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Abstract♥ Future power systems could benefit considerably

from having a continuous real-time estimate of system inertia.

If realized, this could provide reference inputs to proactive

control and protection systems which could enhance not only

system stability but also operational economics through, for

example, more informed ancillary reserve planning using

knowledge of prevailing system conditions and stability

margins. Performing these predictions in real time is a

significant challenge owing to the complex stochastic and

temporal relationships between available measurements. This

paper proposes a statistical model capable of estimating system

inertia in real time through observed steady-state and

relatively small frequency variations; it is trained to learn the

features that inter-relate steady-state averaged frequency

variations and system inertia, using historical system data

demonstrated over two consecutive years. The proposed

algorithm is formulated as a Gaussian Mixture Model with

temporal dependence encoded as Markov chains. Applied to

the UK power system, it produces an optimized mean squared

error within 0.1 s2 for 95% of the daily estimation if being

calibrated on a half-hourly basis and maintains robustness

through measurement interruptions of up to a period of three

hours.

Index Terms♥ Real-time Inertia Estimation, Gaussian

Mixture Models, Markov Chain, Model Training.

I. INTRODUCTION

ue to the increasing penetration of renewable

generation and an associated need for more flexible

loads and technologies such as energy storage and demand

response, the prevailing power network will inevitably

exhibit less predictable and more pronounced dynamic

behavior in the future [1]. In addition to the potential

network reinforcement required, one of the wider

implications is the absence of an inherent inertial frequency

response from renewable sources, unlike large synchronous

machines which naturally provide a valuable damping effect

to any system frequency excursion based upon their inertia

and amount of stored energy in their rotating masses. The

absence of inertia from renewable sources will act to reduce

overall system inertia and could compromise future system

stability. Consequently, accelerated and magnified

frequency oscillations and significant power flow volatility

could occur more frequently in comparison with the

behavior of present-day power networks [1]. Under such

conditions, faster control action will be required or there

may be potential for mal-operation of protection systems,

such as RoCoF based loss-of-main protection and under-

frequency load shedding (UFLS) [2, 3].

The continuous awareness of power system inertia, which

would change more frequently in future due to the

intermittent nature of renewable energy sources connected

to the system, would be beneficial and could assist in

identifying and quantifying system stability issues in real

time. Furthermore, it offers a platform to pre-assess system

frequency behavior in response to hypothetical disturbances.

However, it is unrealistic to achieve a continuous online

inertia estimation using existing techniques, which are either

limited to post-event analysis using the Swing Equation [4,

5] or are implemented using an equivalent system model,

which requires a large quantity of system measurements in

practice [6, 7].

In order to achieve real-time inertia estimation while

addressing the above issues, this paper formulates a

Switching Gaussian Markov Model (SMGM) from the

observed variations of frequency and inertia in historical

measurements. SMGM accommodates the complex and

multiple forms of dependencies inherent in the relationship

between frequency and inertia variations by encoding a

switching regime using a finite mixture model [8].

Moreover, the introduction of Markov dynamics provides a

more accurate dependency structure by capturing temporal

context from the time-series observation data.

The main contributions of the paper and reported method

are as follows:

1) Due to the complex stochastic and specific temporal

dependencies between system frequency and inertia, a

novel multivariate mixture modeling approach to

characterizing these dependencies has been proposed

based on a combination of non-Gaussian distribution

and Markov dynamics which follows a time-series skip-

k transition [9].

2) The continuous estimation of power system inertia is

achieved online taking only steady-state system

frequency as input, periodically calibrated using

generation dispatch information, attributing to the

flexibility and accuracy of SMGM which encodes a

switching regime and tracks the mixed-order Markov

dynamics of a latent variable that is indicative of a

particular frequency-inertia variation relationship.

The paper is organized as follows: Section II reviews the

state-of-art methodologies of inertia estimation. Through

analyzing the relationship between system frequency and

inertia, Section III identifies the dependency structure for

inertia estimation. In section IV, the constituent elements

required to formulate the model are presented, specifically

the use of a Gaussian Mixture Model (GMM) and the

encoding of Markov dynamics. Section V presents issues

associated with the accuracy of estimation and the influence

of selection of parameters/models. Validation of the
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proposed model and discussion of performance and

implementation issues are covered in section VI along with

an illustration of the robustness of the model when input

measurements are not available for periods of time. Section

VII contains concluding remarks and explores issues and

future work associated with practical deployment of the

technique on an actual network.

II. EXISTING METHODS FOR INERTIA ESTIMATION

Existing inertia estimation methodologies can be

classified as using transient frequency based Swing

Equation, deformed Swing Equation and recursive state-

based estimation.

A. Transient frequency based inertia estimation

The Swing Equation is widely used in transient frequency

based inertia estimation. It describes the dynamic change in

rotor angle ( ) when a disturbance on the network upsets the

balance between generator mechanical power ( ) and

electrical power ( ) [10]. This phenomenon is represented

in Equation (1), where is the inertia constant of the

generation unit and is the rotor speed.

(1)

Thresholds for identification of events and the suitability

of applying such a polynomial approximation are introduced

in [4, 11], along with a 500ms sampling window for

improving the accuracy of the estimation. The location of

phasor measurement units (PMUs) and the system loading

conditions are shown to influence the accuracy of the

estimation. In contrast to [11], [12] proposes a moving

average filter used for inertia estimation by comparing the

filtered active power and the derivative of frequency stored

over a certain time period. Improvements are made in [5] by

introducing consecutive sum from which the time of the

disturbance and the inertia at that time can be derived.

However, these methods are all limited in that the onset of a

disturbance is required to determine system inertia.

Moreover, the subsequent time needed for inertia

computation delays effective actions necessary to reduce the

impact of disturbances on system stability (e.g. through pre-

emptive control actions). Furthermore, their applicability to

future systems may be negatively influenced from the

accuracy of measurement perspective, as a result of more

dynamic (small signal and transient) behavior due to

reduced inertia levels.

B. Deformed swing equations

In this approach, the Swing Equation is utilized to

formulate the equations of inertia estimation with specific

system measurements (i.e. voltage, current, phase angle).

A fifth order polynomial approximation equation is

applied in [13] to fit the rate of change of frequency curve

where the estimated coefficients of the polynomial are used

for inertia computation. In [14], a system inertia estimation

is obtained from an expression of bus voltage and oscillatory

frequency. However, this is only applicable to radial

networks, while mesh networks are invariably used in

practical power systems. A single machine infinite bus

model is adopted in [7]. Inertia of an individual machine is

derived from the division of the change in electrical power

by the third derivative of the rotor angle. However, this

method is limited when extended to a multi-machine system.

C. Recursive state estimation

According to real-time selected observations of system

topology and measurements (e.g. voltage, phase angle), the

states of a statistical model and its parameters, which

equivalently represent the investigated network model, are

updated in a recursive manner to provide an estimate of

prevailing system inertia.

The update of system inertia in a multi-machine system is

achieved in [6] through the iterative updates based on Least-

squares Method and Newton-Raphson methods. However,

the dynamic states of each generation model need to be

known for deriving the sensitivity matrix and analyzing

eigenvalues to provide an estimate of inertia. In practice, all

generation plant (i.e. large scale plus DG and micro-

generation) is rarely monitored in the control center and not

all generation units in the system are responsible for inertial

frequency response, meaning this method could under/over-

estimate system overall inertia by missing or wrongly

accumulating contributions from some of the generation

units. An Extended Kalman Filter is applied in [15, 16] to

calibrate system inertia as a prediction correction process by

minimizing mean squared error (MSE) between predicted

and actual values of inertia. MSE is a risk function that

reflects the difference between actual observations and

estimates, expressed as:

(2)

is the total number of variables, is the estimate and is

the true value.

Of course, in practice, actual inertia measurements are not

available; limiting the practical applicability of this

approach.

III. DEPENDENCY STRUCTURE FOR FREQUENCY AND INERTIA

A. Non-Linearity and Non-Stationarity Characteristics
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Fig. 1.  Typical mapping of system frequency and inertia variations over the

course of a day in: (a) time series, (b) scatter plot.

Typical daily frequency and inertia variations from the

UK grid are shown in Fig. 1. The frequency data is recorded
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from a PMU installed at the University of Strathclyde with a

20 ms reporting rate [17]. The inertia data is derived from

historical generation dispatch data from [18] with each

generation source assigned with a typical inertia value based

on its type [19, 20]. It is computed as depicted in Equation

(3) using the product of the sum of all individual inertias

( ) and the installed capacity of each individual generation

unit over the total installed generation capacity. It is

assumed that all the generators are working under the same

power factor and efficiency, therefore, given the same value

of power output and its rating . The subscript ☁ ☂

corresponds to each generator. In contrast to the frequency

data, the historical dispatch information is only available at

5 minute intervals due to limited access to commercial data.

(3)

As shown in Fig. 1, the daily trajectories of frequency and

corresponding inertia can be considered as non-linear in

their temporal characteristics and non-stationary in terms of

their range of observed values. These characteristics can be

attributed to variations in system demand over time, the mix

of generation on the system and response of generation

control systems. Such system dynamics cannot be learnt or

reflected through Equation (3).

Rather than using a single distribution to represent the

hidden relationship between frequency and inertia, a

complex set of inter-dependencies and relationships

resulting from the coupling of non-linear and non-stationary

behaviors necessitates a more representative model that goes

beyond the linear Gaussian dynamics of traditional

regression models.

B. Temporal dependency analysis

The correlation coefficients linking frequency and inertia

(including derived variables, e.g. rate of change of

frequency) have been examined to establish the best pair of

variables that reflects a strong dependency between

frequency and inertia. This is achieved over 5 minute

intervals where average frequency variation values are used

between each sampling period. The data sets used were

extracted from the available recordings of PMU data at the

University of Strathclyde, University of Manchester and

Imperial College London which form part of a UK

monitoring network [17]. 100 days were randomly selected

from years 2013 to 2015, giving 28,800 training samples

which encompass daily and seasonal factors that may affect

the analyzed variables. It should be noted that these data was

checked to ensure they were taken during normal operating

conditions (±2% of nominal frequency).

Fig. 2 presents statistics for the four (of a possible 25)

stronger dependent variable combinations; ☁ ☂ is the

variation of frequency/inertia between samples;

is the derivative of change of

frequency/inertia; ☁ ☂ introduces a moving window for

filtering the variances of the inertia/frequency variation.

In practice, it is hard to derive inertia values from the

estimated second derivatives of inertia accurately owing to

the inherent cumulative error in estimating higher order

derivatives from lower order derivative estimates.

Meanwhile, the averaged mean of the correlation coefficient

between and is higher than other groups which

generally vary between -0.3 to 0.3. Therefore, and

are established as the two dependent variables as being the

relatively strongest correlation pair. That is the reason

behind the use of the probability model - it accommodates

the noise associated with weaker relations. The computation

of current system inertia is defined as the sum of estimated

variation of system inertia and the inertia value derived at

the latest known state:

(4)

where is the last observed system inertia; is

the estimated variation of system inertia under an observed

system frequency variation ; is the estimated system

inertia at the time over accumulated periods.

-0.6 -0.4 -0.2 0 0.2 0.4 0.6
0

2

4

6

8

10

12

Correlation Coefficient

N
o
. 
o
f 
S
a
m

p
le

s

-0.6 -0.4 -0.2 0 0.2 0.4 0.6
0

2

4

6

8

10

Correlation Coefficient

N
o
. 
o
f 
S
a
m

p
le

s

-0.6 -0.4 -0.2 0 0.2 0.4 0.6
0

2

4

6

8

10

Correlation Coefficient

N
o
. 
o
f 
S
a
m

p
le

s

-0.6 -0.4 -0.2 0 0.2 0.4 0.6
0

2

4

6

8

Correlation Coefficient

N
o
. 
o
f 
S
a
m

p
le

s

delta(H) vs delta(f) delta(H)/delta(t) vs delta(f)

delta(H)/delta(t) vs delta(f)/delta(t) var(delta(H)) vs var(delta(f))

Fig. 2. Correlation coefficient of four relatively stronger combinations of

frequency and inertia derived variables

IV. OFFLINE TRAINING ALGORITHM FOR THE SWITCHING

MARKOV GAUSSIAN MODELS

As previously noted, generation mix and control system

operation are variables that will influence the inertia/

frequency relationship - these are not typically measured

and/or available and therefore can only exist in a model as

latent or hidden variables. This concurs with the suggestion

in Fig. 1 that no single distribution fits the joint distribution

of frequency and inertia; observation data rarely fits a

parametric distribution of a known form, given the potential

for higher order statistics such as skewness and kurtosis

being exhibited [21]. A flexible means of representing

probability distributions of such an arbitrarily complex form

is to use a finite mixture model ♠ this comprises a set of

simple parametric distribution, linearly combined and

weighted to best fit the implied distribution of the observed

data [22, 23]. A mixture of Gaussians would be used to

express the probability of observation of dimension as:

(5)

is the observation variable, in this case is the frequency

variation given by a specific inertia variation, is the
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mixing weight or probability of the mixture component

occurring and and are the Gaussian mean and

covariance respectively of each mixture component.

Matrices and vectors are shown bold.

Fig. 3 depicts a five-step process to train the mixture

model offline for a representative expression of the

dependency between frequency and inertia variations.

Fig. 3. Offline training of the SMGM

1) Step1: Dependency analysis

Training of the model starts with exploring the dependency

pair where the mixture model can be formulated on. This

has been demonstrated in Section III.  B. where the

underlying frequency-inertia dependency has been

expressed as Equation (4).

2) Step2: Selection of GMM.

An iterative process is executed to select the number of

mixtures and parameters of each Gaussian which best

profile the joint distribution of frequency and inertia

variations. Expectation Maximization (EM) [24, 25], which

maximizes the probability of fitting observation data with

candidate models, is a commonly used approach to estimate

the parameters of an individual distribution component as

well as the values of the mixing proportions. This is

followed by the probability calculation running under

different components of Gaussians. The one producing the

minimum Bayesian Information Criterion (BIC) [26, 27]

value is selected as the best number of mixtures. GMM is

then summed from each individual Gaussian as a proportion

of its corresponding weight factor which is assigned to

identify the contribution from an individual Gaussian.

3) Step 3: Order Selection of the SMGM.

The mixed-order Markov Chain is introduced in Step 3 as a

hypothesis to improve estimation accuracy. It preserves a

temporal dependency where current state will be modeled in

response to the previous one or more (possibly temporally

discontinuous) states in a non-deterministic way [28, 29].

By assuming multiple underlying operating regimes, the

mixed-order Markov Chain is designated to accommodate

the complex stochastic and dependency structures inherent

in the system. Such a temporal context is expected to

express the relation between variations of frequency and

inertia in greater detail. In order to determine which prior

states are regressive with the current state, the ☜skip k

transition autoregression☝ technique [30, 31] is employed

where k means the irrelevant states in between the current

state and prior regressive states.

4) Step 4: Slice Sampling

The fitted SMGM now takes the form of a mixture

distribution that represents variations in inertia that are

conditional on observed variations in frequency in present

and several past states. Predicting inertia variations,

therefore, necessitates sampling from this mixture

distribution which in turn, presents a challenge of dealing

with non-Gaussian distributions. To avoid loss of generality,

slice sampling is used to draw samples from the mixture

distribution [32]. This allows distributions of an arbitrary

form to be sampled from, without any specialization of the

procedure. However, due to the fact that samples are

randomly generated within the given range, there is no

justification for selecting any individual sample. Therefore,

comparisons will be made between the approaches of

averaging through the entire set of slice samples and

randomly selecting from the samples.

5) Step 5: Comparison of MSEs.

Optimal model selection is achieved by analyzing the MSEs

from a total of four combinations of slice sampling

techniques and with/without Markov Chain. The model with

minimum MSE is selected as the final inertia estimation

model. By incorporating both the variance of the estimate

and its bias, MSE is superior to techniques like sum squared

error therefore, made it the selection criterion in this

reseach.

V. IMPLEMENTATION FOR SYSTEM INERTIA ESTIMATION

ONLINE

In order to examine the validity of proposed method, UK

power system is conducted to test the performance of the

previously formulated SMGM on real-time inertia

estimation. The most representative SMGM model for UK

system is trained as below with the same groups of data set

for frequency-inertia dependency analysis in Section III.  B.

The frequency data which exceeds the ±2% operational

limits was not taken in the training data set.

A. Selection of Gaussian Mixtures

In Section IV, the dependency of the GMM cardinality on

the components of the mixture was articulated through the

BIC expression for the model. Comparison is now made

across three Gaussian covariance structures: spherical

(independent variables with a common variance), diagonal

(independent variables) and full (linear dependence) as

shown in Table I.

It should be stated that the training of the GMM is

performed offline and the precision and computation

efficiency are governed by the choice of particular

covariance structure. Thereby, the computational efficiency

is not as important compared to the precision of capturing

more observation information and the complexity of mixture

components reflected by the number of mixtures. Based on

the historical training data set, only 20 Gaussians are needed

if using the full covariance matrix, which is less complex

and represents observations in a more comprehensive way

(shown under ☁Covariance Structure☂ in TABLE I). To this

end, the 20-component mixture with full covariance matrix
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is selected for best describing the dependency relation.

An example of 20-component Gaussian mixture model is

shown in Fig. 4 based on the conditional distribution of

historical inertia variations on frequency variations. The

probability of each Gaussian given an inertia variation is

labeled individually in the 2-D scatter plot (Fig. 4 (a)) in

which each color represents one Gaussian distribution. The

contribution of each Gaussian component to the mixture

model is shown in Fig. 4 (b) as individual weight factors.

TABLE I

COMPARISON BETWEEN VARIOUS LINEAR GAUSSIAN

DEPENDENCY STRUCTURES

Spherical Diagonal Full

Precision low medium high

Computation high medium low

Covariance

Structure

Number of

Components
>50 26 20

Fig. 4. (a) Labeling of 20 mixture components, (b) weight factors, from

training data set of inertia variations conditional on frequency variations

TABLE II

COMPARISON OF DIFFERENT IMPLEMENTATIONS OF SMGM

Zero-order

SMGM

Fourth-order

SMGM

No. of Gaussian

Components
20 13

Covariance Matrix Full Diagonal
Dimension 1 6

Skip Transition State

B. Switching Markov Model

Further reduction of estimation error has been assessed by

the introduction of a switching Markov chain. In this case, a

☁Stepwise Regression☂ technique is employed to achieve the

☁Skip k transition☂ for selecting the dependent-states. It

allows the action of automatically entering/removing

observers one by one in a justifiable and reasonable manner

[33]. The temporal analysis given in Table II returns two

forms of SMGM ♠ zero-order which is just the original

GMM independent of the time series and a fourth-order

SMGM. In this case, the fourth-order SMGM denotes the

prior states which have dependency with current state start

from the second state till the fifth state in the past. Those

relevant states are subscripted as .

C. Prediction of Inertia Variation using Slice Sampling

As stated earlier, the final estimates will be taken from

the sampled slices from such a conditional distribution to

avoid loss of the generalisation. However, the larger sample

size will give more accurate indication while takes longer

time to compute. As shown in Fig. 5, a size of 1000 slices is

sampled as the trade-off between accuracy (determined by

MSE) and efficiency. A local minimum of MSE is reached

when the number of sampled slices equals to 1000 with a

significant reduction of around 5% for samples ranging from

50 to 2000.

Fig. 5. Impact of slice sampling size on the accuracy of estimation

Thus far, the procedure for training the GMM has been

described. The following sections focus on verifying the

hypothesis that the encoding of Markov dynamics will

improve the estimation accuracy.

D. Online OCC (OCC)

To minimize the accumulated error in Equation (4) from

summing the generated inertia variation estimate each time

to derive present system inertia, the concept of OCC is

introduced. It refers to a certain period of time after which

the estimated inertia value will be corrected according to the

system measurements. In this paper, the generation dispatch

data in UK system is employed for calibration against an

equivalent reference inertia value derived from Equation (3).

Such information is available every thirty minutes on [18]

which gives the minimum OCC of half an hour.

E. Performance of SMGMs

As shown in Fig. 3, a total of four SMGM models need to

be compared and the one of minimum MSE will be selected

as the most representative UK model. The maximum and

averaged MSEs from the 1000 samples are recorded in

Table III, in association with various durations of OCC.

In the OCC perspective, the following characteristics are

summarized:

Both the maximum and averaged MSEs increase with

increasing OCC times, regardless of the selection

manner and orders of SMGM. A half-hourly OCC
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should be chosen to provide the best estimation

accuracy. Such data is readily available from [34].

Three hours is the OCC boundary, above which errors

in estimation grow significantly. For an OCC shorter

than three hours, the average MSE remains below

0.1s
2
, even adopting the random slice selection

approach.

Choosing randomly from the sliced samples gives a

around higher error (63% for max MSEs and 90% for

averaged MSEs) in contrast to the average slice

values for both SMGMs and a local minimum of

49.5% is experienced when the length of OCC

reaches to three hours.

The fourth-order SMGM can successfully improve

estimation accuracy by reducing mean MSE of 8.8%

for the random sample selection approach and 11.8%

for the average sample selection approach. The

greatest improvement by Markov dynamics is

reached at a one-hour OCC where the maximum

MSE is reduced by 17.6% and the averaged MSE is

diminished by 8.7%.

TABLE III

MAX AND AVERAGED MSES FOR DIFFERENT MODELS

OCC

(hour)

MSE for Zero-order

SMGM (s2)

MSE for Fourth-order

SMGM (s2)

Random Slice

Max Averaged Max Averaged

0.5 0.1372 0.0632 0.1285 0.0597
1 0.2103 0.0823 0.1732 0.0751

3 0.6291 0.4143 0.6999 0.3379
12 1.3640 0.6493 1.1320 0.5123

24 2.5148 0.9857 2.1953 0.9132

Averaged Slice

Max Averaged Max Averaged

0.5 0.0601 0.0023 0.0588 0.0020

1 0.0635 0.0071 0.0604 0.0039

3 0.3175 0.0298 0.3072 0.0243

12 0.4001 0.0901 0.3652 0.0779

24 0.6989 0.1703 0.6810 0.1600

The above analysis shows that the average sample

selection approach and the encoding of Markov Chain are

two effective means to reduce the estimation errors.

However, the performances using averaged slice sample

could fail to trace the features of inertia variation as a result

of the over-smoothing of individual variations. This

deficiency is reflected in Fig. 6 from the comparison

between referenced inertia trajectories from generation

dispatch and corresponding model predictions using

SMGMs over the course of one day (in the training data set).

Missing of the variation features is more obvious with the

increase of OCC through comparing the performance

presented in Fig. 6 (c) and (d) on a three-hour basis with the

results shown in Fig. 6 (a) and (b), where the OCC is 30

minutes. Zoom-in performance for a period of three hours in

Fig. 6 (b) and (d) are depicted in Fig. 7. The feasibility of

the SMGM is shown in the tracking of the system inertia

variations and the changing system trends. The proposed

model, if drawing estimation sample randomly from the

conditional distribution, is shown higher accuracy in

tracking these changes. Besides, a relatively large error

appears with an increase in the period of the OCC.

To summarize, of the four investigated methods for

improving estimation accuracy, the fourth-order SMGM,

which adopts a random selection approach from sampled

1000 slices and being calibrated half-hourly, delivers the

most accurate estimation and tracking performance.
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Fig. 6. Performance of SMGM algorithm with (a) half-hourly OCC and

averaged sample selection; (b) half-hourly OCC and random sample

selection; (c) 3-hour OCC and averaged sample selection; (d): 3-hour OCC

and random sample selection.
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Fig. 7. An example of zoom-in figure of SMGM performance from (a) Fig.

6. (b) and (b) Fig.6. (d)

VI. VALIDATION AND DISCUSSION

A. Model Validation

The online estimation performance of the formulated

SMGM for UK system is validated in this section. The UK

power system is used in each validation approach, utilizing

frequency data recorded from PMU data recorded at the

authors☂ laboratory (part of a network of University

deployed PMUs [17], and historical generation dispatch

schedule [18].

1) Estimating post-event system inertia for recorded

system disturbance

Fig. 8 shows the estimation of system inertia for Apr.

19th 2011 with a zoom-in after loss of a large generating

plant in the north at around 6:36 UTC. Both of the SMGMs

are assigned to half-an-hour OCC and it limits 92% of the

maximum MSEs within 0.005 s
2
. More importantly, the

zoom-in figure, which shows a general estimation error

lower than 1%, indicates the ability of the proposed SMGM

to accurately estimate the drop in system inertia post-

disturbance.
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2) Estimating pre-event system inertia for recorded

system disturbance

The data used relates to the loss of the an interconnector

on Sep. 30
th

2012 at around 14:03 UTC [35]. The system

inertia calculated using transient system data by Equation

(1) is 4.659s. The estimated system inertias using the

proposed algorithm are 4.427 s for zero-order SMGM and

4.439 s for fourth-order SMGM as shown in Fig. 9. The

system inertia level theoretically should stay the same prior

to and just after the event. Therefore, the inertia value

estimated pre-disturbance using the proposed model can be

compared with the inertia value calculated from the Swing

Equation. Since the errors of both SMGMs (0.054 s for

zero-order SMGM and 0.047 s for fourth-order SMGM) lie

within the threshold in Table III, the proposed model is

verified as being able to estimate system inertia prior to a

system event and thus could provide useful input data to

proactive control and protection functions.
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Fig. 9. Inertia estimation for the loss of an interconnector

B. Discussion on estimation accuracy

The proposed algorithm has a number of parameters that

must be selected properly for a more comprehensive

representation of the dependency structure; this has

implications for the accuracy of real-time inertia estimation

using the trained model. The parameters which have the

greatest impact on the performance of estimation accuracy

are listed below:

Types of conditional distribution covariance matrix

Number of components in the Gaussian mixture

Size of the sampling slice sampler

Approach to select predicted value from samples

Order of skip-k transition SMGM

Length of the OCC of the model

The covariance matrix, which can be specified to

accommodate various dependencies, from spherical, to

diagonal, to full, increases the precision of representing the

observation but must be considered in association with the

complexity of the model as a potential of increasing mixture

components. The number of slice has little impact on

obtaining the estimated value but a slight increase is

desirable for an increased accuracy. Selecting sliced value

from a random approach is better as the averaged value

losses the details of changing trend of frequency that varies

over time. Moreover, the increase in OCC will introduce

more errors in inertia estimates due to the accumulated error

in every subsequent computation. Finally, the selection of

the model parameters needs taking into account the practical

application☂s accuracy requirements.

C. Inertia estimation in practice

Equation (4) states that the proposed method estimates

current system inertia by summing the inertia value at a

previous state with its estimated variation given by

frequency variation. There will inevitably be an error

accumulating over time as the estimated current system

inertia is based on a number of aggregated estimations in the

past.

Besides, the actual system inertia, which in this study is

primarily calculated from generation dispatch data relating

to large generators on the system, could be under-estimated

as there may be further inertia contributed from smaller

generators, very small DG and motor loads. Furthermore,

the unknown dynamics of system inertia within the 5-minute

interval could also lead to estimation errors if an exceptional

generation/demand change occurs.

For the application of such advanced techniques in the

future, the aforementioned accuracy issues could be

mitigated with training data of a higher time resolution and

detailed system information, including the proportion of

demand served by hidden generation at the distribution

level.

D. Robustness against loss of frequency data

To investigate the robustness of the proposed algorithm, a

series of test scenarios for the loss of measured frequency

data used by the inertia estimator are presented. In practice,

the data loss can be resulted from the hardware/software.

Test durations vary from 1 cycle (5 minutes) up to 60 cycles

(5 hours). The input data (averaged frequency variation over

every 5 minutes), during this period of time, is set to be

either zero or keep the constant inertia value estimated just

before detected input data loss.

Examples of maximum MSE are given in Fig. 10 using

both SMGMs on a random selected date. With the increase

of data loss cycles, an approximate linear increase of MSE
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can be seen for SMGMs while an exponential character for

constant inertia. For applying the criterion of keeping

constant inertia value, the MSE is shown limited within 0.05

s
2

which gives a more accurate estimation. Therefore, the

fail-safe plan in deployment of SMGM in real-time inertia

estimation is to maintain the last estimated inertia value until

the successful delivery of input data. Moreover, the

proposed model is considered to be robust against loss of

frequency input up to three hours at which point an error of

10% for the actual system inertia level is obtained.
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Fig. 10.  Mean MSE for various durations of data loss on May 20th 2013

E. On the occurrence of large system disturbances

Due to the fact that the SMGM is trained with data taken

during normal operating conditions (frequency varies within

±2% of the nominal 50 Hz in UK system), the formulated

SMGM then can only be valid to generate real-time inertia

estimates during normal condition. If such boundary is

exceeded, the inertia estimates will be invalid. It is a

limitation of this methodology but it aims to provide valid

inertia estimates to take actions before any disturbance

could potentially occur. Meanwhile, such an inconsistency is

temporary as the validation in Section VI.A has proven its

feasibility to estimate system inertia post-disturbance.

F. Time resolution of implementation

The proposed model estimates system inertia on a 5-

minute resolution basis which is governed but limited by the

resolution of the available system data that has been used for

model training. Higher resolution data sets could clearly

provide enhanced accuracy, and the methodology remains

flexible to accommodate future data provision. However it is

the application which should dictate the estimation rate

where quick and accurate estimation may be preferred for

monitoring system status, while less frequent estimation

may be preferred to limit adjustments in the case of adaptive

control or protection applications.

With respect to the time resolution of inertia calibration, a

half-hourly basis is recommended due to its lowest MSEs

and it also satisfies the practical constraint where the

shortest updating cycle of generation dispatch information is

currently available every 30 minutes. However, if the data

necessitated for calibration cannot be delivered every half an

hour, a resolution of up to three hours is still acceptable for

its monitoring.

G. Impact of PMU requisites

The use of data from PMU recordings in the authors☂

laboratory demonstrates the value of such frequency data to

the application of SMGMs, and thus their value in inferring

system conditions. Various requisites associated with PMU

deployment have at the same time been investigated.

This work is based on the use of the frequency variations

averaged over three locations, from which a system-level

insight is provided rather than a single PMU that could

largely be affected by its local conditions. Moreover, it can

also provide a consolidated justification to generate system

overall inertia estimates which is also a system-level

variable. Due to the fact that the system frequency variations

are strongly correlated during normal operating conditions,

impacts of the total number of PMUs and the exact locations

of each PMU are not that significant. However, it is

undoubted that the increasing number of PMUs could assist

in providing a finer and more generic system vision. The

noise and latency effects are minimized by the frequency

data input to the SMGM being averaged (on a 20ms basis)

over a 5-minute interval and also being averaged across

different PMU locations.

However, it should be emphasized that the PMU is not

the compulsory means of obtaining system frequency

information but an accessible source from the authors☂

laboratory. Meanwhile, the practicalities of such and its role

in implementing SMGM in future networks can be

supported by the learning from projects such as EFCC [36]

and VISOR [37].

H. Practical implementation of the SMGM algorithm

The generic nature of SMGM makes it readily applicable

to various power systems for which it has been trained.

Moreover, system changes, such as generation mix and the

employment of electronic-based inverters, can be learnt

through re-training the model with most up-to-date data.

Such flexibility and adaptability attribute to the

employment of correlation, EM, BIC and stepwise

regression. As previously described in this paper, they

provide robust justifications for identifying the methods☂

parameters, such as the optimal numbers of Gaussian

components and Markov orders. Widespread

implementation of this approach is thus supported, whereby

the SMGM is trained offline and then utilized online

through exposure to frequency measurements and regular

calibration with dispatch data.

Furthermore, the regular calibration points within a

particular implementation (half-hourly rate was adopted in

this paper) provide an opportunity to monitor inertia

estimation errors. And if larger than expected errors

emerged after a period of online use, then it may be

appropriate to launch a new phase of offline training. Such

behavior may be observed following changes in the power

system such as further penetration of renewables or unit

decommissioning. This feature may be integrated within an

overarching application management system in order to

maintain estimation accuracy over longer term use.

VII. CONCLUSIONS

This paper proposed a novel approach to the modeling of

frequency and inertia dependencies through which an

estimation of system inertia can be obtained in real-time.

The methodology is based on the optimization of the joint

likelihood that the observed data follows a trained mixed-

order Gaussian distribution. Unlike the methods using swing

equation or other existing methodologies, this approach does
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not rely on the occurrence of a disturbance to estimate

inertia and can be applied online. More importantly, the

hidden variables/states that exist but cannot be directly

measured in dynamic system operations can be formulated

over time.

Conducted with UK power system, a fourth-order SMGM

is evaluated to deliver best inertia estimation performance.

The proposed algorithm can estimate system inertia with an

average MSE lower than 0.1 s
2

on a half-an-hour calibrating

basis, under an appropriate selection of covariance matrix,

order of mixture model and the selection approach from

samples during model training. Improvement of the

estimation accuracy is achieved by introducing a higher

Markov order to the Switching Gaussian model which

establishes the dependency further from time series. The

findings demonstrate the fourth-order skip transition SMGM

adopting a random selection approach could deliver a more

accurate estimation by reducing the maximum MSE up to

17.6% and the greatest improvement is observed at an OCC

of one hour. Furthermore, the robustness of proposed model

is also proved against measured frequency data loss of up to

two hours for steady state conditions and capable to provide

accurate inertia reference pre/post-disturbance.

The continuous inertia estimation model can be applied in

various fields in future power networks where the variations

of system inertia pose a significant stability issues. Such

applications include early system diagnostics, frequency-

related protection, regulation of power reserve and synthetic

inertia control and management. Additionally, the model can

be automatically re-trained and its performance (in terms of

suitability and accuracy) could be continuously monitored

by an overarching application management system.

Further improvements on the performance of proposed

SMGM could also take into account other system variables,

including loads which may consist of rotating mass (e.g.

motors), demand side response (e.g. from electric vehicles),

etc. Finally, the study of regional variations in system inertia

should be undertaken with the assessment of PMU requisites

(e.g. number, location) to realize this function.
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