in standard quantum optics terminology the wording, classical states, is used to denote any
state with positive Glauber—Sudarshan P-representation. In the following, without loss of generality, we will
identify party A with mode a, and party B with mode a,.
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3.1. Probability of error: upper and lower bounds, and Gaussian discords of response
For unitary-coding protocols with Gaussian transmitters, Gaussian local (single-mode) unitary operations
acting on an infinite-dimensional Hilbert space are implemented by local (single-mode) symplectic
transformations acting on the covariance matrix o of two-mode Gaussian input states ng‘; .In the following we
will consider only traceless transformations. The traceless condition must be imposed in order to exclude trivial
coding by two identical channels, for which the maximum probability of error is always1/2. Moreover,
imposing tracelessness makes it possible to investigate and determine the correspondence between reading
efficiency and quantum correlations, as will be shown in the following. Denoting by F,4 the local traceless
symplectic transformations acting on mode A, the two local unitary operations implementing the encodings of
the binary memory cells are theidentity 1, @ lpand F4 @ 1p.

To assess the performance of quantum and classical Gaussian resources in the unitary-coding quantum
reading protocol, we need to evaluate the upper and lower bounds, equations (4) and (6), for the maximum
probability of error P\™®) | equations (7) and (14), for Gaussian two-mode transmitters ng(;) .Tothisend, we

introduce first the Gaussian discord of response [14], i.e., the discord of response obtained by minimizing over
local unitaries restricted only to the subset of local symplectic, traceless transformations F:

GDi (0f7) = min Ndl(eln: 8)s (19)
A
where the index d, stands for trace, Hellinger, or Bures distance with the same normalization factors N'; ' as

. . . ~ FaoFj . .
before, and F} is the transpose of the symplectic matrix F,, and Qg =0 f(x P ) . The Gaussian discord of

response provides an upper bound to the true discord of response of Gaussian states and vanishes in and only in
Gaussian classical states (the subset of separable states that are in product form). The main properties of the
Gaussian discord of response are reported in appendix A.

In complete analogy with equation (14) the maximum probability of error in discriminating two Gaussian
transmitters related by a local symplectic transformation can be expressed as a simple function of the trace
Gaussian discord of response:

p(max ) —

err -

6D} (o). (20)

N | —
N | =

Specializing the bounds given by equation (6) to the maximum probability of error in distinguishing Gaussian
states, one has

LBPM™) < P7™) < QCB™), (21)

where the lower bound LBP is a simple monotonically non-increasing function of the Bures Gaussian discord of
response:

LBP™) — %(1 - \/1 ~(1- gDﬁ“)z), (22)

and the upper bound QCB s a simple linear, monotonically non-increasing function of the Hellinger Gaussian
discord of response:

1
QCB™) = ~(1 - ¢DI). (23)

Therefore, for increasing Gaussian discords of response the bounds for the probability of error decrease
correspondingly. The explicit expressions of the quantum Chernoff bound QCB, the Hellinger Gaussian discord
of response, the Uhlmann fidelity, and the Bures Gaussian discord of response are derived in appendices B

and C.

3.2. Maximum probability of error: 7/2 phase shift

;
The probability of error in distinguishing QX;) from QNX;) =9 /(‘I;MFA ) is given by equation (3), with the local

symplectic transformations F, replacing W,. Among the local unitary operations F, which can implement the
unitary-coding reading protocol, an important subset includes the single-mode phase shifts P acting on mode

a;, parameterized by the angle parameter ¢b: By = exp (—ipa, ay).
Under alocal phase shift the local mode a, is transformed as follows: d; = P aqu{ = exp (—i¢p) a;, whereas

the two-mode covariance matrix ¢ transforms according to (F, @ 1)o (Fy @ )7, where the symplectic matrix
F, reads
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—sin ¢p cos ¢

For the maximum probability of error, equation (20), the upper bound is achieved, from equations (21) and
(23), in terms of a simple linear function of the Hellinger Gaussian discord of response. The latter, in turn, is
obtained by minimizing the Hellinger distance over the entire set of local unitary operations implemented on the
covariance matrix by local symplectic, traceless transformations. For squeezed thermal and thermal squeezed
states one finds that this minimum is realized by the 7/2 phase shift F,,/,, which is the only possible traceless
phase shift. Therefore the extremal unitary-coding protocol in the ensemble of local traceless symplectic
operations is realized by a particular PSK coding, the phase shift 7/2, which is the only traceless PSK coding. The
details of the proof are reported in appendix D.

On the other hand, the quantity LBP{™) | equation (22), evaluated at /2, may not be optimal but certainly
still provides a lower bound for the maximum probability of error:

Fy= [ cos ¢ sin ¢:|. (24)

LBR,, (Fa) < LBPE™ < PR, (25)

Since for a z/2 phase shift the corresponding transformation is implemented by the traceless symplectic

matrix F,/, = [ 01 (1)], the expectation values of the canonical quadrature operators x and p transform as

follows: (x) — —(p)and(p) — (x). Therefore, undisplaced thermal Gaussian states ((x) = (p) = 0) are left
invariant, and the worst-case PSK coding (1, F,,) is completely invisible to classical transmitters (thermal
states) since the 7/2 shift does not change their covariance matrix. The probability of error P,,, for every such
classical transmitter always achieves the absolute maximum1/2. The reverse is also true: the very same coding
can always be read by any quantum Gaussian transmitter with nonvanishing Gaussian discord of response. As a
consequence, quantum transmitters always outperform undisplaced classical transmitters in device-
independent worst-case scenario quantum reading. The situation changes when we consider displaced thermal
states, as displacement unavoidably increases distinguishability. Indeed, the coherent and thermal coherent
states are very efficient in detecting phase-shift transformations. Nonetheless, in the next section we will show
that thermal coherent transmitters are outperformed by noisy quantum ones provided the distribution of the
thermal noise among the modes in the quantum resource is strongly non-symmetric.

4. Comparing classical and quantum resources: noise-enhanced quantum transmitters

We have seen that without displacement, classical transmitters (thermal states) are completely blind to reading.
Introducing displacement enhances the distinguishability of output states and turns classical states (thermal
coherent states) into useful transmitters. It is straightforward to show that distinguishability and reading
efficiency increase by implementing a single-mode displacement rather than a two-mode one with equal single-
mode amplitudes.

Let us then consider a scenario in which one compares discordant quantum transmitters with displaced
classical ones. We will show that in this case, that is, comparing noisy quantum resources with distinguishability-
enhanced noisy classical ones, discordant transmitters can outperform classical ones, and the quantum
advantage increases with increasing (thermal) noise.

Stated precisely, given the same coding(l, F,,) acting locally on the first mode, we want to identify the
regimes in which the probability of error associated with a quantum transmitter is smaller than the probability of
error associated with a thermal coherent one. From equations (4) and (6) this is equivalent to identifying the
regimes in which the upper bound QCB for the probability of error using squeezed thermal transmitters,
denoted by QCBT™ is smaller than the lower bound LBP,,, using thermal coherent states, which will be denoted
by LBP2"~"_Obviously, only a constrained comparison at given fixed physical quantities is meaningful. We will
thus compare squeezed thermal states and displaced thermal states with fixed purity and a fixed total number of
photons. We will observe that the quantum advantage is achieved provided the covariance matrix is not
symmetric with respect to the exchange of the modes.

With these notations, the requirement for a bona fide quantum advantage reads as follows:

QCBsq—th < LBP;zh_th, (26)

Both the coherent thermal and squeezed thermal states are two extremal classes of the general family of states
which can be described as squeezed displaced thermal states (SDTS), defined as:

@sprs = S(ID (@) gy (N N, ) D (@S (), (27)
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where S (r) = exp (ra, a; — raya, ) is the two-mode squeezing operator and we assume that the squeezing

parameter ris real. Here D (a) = exp (aa;, — aa ) is the single-mode displacement operator and
0, (Nip» N,) = O, X O, is the non-symmetric two-mode thermal state, where

o N )" : . .
O, = #MZW:O(H;L;.,-) |m;) (m;|. The purity 4 = 1/(16 det 6)!'? of the SDTS is a function of the

covariance matrix o and depends only on the number of thermal photons:
1

U= . (28)
(1 + 2Ny, )(1 + 2Nu,)
The total number of photons, Ny = < a,'a; + a5 a,>,in the SDTS reads:
Nr = (Nuy, + No, ) (1 + 2N0) + 2N, (1 + o) + [af, (29)

where N, = sinh ()? is the number of squeezed photons.
Taking r= 0, SDTSs reduce to thermal coherent states ¢ (0, a, Ny, Nyp,,) with the total number of photons

Nr = Ny, + Ny, + |a|?. Decreasing the displacement amplitude e, the distinguishability of coherent thermal
transmitters is reduced. We want to investigate whether this loss of distinguishability can be compensated by the
quantum contribution due to the increase in r keeping Nrand the purity fixed. In the limiting situation when

a = 0 the corresponding quantum state ¢ (r, 0, Ny, Ny, ) is a squeezed thermal state (STS). In the following we
will show that for STSs ¢ (1, 0, Ny,,, Ny,) and thermal coherent states ¢ (0, a, Ny, Nyp,,) with an equal total
number of photons N, inequality (26) is satisfied for some ranges of Ny, and Ny,,. The condition of an equal
total number of photons Nyimplies|a|? = 2 sinh (r)* (1 + Ny, + N, ).

To evaluate the Uhlmann fidelity 7 and the quantum Chernoff bound QCB in equation (26) we need to
know how the phase shift F,,, transforms the transmitters that we want to compare: the squeezed thermal states
and the thermal coherent states. The dependence of 7 and QCB on the displacement vector and on the
covariance matrix of general Gaussian states is reported in appendices B and C. The Uhlmann fidelity providing
the lower bound on P,,, for thermal coherent states depends only on the displacement vector since the
covariance matrix of thermal coherent states is unaffected by the action of the symplectic transformation

(Fn/z & JlB)a(F,,/Z &) JlB)T,whereF,,/z @l = [(1)

vector of a thermal coherent state can be written as (u)cn—sm = [/2 ||, 0, 0, 0]7. Under a z/2 phase shift the
difference § between the final and the initial displacement vectors reads as follows:

VZall [1vzal |V2al

_01] @ 1. Without loss of generality, the displacement

s=Fp| O -] 0 |=[-IV2alf. (30)
0 0 0
0 0 0

The Uhlmann fidelity of a thermal coherent state is then

- 2|al|?
Feoh=th = exp| — , 31
p[ 1 ) (31)

where A = (1 + 2Ny, ). The QCB of a non-symmetric, undisplaced squeezed thermal state depends only on the
covariance matrix, equation (15), with entries (equations (17)), and its explicit expression is reported in
appendix C.

In figure 1, upper panel, we report the exact values of P47 for a squeezed vacuum with squeezing r, P for

a coherent state|a), and PS2-" for a squeezed displaced vacuum with squeezing r’ and displacement 4, in the
absence of noise, Ny, = Ny,, = 0,and ata fixed total photon number Ny = |a|? = 2 sink*(r) = |5]?

(1 + 2 sinh?(r')) + 2 sink?(r’). The coherent states outperform the quantum resources given by the
undisplaced squeezed vacuum. The coherent transmitters are then compared with squeezed displaced vacuums
of the same energy. Even if the latter include a classical contribution due to displacement and a quantum
contribution due to squeezing they are still outperformed by the classical coherent states. The quantum
efficiency converges to the classical one in the high-energy limit. For completeness, in figure 1 we also report the
quantum Chernoff bound QCB*™ for the squeezed-vacuum transmitters.

In the presence of symmetric thermal noise, Ny, = Njy,,, there is no improvement in the quantum efficiency
relative to the classical one. Introducing non-symmetric thermal noise, e.g., Ny, > Ny, the Gaussian discords of
response, which are intrinsically asymmetric quantities with respect to the subsystems in a given bipartition,
increase dramatically, and so does the corresponding quantum reading efficiency. As a consequence, for
sufficiently strong non-symmetric thermal noise the quantum resources outperform the classical ones. In the
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Figure 1. Upper-panel: behavior, as a function of the total photon number Nr, of the probability of error P,,, in the absence of thermal
noise (N, = Ny, = 0). Dotted blue line: probability of error P1~"* of squeezed-vacuum states. Dashed black line: P%!" of coherent
states. Dot-dashed Green line: P7" of squeezed displaced vacuum states with displacementa = %NT. Solid red line: quantum
Chernoff bound QCB*™ of squeezed-vacuum states yielding the upper bound for P,,, with quantum transmitters. No quantum gain
is not observed in this regime. Central panel: behavior of quantum and classical bounds for P,,, as functions of Nrat fixed asymmetric
thermal noise: Ny, = 5, Ny, = 0. Solid red line: quantum upper bound QCB*" for P, with undisplaced squeezed thermal states.
Dashed black line: classical lower bound LBPS"~* for P,,, with thermal coherent states. Lower panel: same as central panel, but with
stronger thermal noise: Ny, = 8, Ny, = 0. With increasing Ny the quantum upper bound goes below the corresponding classical

figures of merit and quantum transmitters certainly outperform classical ones.

presence of non-symmetric noise exact expressions for P,,, are no longer available. Therefore, in the central and
lower panels of figure 1 we report the exact lower and upper bounds on P, based on the Uhlmann fidelity F and
on the quantum Chernoff bound QCB. We observe that at intermediate values of the total number of photons
Ny, the quantum upper bound QCB**"" for P, is strictly lower than the classical lower bound LBP<" ",
ensuring that the quantum resources outperform the classical ones. The classical transmitters (thermal coherent
states) recover the quantum efficiency for large values of the total photon number.

Moreover, comparing the central and lower panels in figure 1, we observe that as the number of thermal
photons Ny, is increased, the range of values of the total photon number N for which one has a quantum
advantage increases.

In figure 2 we provide a plot of the contour lines for the differences QCB*~* — LBP"~" for different
asymmetries: Ny, = 0 (upper panel) and Ny, = 0.5 (lower panel) as functions of the total photon number N
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Figure 2. Contour plot providing the contour lines for the differences QCB*~"" — LBP<"~" for Ny, = 0 (upper panel) and for

N, = 0.5 (lower panel) as functions of the total photon number Ny-and of the number of thermal photons Nyy,,. The region in which
these quantities assume negative values corresponds to quantum transmitters certainly outperforming coherent thermal ones. The
dashed red curve identifies its boundary. The straight solid yellow lines in both panels correspond to a fixed degree of squeezing r=0.8.
Moving along these lines in the direction of increasing the number of thermal photons Njy,,, one observes that as noise grows there is a
growing advantage in using quantum transmitters over classical ones. This behavior provides an instance of noise-enhanced quantum
performance. The effect is reduced when the asymmetry Ny, — Ny, decreases.

and of the purity (or, equivalently, of the number of thermal photons Ny, ). When these differences become
negative, inequality (26) is satisfied and the quantum resources certainly outperform the classical ones.
From the upper panel of figure 2, for Ny, = 0, comparing noisy quantum transmitters with noisy coherent

ones, one observes that QCB*~" — LBP"~™ < () in alarge region of parameters. Fixing the squeezing so that
the change in the total photon number Nris due only to the change in the number of thermal photons Ny,
corresponds to a straight line in the plane (in the figure, drawn at r= 0.8). Remarkably, for these iso-squeezed
states the quantum advantage increases as the number of thermal photons increases. This is an instance of noise-
enhanced quantum efficiency that will be discussed further in section 5.

In the lower panel of figure 2 we decrease the asymmetry (Ny,, = 0.5). We observe that the quantum gain is
also achieved but in the range of much higher Nr. Again, fixing the squeezing, e.g., at r= 0.8, we notice that the
quantum advantage increases with thermal noise.

We remark that these results are obtained in a scenario in which we compare the minimum quantum
efficiency (upper bound for the error probability using quantum transmitters) with the maximum classical
efficiency (lower bound for the error probability using coherent thermal transmitters). Therefore, the actual
quantum advantage will be even larger.
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The quantum advantage disappears in the symmetric situation Ny, = Nyp,,. Indeed, the inequality Ny, > Ny,
expresses the condition that the mode which passes through the coding channels is more noisy. This condition is
unfavorable for thermal coherent states and favorable for STSs. Namely, in STSs with fixed finite squeezing,
increasing the number of thermal photons in the first mode certainly increases the discord of response and, as a
consequence, increases also the reading efficiency for this type of transmitters. This phenomenon is further
analyzed in the following sections on the comparison of different quantum transmitters. These two
concatenated effects cause the advantage of quantum states over classical transmitters in the protocol of
quantum reading with noisy transmitters. The asymmetry between the local thermal noise terms is the crucial
element for realizing the enhancement of reading efficiency. As we will see in the next section, the behavior of
STSs as the number of thermal photons increases in the symmetric situation Ny, = Ny,,, although not sufficient
to bring about a quantum advantage over classical resources, favors STSs among other noisy quantum
transmitters.

5. Comparing noisy quantum resources

In the preceding section we compared classical and quantum transmitters, and for the worst-case scenario we
identified the regimes in which noisy but discordant quantum resources outperform classical thermal coherent
ones. We also observed that the quantum advantage can increase, with fixed squeezing, with increasing thermal
noise. We will now compare the behavior of squeezed thermal and thermal squeezed states in order to
investigate how thermal noise affects the quantum efficiency of different classes of quantum transmitters. We
will compare symmetric squeezed thermal and thermal squeezed transmitters either with a fixed number of
thermal photons or with fixed squeezing. We will then consider how non-symmetric noise further enhances
quantum efficiency by suppressing the upper bound for the probability of error. Finally, we will investigate how
the quantum efficiency of different quantum transmitters improves when multiple reading operations are
implemented with fixed thermal noise.

5.1. Comparing symmetric squeezed thermal and thermal squeezed transmitters: fixed noise
Let us start by comparing quantum reading with symmetric squeezed thermal and symmetric thermal squeezed
transmitters with a fixed number of thermal photons and its performance as a function of the total number of
photons. This comparison is motivated by the fact that the interplay between quantum and thermal fluctuations
is very different for these two classes of quantum states. Squeezed thermal states (STSs) are obtained by applying
to thermal states, namely states that have already thermalized (e.g., at the output of a noisy channel), a purely
quantum operation, two-mode squeezing, that can be interpreted as a re-quantization of the thermal vacuum.
The reverse is also the case: thermal squeezed states (TSSs) are realized by letting pure squeezed vacuums evolve
and eventually thermalize in a noisy channel.

Both squeezed thermal and thermal squeezed states are two extremal classes of the very general family of
squeezed thermal squeezed displaced states (STSDSs) which are defined as follows:

o (s Niw> Nas 75 @) = S (1) Dy, [ (1) D (@) @0 D (@) S )T [S (1) (32)

Here S(r) and S (') are two-mode squeezing operators with different squeezing parameters rand 7', D (a) isa
single-mode displacement operator, and @y;, n,, is a noisy channel introducing Ny, and Ny, thermal photons
respectively in the first and in the second mode. The channel acts on a given Gaussian state, adding the number
of thermal photons to the diagonal entries of its covariance matrix. Finally, ¢,,. = |00) (00| denotes the two-
mode vacuum state. We study this family of states at constant fixed values of the parameters Ny, and Ny,. The
total number of photons in an STSDS is

Nr={(aa, + aj a,)
= (Nu+Nu, ) cosh (2r') + ( 1+ [af? ) cosh (2(r+r)) —1. (33)

Consider first the situation without displacement, @ = 0, and with symmetric thermal noise, Ny, = Nyy,, = Ny.
Taking r=0, STSDSs reduce to the TSTs ¢ (0, Ny, Ny, 1, 0). Decreasing 7’ and correspondingly increasing r
whereas keeping Nyand Ny, fixed, in the limitr’ — 0 one recovers the STSs¢ (r, Ny, Ny, 0, 0). Let us compare
these two extremal classes of quantum Gaussian transmitters that coincide for Ny, = 0 and differ for Ny, # 0 or,
in non symmetric situations, when Ny, # 0 and/or Ny, # 0.

In figure 3, upper-left panel, we observe that for a non vanishing but small number of thermal photons Ny,
the upper bound for the probability of error P,,, using STSs still remains above the lower bound for P, using
TSSs. By further increasing thermal noise, as shown in the upper-right panel of figure 3, all bounds with STSs are
below all bounds with TSSs and the STSs certainly outperform the TSSs. Due to the different effects of the noise
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Figure 3. Upper-left panel: behavior, as a function of the total number of photons N, of the upper and lower bounds for the
probability of error P, using either undisplaced squeezed thermal states (STSs) or undisplaced thermal squeezed states (TSSs) with
fixed, symmetric, thermal noise: Ny, = Ny, = 0.2. Upper-right panel: the same but with Ny, = Ny, = 2. In this case one observes
that beyond a threshold value of N the STSs certainly outperform the TSSs. The lower panels are similar to the upper panels but with
nonvanishing displacement|a|? = % (N7 = Nyy — Ny, ). The upper bounds the probability of error are given here by the quantum
Bhattacharyya coefficientUBR,, = 1/2 Tr JorJers which for states that include displacement does not necessarily coincide with the
quantum Chernoff bound QCB. The displacement increases the efficiency of the reading, but it does not guarantee with certainty the
noise-enhanced performance of STSs with respect to TSSs.

in STSs and T'SSs we observe the clear advantage of using STSs over TSSs in a quantum reading protocol. The
lower panels of figure 3 show the comparison made for the displaced thermal squeezed states

0(0, Ny, Ny, ', a) and displaced squeezed thermal states ¢ (r, Ny, Ny, 0, a). Ata fixed total number of
photons we observe that single-mode displacement always increases the reading efficiency for both classes of
states, whereas decreasing the squeezing reduces and eventually wipes out the quantum advantage of STSs over
TSSs. These two classes of states coincide in the limiting caser = ' = 0, in which they both recover the classical
thermal coherent states. As we saw in the preceding section, the advantage of STSs over classical states is
recovered by considering non-symmetric thermal noise.

5.2. Comparing symmetric squeezed thermal and thermal squeezed transmitters: fixed squeezing
When comparing the behavior of the Uhlmann fidelity, the quantum Chernoff bound, and the Gaussian
discords of response under variations of the classical noise at a fixed level of quantum fluctuations (squeezing),
we expect radically diverging behaviors of the STSs with respect to the TSSs. On intuitive grounds, because
fidelity, Chernoff bound, and discord are measures of distinguishability between an input state and the
corresponding output after alocal disturbance, if we compare STSs and T'SSs we notice from the structure of
their covariance matrices (see equation (18)), that as Ny, increases, the correlation part of the STSs increases,
whereas it remains constant in TSSs.

Indeed, the quantum Chernoff bound QCB and the Uhlmann fidelity F for any two Gaussian states of the
form of equation (15) witha=band ¢ = ¢; = —c,, related by az/2 phase shift, take the form

2 C2

QeB=24—"°¢

, (34)
2a% — ¢?
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Figure 4. Behavior of the quantum Chernoff bound QCB and of the lower bound for the probability of error LBP,,,, as functions of the
number of thermal photons Ny, for a fixed number of squeezed photons N; = 1, for thermal squeezed and squeezed thermal states.
Dashed blue line: QCB for thermal squeezed states. Dotted red line: LBP,,, for thermal squeezed states. Solid black line: QCB for
squeezed thermal states. Dot-dashed orange line: LBP,,, for squeezed thermal states. The colored areas between the upper and lower
bounds denote the admissible intervals of variation for the probability of error P,,,. Increasing thermal noise suppresses the efficiency
of thermal squeezed transmitters and increases the efficiency of squeezed thermal ones.

F= 4 . (35)

2
[1+c2—a2+\/(cz—az)2+l+2a2]

In figure 4 we report the behavior of the upper bound for the probability of error QCB (equation (34)), and
of the lower bound LBP,,, (which is a monotonic increasing function of the Uhlmann fidelity F, equation (35))
for the squeezed thermal and thermal squeezed states as functions of the number of thermal photons at fixed
squeezing. We observe that for TSSs 7 and QCB both increase with increasing thermal noise, converging
asymptotically to the absolute maximum (1/2) of the probability of error. Therefore, the quantum efficiency of
TSSs is suppressed by increasing the thermal noise.

On the other hand, for STSs QCB remains constant and LBP,,, decreases. This behavior guarantees the
probability of error, with fixed squeezing, is bound to vary in a restricted interval below 0.1. In the given
example, the squeezing amplitude r has been fixed at a relatively low valuer ~ 0.9. Increasing the level of
squeezing will further reduce the maximum value achievable by the probability of error. In conclusion, the
quantum advantage associated with squeezed thermal states is paramount at fixed, even moderate, squeezing
and increases monotonically with increasing thermal noise. A more detailed understanding of these opposite
behaviors can be gained by looking at the variation of the measures of distinguishability with respect to the
variations in thermal noise and in the parameters of the covariance matrix.

Consider a generic measure of distinguishability denoted by f (¢;, ¢,) where f, among others, includes the
Uhlmann fidelity 7 and the quantum Chernoff bound QCB. Consider then the total derivative of fwith respect
to Ny, keeping r constant:

i of

s 9
dNth ()a

a ()Nth ‘

c aNth ()C

oa (36)

Specializing to either F or QCB we obtain the explicit expressions of their derivatives, as reported in appendix E.
From these explicit expressions it follows that it is always

IQB| oy 9ABI o Tl S0 Tl <o,
oa |, oc |, da |, dc |,
irrespective of the type of quantum transmitter considered.
Hence, if frepresents either the Uhlmann fidelity or the quantum Chernoff bound, the derivative g lc = 0.

da
This behavior agrees with the intuition that the operation of increasing the diagonal entries of the covariance

matrix and keeping the off-diagonal entries constant acts as a thermal channel, which makes the initial state and
the final state after the phase shift less distinguishable. The behavior (;f lo < 0forbothF and QCBisalso

a
intuitively clear since changes in o under F,,, are the greater the larger the off-diagonal entries are when keeping
the diagonal a constant.
dc

Let us now discuss the state-dependent derivatives: for STSs and TSSs the partial derivatives ;T“ and o are
th th

non-negative; therefore, they cannot oppose the behavior of the state-independent part. For STSs they are given
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by2 cosh (2r) and 2 sinh (2r) respectively, whereas for TSSs % — 2and f\;; = 0. The behavior of F or QCB

ONi, a
with increasing N;;, depends then on the ratio of the positive and negative parts on the left side of equation (36).

For TSSs there is only a positive contribution in equation (36), and both F and QCB increase as the number
of thermal photons increases. As a consequence, both the lower and upper bounds for the probability of error
must increase, as observed in figure 4. On the other hand, for STSs the negative contribution always prevails
when considering the Uhlmann fidelity, whereas the positive and negative contributions always cancel each
other exactly when considering the quantum Chernoff bound, leading to a constant upper bound for the
probability of error, as observed in figure 4.

The constant behavior of QCB as a function of thermal noise for STSs can also be seen directly from
equation (34). This equation can be rewritten straightforwardly only in terms of a/c. Indeed, this ratio for STSs
does not depend on Ny,.

In this section we have considered reading protocols with binary coding given by the identity and the phase
shift 7/2, and transmitters implemented by symmetric STSs. This is actually a worst-case scenario in two
respects. On the one hand, the phase shift z/2 provides the worst possible coding among all traceless local
symplectic operations (maximum probability of error, device-independent reading). On the other hand,
symmetric STSs provide the worst possible transmitters among general STSs.

Indeed, in the next subsection we will show that non-symmetric STSs provide much greater quantum
efficiencies and even effectively suppress the probability of error.

5.3. Non-symmetric squeezed thermal states: noise-suppressed bounds for the probability of error
One might speculate that the increment of the Bures discord of response for increasing thermal noise and the
corresponding decrement of the lower bound for the probability of error are due to the particular relation with
the Bures metrics induced by the Uhlmann fidelity. However, this is not the case. We will now show that if one
considers non-symmetric two-mode STSs then also the Hellinger discord of response increases under increasing
local thermal noise, and therefore the corresponding upper bound for the probability of error decreases as well.
This is a strong indication that the true probability of error decreases as well with increasing thermal noise and
thus that the use of discordant, non-symmetric STSs yields an absolute advantage, even over the use of entangled
pure states, namely two-mode squeezed vacuums with the same amount of squeezing as in the
corresponding ST'Ss.

The covariance matrix of non-symmetric two-mode STSs is given in equation (15), with the parameters
given in equations (17). The corresponding QCB achieves its maximum for the z/2 phase shift, as proved in
appendix D, and the exact expression of QCB for non-symmetric STSs related by a #/2 phase shift is

ab — ¢?

QCB = .
2ab — ¢?

(37)
dQCB
thl

number of thermal photons Ny, in the second mode, whose analytical expression is provided in appendix E.
From this expression it is clear that there is a range of values of Ny, and Nyy,,, namely Ny, > Ny, for which
4QCB

ANy
increasing Ny, if Ny, < Ny, Henceforth, in the symmetric situation Ny, = Ny, = Ny, the quantum Chernoff
bound is maximum and constant, independent of Ny, as discussed in the preceding section.

In figure 5 we report the behavior of QCB as a function of Ny, for different fixed values of Ny, and fixed
squeezing r. In this physical situation the quantum Chernoff bound decreases with increasing local thermal noise
and vanishes asymptotically for Ny, — o0. Therefore the probability of error in a Gaussian quantum reading
protocol can be made arbitrarily small by using non-symmetric STS transmitters with very large local thermal
noise.

This very remarkable result may look at first quite counter intuitive. In fact, the crucial point is that this
feature is obtained by the global quantum operation of two-mode squeezing applied to a two-mode thermal state
with very strong asymmetry in the local thermal noises affecting the two field modes. It is therefore not entirely
unexpected that the consequences can be dramatic. Although entanglement certainly decreases, the operation of
squeezing a larger amount of noise can increase quantum state distinguishability by ‘orthogonalizing’ on alarger
portion of Hilbert space with respect to the thermal states.

Let us consider the variation of the quantum Chernoff bound with constant squeezing r and a constant

< 0. Therefore, in this regime QCB decreases with increasing Ny, . On the other hand, QCB increases with

5.4. Squeezed thermal and squeezed-vacuum states

Collecting all the previous results we are finally in a position to compare the best resources of device-
independent Gaussian quantum reading, namely the noisy and discordant non-symmetric STSs, with the best
absolute resources of Gaussian quantum reading, namely pure entangled two-mode squeezed vacuum states

14



I0OP Publishing

New]. Phys. 17 (2015) 013031

W Rogaetal

r=0.5, N.,.=0.01 r=0.5, N...=0.1
0.2970 ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘
0.2965 | 0.32¢
0.2960 t 1 x 030+ 1
O 0.2955F FNS)
g} . -_\ Q) 0.28’ ]
0.2950 |
02945 026}
0.2940 ‘ ‘ ‘ ‘ 0.24 ‘ ‘ ‘ ‘
0.00 002 004 006 008 0.10 00 02 04 06 08 1.0
Nthl N!iwj
r=0.5, N.,.=1 =0. L=
=YD W=l 035 r=0.5, N,.=1
030} 030
025"
o 025 X 00!
@) @)
g) 0.20¢ Q) 0.15¢
0.10}
15
0.15 0.05:
0.10 S — 0.00 ‘ ‘ ‘
0 2 4 6 8 10 0 50 100 150 200

Figure 5. Quantum Chernoff bound for non-symmetric STSs related by the phase shift F,/,, as a function of Ny,,. In each panel the
number of thermal photons Ny, in the second mode is fixed at a constant value. Upper-left panel: Ny, = 0.01. Upper-right panel:
N, = 0.1. Lower-left panel: Ny, = 1. Lower-right panel: Nyy,, = 1and extended range of values of Ny, to show the asymptotic
vanishing of QCB with increasing local thermal noise. For all panels the two-mode squeezing is fixed at r = 0.5. The maximum of QCB
isachieved for symmetric STSs and provides the upper bound for the maximum probability of error P, of the worst-case scenario.
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Figure 6. Behavior as a function of the total number of photons Ny of the probability of error P;1~" for two-mode squeezed-vacuum
transmitters (TMSVs) and of the lower bound for the probability of error LBP,1~ ™ for two-mode squeezed thermal transmitters
(STSs) with Ny, = 1and Ny, = 0. TMSVs have better reading efficiency than STSs. The squeezing in TMSVs is larger than that in

STSs at each fixed value of N The two efficiencies converge asymptotically as the total number of photons increases.

(TMSVSs). In the limit of infinite squeezing the TMSV Ss are maximally entangled pure Einstein—Podolsky—
Rosen (EPR) states whose probability of error in a quantum reading protocol vanishes identically. In absolute
terms, TMSVSs are certainly the best among classical and quantum resources in a reading protocol with
continuous variables. Indeed, in figure 6 we report the behavior of the exact probability of the error for TMSVSs
and the lower bound for it for non-symmetric STSs as functions of the total number of photons at fixed thermal
noise, that s, for arbitrarily increasing squeezing as the total number of photons increases. One observes that the
lower bound for the probability of error for non-symmetric STSs is always above the exact probability of error
for TMSVSs, converging toward it only asymptotically.

On the other hand, it is also important to compare TMSVSs and non-symmetric STSs in terms of the
concrete use of resources in realistically feasible experimental scenarios. In figures 7 and 8 we report the behavior
of the exact probability of the error P;17" associated with TMSVS transmitters as compared with the upper and

lower bounds QCB*4" and LBP:4~" for non-symmetric STS transmitters as functions of the total number of

photons. In the case of TMSVSs the total number of photons obviously depends only on the squeezing, and the
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Figure 7. Behavior, as functions of the total number of photons N, of the probability of error Py~ for two-mode squeezed vacuum
transmitters, and of the lower and upper bounds for the probability of error LBP1™" and QCB* ™ for non-symmetric two-mode
squeezed thermal transmitters. The latter two quantities are plotted for the variable Ny, at fixed squeezing r=0.5 as well as fixed-

reference thermal noise in the second field mode, Ny, = 0.
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Figure 8. Behavior, as functions of the total number of photons N of the probability of error P, for two-mode squeezed vacuum
transmitters, and of the lower and upper bounds for the probability of error LBPS2~"" and QCB**" for non-symmetric two-mode

squeezed thermal transmitters. The latter two quantities are plotted for variable Ny, at fixed squeezing r =1 as well as fixed-reference
thermal noise in the second field mode, Ny, = 0.

behavior of the probability of error is the same as that reported in figure 6. However, at variance with figure 6, in
figures 7 and 8 we compare this behavior with the lower and upper bounds for ST transmitters at a fixed finite
value, low and comparably easy to produce experimentally, of the squeezing. In this case, the total number of
photons in STSs varies only with the amount of thermal photons. Figure 7 shows the behavior of the exact
probability of error for TMSVS transmitters and the bounds for the probability of error for non-symmetric STSs
as functions of the total number of photons Nrand a constant squeezing parameter fixed at r=0.5. For
comparison, in figure 8 we report the same quantities but for a larger fixed two-mode squeezing r= 1. Indeed,
the higher the squeezing, the better the bounds for the probability of error using STS transmitters approximate
the exact probability of error for TMSVS transmitters.

The crucial difference is that in real-world experimental setups it is comparatively much easier and less
resource-demanding to implement a scheme relying on non-symmetric STSs with enhanced thermal noise and
quantum discord than to produce pure (noise-free) TMSVSs with enhanced squeezing and entanglement.
Therefore, with fixed squeezing, we can compare the two classes of transmitters for different values of the total
number of photons Nrand ask for the threshold value of Ny, above which the discordant STSs certainly perform
better than the entangled TMSVSs at the same fixed level of squeezing (the noise on the second mode being also
fixed at a given reference value, say, e.g., Ny, = 0). This threshold is thus determined by the condition
QCB*~h = P317* We give here two numerical examples for two different realistic values of the two-mode
squeezing achievable in the laboratory with current technologies. For r = 0.5, we have QCB*1~" < P17 as
soonas Ny, > 3.6. Forr=1, we have QCB* 1~ < P77 35 s00n as Ny, 2 2.6. Therefore, the higher the fixed
level of squeezing, the lower the level of thermal noise and quantum discord required to match the performance
of pure entangled TMSVSs. Alternatively, increasing Ny, further above the threshold, we can also look for the
complementary information about the minimum threshold values of r (more easily realizable in the laboratory)
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QCB* ~th
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Figure 9. Upper and lower bounds for the probability of error, using squeezed thermal (STSs) and thermal squeezed (TSSs)
transmitters, as a function of the number of copies of each transmitter, at a fixed number of squeezed and thermal photons in each
single copy: N;=0.1 and Ny, = 1. Dashed blue line: QCB for thermal squeezed states. Dotted red line: LBP,,, for thermal squeezed
states. Solid black line: QCB for squeezed thermal states. Dot-dashed orange line: LBP,,, for squeezed thermal states. To achieve
P, = 1/8, itis enough to take at most # = 7 copies of STSs, whereas the needed number of copies of TSSs is at least rn = 20.

above which STSs match or surpass the performance of TMSVSs at higher values of squeezing (harder to achieve
experimentally). In other words, we can introduce the concept of effective squeezing r,gassociated with the value
Nf,{? (r, 1o ) such that for Ny, > Nﬁ{ﬁ[ (1, 1o ) STSs perform better than TMSVSs with a given squeezingr > 7.

In conclusion, device-independent quantum reading is a remarkable protocol of quantum technology with
noisy resources for which the best transmitters are discordant non-symmetric squeezed thermal states whose
performance is optimized by realizing a fine trade-off between increased local thermal noise and fixed global
two-mode squeezing, yielding noise-enhanced quantum correlations and state distinguishability.

5.5. Many copies

Let us now analyze the case in which the total number of photons can vary by considering many copies of the
transmitter, that is, repeating the reading protocol many times independently. Using n copies of the system, the
Uhlmann fidelity and the quantum Chernoff bound decrease as powers of n. Therefore, the probability of error
can decrease both in the case of squeezed thermal and thermal squeezed states.

The interesting question which arises here is how many copies we need in both cases to achieve a given level
of probability of error. The number of copies defines, for instance, the time needed for reading one bit of
information in the given coding. Therefore this process is interesting from the point of view of assessing the
reading time and the strength of the sources of squeezed light that one needs. Let us for instance assume that we
require a value of the probability of error 1/8, having for each copy of the squeezed thermal transmitter the
thermal noise fixed at Ny, = 1and the weak squeezing fixed at N, = 0.1; see figure 9. Looking at the upper bound
(worst-case scenario), the number of copies which are needed, to achieve the desired level of probability of error
is at most n = 7. Taking instead the thermal squeezed transmitter with the same squeezing and thermal noise in
each copy, we see from figure 9 that one needs, considering the lower bound (best-case scenario), at least n =20
copies.

These behaviors illustrate clearly the advantage of using noise-enhanced quantum correlations. Indeed,
comparing figures 9 and 4, we see that by keeping a fixed level of squeezing and increasing the thermal noise, the
number of copies of squeezed thermal transmitters needed to achieve a given level of precision stays constant,
whereas the number of copies of thermal squeezed transmitters must increase.

6. Conclusions and outlook

We have investigated Gaussian quantum reading protocols realized by weak optical sources in the worst-case
scenario for quantum transmitters with respect to classical (thermal coherent) ones. For protocols that involve
local unitary operations in the process of reading by continuous-variable Gaussian optical fields, we have shown
that the maximum probability of error in reading binary memory cells is directly related to the amount of
quantum correlations in a given transmitter, as quantified by the trace Gaussian discord of response. This
relation makes it possible to quantify reading efficiency in terms of quantum correlations, providing a natural
operational interpretation to the Gaussian discord of response.

Indeed, the latter is a well-defined measure of quantum state distinguishability under the action oflocal
unitary operations. Therefore, the more discordant is the transmitter, the smaller is the maximum probability of
error when using quantum resources. This relation then makes it possible to determine the physical regimes of
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state purity and signal strength for which one has a net advantage in using quantum resources over classical
thermal coherent ones.

Since the trace distance is in general uncomputable for Gaussian states, we have introduced exact upper and
lower bounds for the maximum probability of error. We have shown that these bounds are expressed in terms of
other types of quantum discords. In particular, the lower bound is expressed in terms of the Bures Gaussian
discord of response, whereas the upper bound, provided by the quantum Chernoff bound maximized over the
set of possible local unitary operations, is expressed in terms of the Hellinger Gaussian discord of response for
squeezed thermal states and thermal squeezed states.

Both bounds decrease with an increasing amount of quantum correlations, providing a precise quantitative
estimate of the quantum advantage obtained by using discordant resources over the corresponding thermal
coherent ones. Moreover, the Bures and Hellinger discords of response are of further independent interest, as
they play a central role in other quantum protocols studied recently, including the assessment and use of local
quantum uncertainty in optimal phase estimation [26], the efficiency of black-box quantum metrology [27-29],
and the quantum advantage of discordant resources in the protocol of quantum illumination [30].

After comparing quantum and classical resources, we have discussed two fundamental classes of Gaussian
quantum transmitters: symmetric squeezed thermal states (STSs) and symmetric thermal squeezed states
(TSSs). We have shown that the actual beneficial or detrimental effects of environmental noise depend on the
type of quantum state being considered. Considering STSs as quantum transmitters, the upper and lower
bounds for the probability of error decrease with increasing thermal noise and therefore the quantum reading
efficiency increases. The opposite behavior is observed when considering TSSs: in this case both the upper and
lower bounds for the maximum probability of error increase and therefore the quantum reading efficiency
decreases with increasing thermal noise.

Finally, we went a step further and investigated the use of non-symmetric STSs. For such transmitters, also
the quantum Chernoff bound decreases when the local thermal noise increases in one mode and remains fixed in
the second mode. Indeed, the quantum Chernoff bound vanishes asymptotically with very large local thermal
noise, and therefore the probability of error must also vanish. In other words, non-symmetric two-mode STSs
with imbalanced thermal noise between the two modes achieve an asymptotically vanishing probability of error
for very large values of noise imbalance. For such asymptotic states the Hellinger and Bures Gaussian discords of
response attain their maximum value, and the quantum Chernoff bound and Uhlmann fidelity vanish. As a
consequence, all upper and lower bounds for the probability of error vanish, the probability of error itself
vanishes, and perfect reading is approached asymptotically.

Since the quantum reading efficiency of non-symmetric two-mode squeezed thermal states is a non-
decreasing function of thermal noise, there is no evident advantage in using pure-state squeezed transmitters,
two-mode squeezed-vacuum states, or low-noise states over non-symmetric two-mode STSs with a large noise
imbalance between the field modes as long as the squeezing is kept fixed at a realistic, finite constant value that is
achievable in concrete experiments with currently available technology. Hence, noisy STSs transmitters can
provide better quantum efficiency with fixed two-mode squeezing, provided thermal noise (number of thermal
photons) is enhanced beyond the threshold value above which the upper bound for the probability of error
(quantum Chernoffbound) for STSs goes below the exact probability of error for TMSVSs with the same, fixed,
level of squeezing.

This remarkable phenomenon of noise-assisted quantum correlations and quantum efficiency is eventually
due to the fact that quantum state distinguishability is intimately related to the concept of geometric quantum
correlations, as measured by the discords of response, and the observation that the former can increase under
increasing thermal noise. In particular, maximum local noise enhancement leads to maximum global
enhancement of quantum correlations. In forthcoming studies we will provide a general characterization and
quantification of noise-suppressed versus noise-enhanced quantum correlations for different classes of
quantum states [31], and we will investigate the relations between different types of quantum correlations
according to states, metrics, and operations [32].
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Appendix A. Gaussian discord of response

Here we discuss the Gaussian discord of response, given by equation (19), and prove that it is a bona fide measure
of quantum correlations. More general discussion can be found in [14]. The minimal set of axioms with
universal consensus includes the following: (i) invariance under local unitary transformations, (ii) contractivity
under the action of completely positive and trace preserving (CPTP) maps acting on mode B, (iii) vanishing of
quantum correlations if and only if the state is classically—quantum correlated, i.e., with block-diagonal
covariance matrix, and (iv) reduction to an entanglement monotone for pure states. The first condition is
guaranteed by unitary invariance of the chosen distance and the procedure of minimization. The second
condition is satisfied because we consider only contractive distances in defining the discord of response.

The third condition is verified as follows. It is known that classical-quantum two-mode Gaussian states are
those and only those which can be represented by the tensor product w4 &) wp of single-mode Gaussian states
[24,25]. Up to displacements, such states are characterized by the block diagonal covariance matrices

ox 0 . . . .
ol = ( ) Let us consider the local traceless symplectic transformation F,4, which can be decomposed as
0 o B

Fp = SyF.»S; ', whereF,), = (_01 é) and S, is a symplectic matrix which diagonalizes 6 4,1.e.,64 = vS418T.

Here v are two equal symplectic eigenvalues of 6 4. The transformation given by F,,, is symmetry-preserving,
and therefore F4 = S, F,/,S} ' leaves 6, invariant. This shows that if the state is classically correlated there exists
atleast one local traceless transformation F, thatleaves the state invariant.

We now prove the reverse statement that only in the case of classically correlated states there exists such a
symplectic traceless transformation that leaves the state invariant. Assume that the covariance matrix left
Ly L

. Local symplectic transformation can
Ly L

invariant by a traceless transformation F, has the form o5 = (

c
0
by the local transformation, we have Fy L;; = Ly,. Since L, is reversible we obtain that F4 = I, which

contradicts the assumption about the spectrum of F4. This shows that condition (iii) is satisfied. Condition (iv)
is guaranteed by the fact that for pure states the Gaussian discord of response reduces to the Gaussian
entanglement of response [33] (the Gaussian counterpart of the entanglement of response [34]), which is a bona
fide measure of entanglement.

bring the covariance matrix into the so-called normal form, in which L, = ( Oc ) If the state is not changed

Appendix B. Uhlmann fidelity

The Uhlmann fidelity for two-mode Gaussian states can be computed as follows [35]. Let us define the matrix of
the symplectic form

0

—

0 =

S OO

(B.1)

[= NNl
(=R e )

0
0 -1
The displacement vector is the vector of the averages of the amplitude and phase field quadratures xand p, i.e.,
(u)y = ({x1), {p,)> (x2), (p,))T, where T'stands for transposition. Denote the difference of the displacement

vectors of two Gaussian states ¢ and ¢, by § = (u), — (u),,. Wealso need the auxiliary formulas defined using
the covariance matrices o and o, of the respective Gaussian states:

A= det(al + az), (B.2)
=2t det[(.Qol) (.Qaz) _ iﬂ], (B.3)
A=24 det(al + ;;.Q)det(az + é.Q) (B.4)
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The Uhlmann fidelity for two mode Gaussian states is then

F (o 0,) = exp[——5T(01 + 62) ]

x[(ﬁ+\/_ \/ J_+J_ ]_l. (B.5)

Appendix C. Quantum Chernoff bound

Any n-mode Gaussian state can be represented in its normal mode decomposition parameterized by
o = ((u), S, {vx}) in which (u) is the vector of the averages of the quadratures and

0= U(u),S[ k® Q(Vk)]U(L>,S: (C.1)
=1
where
2 (2w =1V .
Vi) = C.2
elww) 2yk+1j=zo(2yk+1] i) (i (C2)

is a thermal state with a mean photon number 7, = vy — 1/2 and|j ) are the eigenstates of the operator of the
number of photons in mode k. The set{v,, ....,1,} identifies the symplectic spectrum. In this way the covariance
matrix is decomposed as

6 =SAST, where A= é vily. (C.3)

For two arbitrary Gaussian states with normal mode decompositions ¢, = ({u1), Si, {ax}) and
0, = ((u2), Sy, {B;}), assuming thats = (u;) — (u,), we have [18]

Qt - TI' Qlt (1=)
= Q exp {—%fﬂ[vl(t) + (- t)]‘la}, (C.4)
where
B 2'T1Y.. G (ar)Gi_: | B
Q= M., & 1 t< k) (C.5)
Jaet[ Vi) + v - 0]
and
G, () z (C.6)
px_(x+1)P—(x—1)P' ’
Moreover
Wi(t) = 51[ k@ At(ak)ﬂk]51T> (C.7)
=1
Vu(l -1 = 52[ kEB 1—t(ﬂk)ﬂk]szT’ (C.8)
=1
where
(x+ 1)+ (x—1)?
A = C.9
T (€9
The quantum Chernoff bound for arbitrary states ¢, and g, is
QCB = 1 1nf Tr o 0\'™" (C.10)

2 te(0.

which for Gaussian states is expressed by means of equation (C.4),i.e.,QCB = % infye(0,1) Q-
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Appendix D. Extremization of the quantum Chernoff bound

Let us discuss the extremizations of the quantum Chernoff bound, QCB, between two states related by a local
unitary transformation. Lemma 1 in [30] shows that in the finite-dimensional case, if¢, = @¢, @', where @ isa
Hermitian matrix, the infimum is achieved fort = 1/2 in equation (C.10). The same proof can be applied as well
to a @ one-qubit traceless unitary matrix, since it is Hermitian. For Gaussian states of infinite-dimensional,
continuous-variable systems, we are able to formulate and prove the following theorem:

Theorem D.1. For two-mode Gaussian states 9\”) with covariance matrix o of the form given in equation (15) with

1 = —¢,, the QCB for the pair (o', Q(SA”SD ), where S  is any traceless local symplectic transformation, is achieved

fort = 1/2, namely:
ALt "
Tr (Q(") )t (Q(SA"SA)) > Tr o \IQ(SA"SA) . (D.1)

Proof. Firstlet us note that for any two quantum states ¢, and ¢,, the function Tr Qlt Qzl ~"is convexin t, which is

provedin [17]. We will show that if the two states ¢, and g, satisfy the assumptions of the theorem, Tr o Qzl “tis
symmetric with respect to the exchanget — 1 — t. These two properties imply the theorem.

Let us show the symmetry with respect to the exchanget — 1 — ¢. From [18] we know that for the states
with vanishing first moments Tr ¢, ¢, "' is given in equation (C.5). The numerator of this formula is already
symmetric with respect to the exchanget — 1 — ¢ for the states related by any unitary transformation. To proof
the theorem we only need to show the symmetry of the determinant in the denominator of equation (C.5),
det( Viit) + (1 —1) ), for the states which have the covariance matrices V; (t) = V (¢) and
V(1 —t) =S,V (1 —1)S].

Consider the determinant from the preceding formula:

det(V (1) + 4V (1 = 1)ST) (D.2)
=det(5;1V(t)(s/§)_1 L V(- t)) (D.3)
=det(sAV(t)s§+ V(- t)). (D.4)

The last equality is implied by the following argument. The form of the most general single-mode traceless
symplectic transformation (Euler decomposition) [33] is:

Sy = COfd’ sing |[¢ 0 [ cqsG sin 0]. (D.5)
—sing cosp||0 £ [—sin& cosd
where £ is positive. The traceless condition is obtained by imposing ¢p = z/2 — 0. Immediate verification shows
usthatS;' = —S,. The minus sign is irrelevant in the expression
STV (ST = (=S4) &R 1V (1) (=Sh ) 1 and can be omitted. This completes the proof. O

To express the upper bound for the maximum probability of error for undisplaced Gaussian states of the
covariance matrix given in equation (15) with¢; = —¢, and its counterpart related to it by traceless symplectic
transformations S, we maximize the quantum Chernoff bound over the set of these transformations. The
formula equation (C.4) witht = 1/2 is maximized ifdet[V (1/2) + SV (1/2)S ! ]is minimized over the set
{S4}. The most general Gaussian single-mode unitary transformation is given in equation (D.5). The
determinantdet[V (1/2) + SV (1/2)S}]does not depend on ¢ and achieves its minimum for & = 1. This can
be proved by direct verification of the first and second derivatives. Substituting& = 1in equation (D.5) yields the
transformation which maximizes the quantum Chernoff bound, namely

_[o 1
SA_[—I 0]’

which is the transformation corresponding to alocal /2 phase shift F,,/,.

Appendix E. Distinguishability measures and thermal noise

Here we discuss the derivatives of the distinguishability functions and their behavior.
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coCo=

Figure E1. Derivatives of the Uhlmann fidelity F over the entries a and ¢ of the covariance matrix, equation (15), in the range of values

corresponding to physical states, equation (16). The partial derivative % |c is always positive, whereas 0—7: | is always negative.

For the quantum Chernoff bound, QCB, the derivatives over the entries of the covariance matrix,
equation (15), read

0QCB 2ac? (E.1)
oa |, (c2 _ 2a2)2

0QCB| _ 2a%c (E.2)
dc ' '

a ( - 2a2)2

Itis immediately verifiable that the partial derivative of QCB, equation (E.1), is always positive and the partial
derivative, equation (E.2), is always negative. The derivatives of the Uhlmann fidelity are

16a(—a2+c2+ \/a4—2<62— 1)a2+c4+1 - 1)

Ll (B3

da c 2 ’
\/a4—2(c2—1)a2+c4+1 \/a4—2(c2—1)a2+c4+1 - (—a2+cz+1)

aF 8(2(a—c)c(a+c)—26\/a4—2<62—1)a2+c4+1)

— == . (E4)

dc

‘ \/a4 - 2(c2 - l)a2 +ct+ 1(,/(—612 +ct+ 1)2 - \/a“ - 2(c2 - 1)a2 +ct+ 1)3

The behavior of these rather complicated functions is reported graphically in figure E1 .

Also, in the case of F, the derivative over the diagonal entry of the covariance matrix with constant off-
diagonal elements is positive, whereas the derivative over the off-diagonal entries with constant diagonal entries
is negative.

In the case of the non-symmetric STSs discussed in section 5.3, the partial derivative of QCB, equation (37),
with respect to N, with constant Ny,, and r reads
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dQCB
m = _(Nthl - Nthz)g, (E.5)

N, v
where

8(Nup, + Nu, + 1) (2N, + 1) sinh?(2r)
g= ; > (E.6)
(N[i1 — 2(7Nu, + 3)Nu, + (N, = 6) Noy, — (Nup, + Nuy, + 1) cosh (4r) = 3)

Since g > 0 the derivative, equation (E.5), is positive only if Ny, < Ny, is negative only if Ny, > Nyp,,, and
vanishes identically for symmetric STSs, namely for Ny, = Ny, yielding a noise-independent QCB.

From the foregoing results it follows that in the range Ny, > Ny, the QCBis a monotonically decreasing
function of the number of thermal photons in the first mode (increasing local thermal noise) and vanishes
asymptotically, together with the probability of error, as Ny, — oo.
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