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 and  

Michael Frank1 

Fluid Mechanics and Computational Science, Cranfield University, Cranfield, Bedfordshire, MK43 0AL, UK 

Abstract   This paper presents an overview of past and current research in computational modelling of micro- 

and nanofluidic systems with particular focus on recent advances in multiscale modelling. Different mesoscale and 

hybrid molecular-continuum methods are presented.  The contributions of these methods to a broad range of 

applications, as well as the physical and computational modelling challenges associated with the development of 

these methods, are also discussed. 

1 Introduction 

Computational fluid dynamics modelling has long been performed using the Navier-Stokes equations, whose 

success in the design and optimization of macroscopic structures and devices (e.g aircraft, automobiles, buildings) 

have established it as an effective method for studying fluid flow. This continuum approach is based on the 

assumption of a continuum fluid, which is in equilibrium at any point or infinitesimal volume, a premise reasonable 

on larger scales.  

However, the rapid technological advancements of the last half-century have enabled the manufacture and use 

of devices miniaturised within the micro and nanoscale regime. Such applications range from micro 

electromechanical systems (MEMS) (Lyshevski, 2005) and nano-electronics (Yunus & Green, 2010) to micro-

channel heat sinks (Tuckerman & Pease, 1981). Additionally, many topics of academic and industrial interest have 

established a need to understand and exploit the behaviour of structures and matter from a nano-meter point of view. 

Examples include nano-crystalline materials, bio-detectors, drug delivery systems, and carbon allotropes, e.g.,  

carbon nanotubes and graphene. 

                                                           
1 On move to the University of Strathclyde. 
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At small scales, fluids (and all states of matter) experience interfacial phenomena that affect a significant 

percentage of the overall system. In turn, the continuity required by traditional continuum approaches is 

compromised by steep gradients, rendering such techniques inadequate for the description of micro and nanofluidic 

environments (Koplik et al., 1989; Travis et al., 1997; Wang et al., 2008) 

The requirement for computations at finer resolutions is satisfied through atomic scale simulation techniques 

such as Molecular Dynamics (MD) and the Monte Carlo (MC) method. Such models effectively delineat the 

physical apparatus, which governs the dynamics of such systems, assisting in the resolution of discrepancies 

between experimental results and macroscopic computational models. Examples include studies on the structure of 

the liquid particles close to the solid-liquid interface. These investigations found that the interactions between the 

solid walls and liquid form structured liquid layers close and parallel to the channel walls (see Fig. 1.1a) (Bitsanis et 

al., 1987; Asproulis & Drikakis, 2010; Asproulis & Drikakis, 2011; Sofos et al., 2009). This reconciled experimental 

observations (Doerr et al., 1998; Henderson & van Swol, 1984) and provided a better understanding of a 

phenomenon, which was correlated with properties of the system such as the stiffness of the wall and the strength of 

interaction between the wall and liquid atoms. The stratification of the liquid can ultimately change the properties of 

the system. An important example is the identification of a non-zero liquid velocity at the solid surface (Asproulis & 

Drikakis, 2010; Asproulis & Drikakis, 2011) which, along with experimental data (Choi et al., 2003), has prompted 

a reconsideration of the circumstances under which the no-slip condition, often employed in macroscopic 

simulations, renders a physically meaningful constraint. The thermodynamics of nanofluidic scenarios have also 

been found to deviate from the expectations of continuum models. Flow through nanochannels has indicated the 

existence of a heat flux, even in the absence of a temperature gradient across the two walls, due to variations in the 

temperature profile arising from viscous heating (Baranyai et al., 1992; Todd & Evans, 1997). Investigations have 

also studied the thermal resistance at the solid-liquid interface (Kapitza resistance), a phenomenon that is attributed 

to the different vibrational properties of the materials involved. These studies found that the thermal resistance is 

correlated with the wettability of the solid surface (Barrat & Chiaruttini, 2003), the density of the liquid and the wall 

stiffness (Kim et al., 2008). Investigations have also correlated the thermal conductivity of fluids with the size of the 

channel (Sofos et al., 2009). Researchers have also shown that under such spatial restrictions, the thermal 

conductivity is highly anisotropic between the parallel and the normal-to-the-wall directions. They associated this 

phenomenon to the reduced diffusion in the normal direction, due to the impaired motion and collision frequency of 

the liquid atoms associated with confinement (Liu et al., 2005). 
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a) Density profiles of a fluid in a nanochannel.The walls of the 

channel are the thick, dark blue slabs on the top and bottom of 

the figure (where the density is zero since there are not liquid 

atoms there). The liquid density is not uniform. Instead, it 

forms discrete, structured layers close and parallel to the 

channel walls. 

b) Velocity profiles of flow in a nanochannel. It shows that at 

the solid-liquid interface, the velocity is not zero. This urges 

reconsideration of the no-slip condition commonly used in 

continuum approaches.  

 

Fig. 1.1 Density (a) and velocity profiles (b) of a liquid in a nanochannel. 

The main issue in atomic-scale simulations is the computational cost, which increases significantly with the 

size of the simulation domain. Hence, complications arise in micro-flows in which the non-homogeneities and 

interfacial effects of nano-flows are still evident, rendering continuum mechanics inadequate, yet the system size is 

outside the practical scope of MD. 

This blend of difficulties in such systems renders the independent use of either continuum or atomistic methods 

insufficient or practically impossible. To account for this, mesoscale and hybrid molecular-continuum methods 

(HMCM) have been of academic interest for over two decades now. These approaches attempt to bridge the two 

types of models into a synergy, which allows for an accurate calculation of the properties of the system at a 

relatively low computational cost. Mesoscale models comprise a single solver, which attempts to give a more 

efficient solution based on atomistic observations, while HMCM utilise both molecular and continuum solvers that 

exchange information. Fig. 1.2 shows the time and length scales in which quantum, atomistic, continuum and hybrid 

methods are used.  

The paper is organised as follows: Section 2 briefly describes the MD method and immediately continues with 

a paragraph on the continuum model since both methods are the building blocks for the multiscale methods for 

which the discussion follows later on. Since the continuum model is based on the average behaviour of atoms and 

molecules, it was deemed more intuitive to present the MD approach first followed by the continuum one. The aim 

of this section is to provide the reader with the strengths and limitations of these approaches, highlighting the need 

for multiscale modeling. Section 3 discusses some popular mesoscale approaches; independent methods of 

intermediate resolution attempting to overcome the problems of the purely molecular or continuum methods. The 
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strengths and limitations of each method are also discussed. Section 4 discusses hybrid multiscale methods. As the 

name suggests, these utilise both, a continuum and a molecular solver to address different physical scales. We 

categorise these methods depending on how the system is decomposed  into molecular and continuum components 

and how information is exchanged between the atomistic and continuum solvers. 

Section 5 summarises the conclusions drawn from the present work. 

 

Fig. 1.2 Time and length scales of computational methods for micro and nano fluids. 

2 Computational Methods 

2.1 Molecular Dynamics 

MD is a deterministic computational method, which calculates the trajectory of all atoms in time. Given the 

atomic positions 司 and velocities v, the system is evolved through Newton’s equations of motion 

 司岌 沈 噺 士沈 ┸ 繋沈 噺 兼沈懸岌沈┸ 2.1 

where the index 件 represents and arbitrary particle (atom or molecule); and 擦沈 is the force acting on the particle, 

determined by 

 擦沈 噺 伐椛篠 噺  伐 項項司 篠┸ 2.2 
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where 篠 is the total potential energy of the system, which depends on the relative positioning of all the atoms, as 

well as the nature of the intermolecular and intramolecular interactions in the system. An accurate description of this 

potential is within the scope of quantum electrodynamics. However, MD uses empirical functions that can 

accurately portray the atomic interactions. A popular pairwise potential that MD simulations often use for non-

bonded, van der Waals interactions is the Lennard-Jones (LJ) potential given by the function 撃挑徴 噺 ね綱 釆岾購司峇怠態 髪 岾購司峇滞挽 

where 綱 is the depth of the potential well and 購 is the point of intersection with the interatomic distance axis (Fig. 

2.1). As Fig. 2.1 shows, at small interatomic distances, a strong repulsive force is acting on the two atoms, which 

tends to infinity as their separation approaches zero. This corresponds to the Pauli exclusion principle, which 

prevents the electron shells of the particles from overlapping. The blue-shaded region in the figure corresponds to 

the attractive London-dispersion forces acting between non-reacting gases such as argon. 

 

Fig. 2.1 The Lennard-Jones potential. The red-shaded area corresponds to the strong repulsive forces, a product of 

the Pauli exclusion principle, whereas the blue-shaded area corresponds to the attractive London-dispersion forces.  

The reason for the crippling computational expense of MD is two-fold. Firstly, as the systems scales to 

practically meaningful dimensions, the number of atoms increases significantly. Even if a pairwise potential is used, 

the runtime increases beyond the capabilities of modern computing. Secondly, the time step used in the simulations 

should be small in order to ensure that the atomic positions vary smoothly with time. This is especially true when we 

consider systems with high temperatures or rapidly varying potentials, such as that depicted in Fig. 2.1, where a 

large timestep can result in unnatural atomic overlapping and in turn, cause velocity discontinuities and degrade the 

energy conserving properties of the system (Allen & Tildesley, 1989).  
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Therefore, the objective of all mesoscale and multiscale approaches is to decouple the microscopic spatial and 

time scales from a large part of the domain, thus allowing the simulations to be performed within more realistic time 

scales.  

2.2 Continuum Model 

The continuum model does not treat systems as a collection of atomic trajectories. Instead, the primitive state 

variables such as density 貢, flow velocity 四, energy 結, temperature 劇 and pressure 喧, are considered as functions of 

time and space, averaged over a large number of atoms (e.g. 貢 噺  貢岫捲┸ 検┸ 権┸ 建岻 in Cartesian co-ordinates). 

The behaviour of fluids in this continuum approach is governed by the Navier-Stokes equations; a set of three 

equations based on the conservation of mass, momentum and energy, given by 

 
項貢項建 噺  伐椛┻ 岫貢 四岻 2.3 

 
項貢四項建 噺  伐椛┻ 岫貢 四愚四岻 伐  椛┻ 銭 2.4 

 
項結項建 噺  伐椛┻ 岫結四岻 伐 椛┻ 岫銭┻ 四岻 伐 椛┻ 恵 2.5 

where the stress tensor 銭 of a Newtonian fluid is empirically given by 

 銭 噺 p掘 伐  似士岫椛┻ 掲岻薩 伐 航岷岫椛掲岻 髪 岫椛掲岻参峅  2.6 

the heat flux vector 刺 is given by 

 刺 噺  似椛T 2.7 

and the equations of state for 喧 and 劇 are given by 

 喧 噺 喧岫貢┸ 結沈岻 and 劇 噺 劇岫貢┸ 結沈岻 2.8 

3 Mesoscale Methods 

In an attempt to bridge the microscopic and macroscopic environments, mesoscale methods provide a 

framework of intermediate resolution. They are based on the often correct assumption that the behaviour of every 

single atom is not required to produce realistic results. Instead, large numbers of molecules are grouped together. 

Within the scope of mesoscale methods, these pseudo-particles are considered fundamental and interact among 

themselves without considering the influence of their constituent atoms. 

3.1 Lattice Gas Automaton 

One of the first mesoscale approaches for simulating gases is the Lattice Gas Automaton (LGA) method 

(Pomeau & Frisch, 1986; Wolfram, 1986; Hardy et al., 1973). As the name suggests, a lattice covers the system and 

gas particles can only be positioned on the lattice sites. Each particle can only move along the lattice links (i.e. 

lattice vectors), which are a characteristic of the lattice used. The model defines the velocity of each atom based on 

the lattice link along which it will move on to the next time step to reach a neighbouring point. Each lattice site can 

hold a number of atoms equal to the number of lattice links attached to it. Furthermore, two atoms on the same point 

cannot have the same velocity (i.e. two atoms on the same point cannot travel in the same direction). This facilitates 
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the representation of each lattice point by a Boolean vector with a dimension equal to the number of possible 

directions (i.e. lattice links) from each node. For each direction, the value is 1 if there is an atom on that point 

moving with that velocity.  

In order to illustrate the above, Fig. 3.1a shows one possible configuration of atoms (chosen arbitrarily) found 

on a lattice site (the red circle) on a square lattice. The arrows indicate the possible values of the velocity. A solid 

line means that an atom moving in that direction is located on the lattice point while a dotted line suggests that such 

an atom is absent. Since the velocity can take four values, a four-dimensional vector is used to describe the state of 

the node. Since there is no atom moving in direction 1 and 4 (suggested by the dotted lines in those directions), the 

corresponding components in the vector are 0. On the other hand, the third and fourth components have a value of 

one indicating that there are two atoms moving in directions 3 and 4. 

At each time step, LGA carries out two operations: 

1. Propagation. During this step, the particles are moved to nearby lattices depending on their velocities 

of the previous time step. For example, in Fig. 3.1a the atom with velocity 2 will move to the top 

vertex, pointed by the arrow, in the next time step. As we have mentioned earlier in this section, two 

atoms located at the same point cannot move along the same direction. 

2. Collision. If two particles arrive at the same lattice point, a collision is detected and the velocities 

must be readjusted. Depending on the implementation of the algorithm, a set of collision rules are 

used to adjust the velocities of the colliding atoms. The re-distribution of velocities must conserve 

mass and momentum. The new velocities will reflect the direction of motion of the particles in the 

next step. However, when two atoms are using the same link with opposite velocities, a collision is 

not detected and the atoms move freely to swap lattice sites. 
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a) Square Lattice b) Hexagonal Lattice 

 

Fig. 3.1 Boolean representation of a lattice point (red node) a) for a square lattice and b) for a hexagonal lattice. The 

arrows indicate the possible velocities. A solid line suggests that the red lattice site has an atom moving in that direction 

while a dashed line indicates that there is no particle with that velocity on that point.  

 

This seemingly simplistic model can potentially reproduce the Navier-Stokes equations by taking averages over 

a large number of nodes. This, however, requires a lattice with sufficient symmetry. The four-fold symmetry of the 

lattice depicted in Fig. 3.1a is incapable of reproducing the hydrodynamic equations. For two-dimensional systems, 

the symmetry of the hexagonal lattice illustrated in Fig. 3.1b is indeed sufficient. Such a system allows the atoms to 

move in six directions. To accommodate this, we require six-dimensional vectors to store the state of each lattice 

point at each time step. In addition, more collision rules are required as particles can now collide at more angles. 

Hydrodynamic lattices are also available for three-dimensional systems. 

Finally, it is worth mentioning the key differences between MD and LGA since both methods consider 

interacting particles. MD is grid-less and therefore does not restrict the motion of atoms. Additionally, as we have 

mentioned in section 2.1, MD considers microscopic interactions, which classically approximate quantum 

mechanical behaviour as accurately as possible. This gives rise to realistic equations of state whereas the collision 

rules of LGA only facilitate isothermal relationships between mass, density and pressure. However, the simplicity of 

LGA models is accompanied by a very attractive computational efficiency, which is of course the objective of 

multiscale models. 

3.2 Lattice-Boltzmann Method 

The appealing computational simplicity of the Boolean nature of LGA methods is inevitably accompanied by 

numerical noise. For example, since an atom with a specific discrete velocity can either exist (1) or not (0) on each 

node, its density, calculated as the number of atoms on each node (i.e. the sum of 1s on the Boolean vector), can 
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only have an integer value. Averaging over a large number of nodes can reduce this noise but costs computationally. 

The Lattice-Boltzmann (LB) method, (McNamara & Zanetti, 1988; Chen & Doolen, 1998) attempts to resolve these 

issues by storing the real particle density at each lattice point. Furthermore, although the particles can travel along 

the lattice directions, as in LGA, a real number of particles on each lattice site occupy each of them. Therefore, the 

density and velocity of the fluid at a certain position along a certain direction are given by 

 貢岫姉岻 噺 布 血沈岫姉岻沈  3.1 

 憲岫姉岻 噺 布 血沈岫姉岻算沈沈  
3.2 

where 姉 is the lattice point, 件 is an arbitrary lattice direction, 血沈岫姉┸ 建岻 is the portion of the density of the lattice site 

moving in a lattice direction and 算沈 is the corresponding lattice vector.  

As in the LGA models, the evolution of the system consists of a propagation and collision step. The 

propagation step is given by 血沈岫姉 髪  算沈ッ建┸ 建 髪  ッ建岻 噺  血沈岫姉┸ 建岻 

simply stating that the density distribution in a certain direction at a node inherits that of its neighbour (along the 

vector 算沈) from the previous timestep. Accounting for collisions, the full equation becomes 

 血沈岫姉 髪 算沈ッ建┸ 建 髪 ッ建岻 伐 血沈岫姉┸ 建岻 噺  よ沈岫血岻 3.3 

where よ is the collision operator and 算沈 are the lattice-restricted velocities.  

Due to the additional complexity of LB models in comparison with LGA, more complicated collision operators are 

required. This is usually approximated by the Bhathagar-Gross-Krook (BGK) operator given by (Bhatnagar, 1954)  

 よ┺ 血沈 蝦  伐 な酵 範血沈 伐 血沈勅槌飯 3.4 

where 血沈勅槌
 is the equilibrium particle distribution based on the discretized version of the Maxwell-Boltzmann 

equilibrium distribution (Qian, 1992). 

LBM can also treat physical phenomena where body forces are involved. Such cases include multi-phase and 

multi-component systems. This, however, requires the addition of the force to the evolution equation (Eq.  3.3) and 

that the velocity and equilibrium distribution are adjusted accordingly (Guo et al., 2002). 

The base model described above can be modified to accommodate various flow phenomena. For Poisseuille 

flow, the collision rules at the solid-liquid interface are adapted so that fluid particles arriving at the boundary are 

bounced back by inverting the lattice velocity (Succi, 2001). For Couette flow, this model is adjusted so that part of 

the boundary momentum is injected into the bounced fluid (Ladd, 1994). This approach models the boundaries at 

lattice link midpoints and is therefore unable to capture the behavior of arbitrarily curved surfaces. Subsequent 

studies have proposed extensions to these models to account for more complex geometries (Filippova, 1998; Guo et 

al., 2002) 

LBM has also been adapted to accommodate inlet and outlet boundaries. There are two main types of problems 

with different models for each. The first type is when the velocity and density are known at the inlet and outlet 

respectively (Zou & He, 1997; Izquierdo et al., 2009). The second is when both the velocity and density are known 

at the inlet, and the flow at the outlet is considered fully developed (Yu et al., 2005) 
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The method also enables simulations of complex, and multi-phase flows by modelling potential interactions 

between the pseudo-particles. This is achieved by defining an external force, which acts on 血沈勅槌
. The mesoscale 

interactions can naturally give rise to non-ideal fluid. This allows for simulation of complex systems such as the 

effect of gas bubbles on the liquid slippage at a rough solid surface (Hyvaluoma & Harting, 2008). To realise such 

effects, the free-energy functional of the system is considered, giving rise to a pressure tensor that can be included in 血沈勅槌
 (Swift et al., 1995). 

An alternative method is to include an interaction term between the pseudo-particles, given by (Shan & Chen, 

1994) 

 繋岫捲岻 噺  閤岫姉岻 布 訣沈罫閤岫姉 髪  閤岫姉 髪 算餐岻算餐岻沈  3.5 

where 罫 is the ratio of the potential and thermal energy, 閤岫姉岻 is the potential that describes the interactions of the 

pseudo-particles under inhomogeneities and 訣沈 is a lattice-dependent weighting factor dividing the force among the 

various lattice directions. Adjusting the equilibrium distributions based on the effects of this force on the velocity 

provides an equation of state, which for high values of 罫 resembles the van der Waals equation, enabling the 

simulation of liquid-gas interfaces. Although the thermodynamic validity of this pseudo-potential scheme has been 

criticised as it is not derived from a free-energy functional, it has been proven effective in successfully describing 

various systems. Furthermore, the addition of a gradient force in Eq. 3.5 can bridge these thermodynamic 

inconsistencies (Sbragaglia et al., 2009). 

3.3 Dissipative Particle Dynamics 

Dissipative particle dynamics (DPD) is a mesoscale approach in which, unlike LGA and LB, pseudo-particles 

move continuously in space rather than jumping across points on a lattice (Hoogerbrugge & Koelman, 1992). These 

bodies represent groups of atoms or sub-thermodynamic ensembles and interact among themselves through pairwise 

interactions. In this sense, DPD can be considered as a coarse-grain equivalent of MD. Each pseudo-particle moves 

in free space. Its momentum is updated every time step according to the force acting on it given by 

 繋沈 噺 布盤繋沈珍寵 髪 繋沈珍帖 髪 繋沈珍眺匪沈貯珍  3.6 

The term 繋沈珍寵  is a purely repulsive, conservative force that prevents major overlaps between the particles. This 

component acts in the same way as the repulsive component of the non-bonded potentials that MD employs (e.g. 

Lennard Jones potentials). However, the more complicated potentials of microscopic simulations produce forces that 

increase to infinity as the interatomic distance approaches zero. As we have mentioned in section 2.1, this severely 

restricts the maximum timestep that can be used. However, if we average these interactions over large groups of 

atoms, such as in DPD, a “softer” potential can be used which is finite even at zero separation. This allows the use of 

a much larger time step, a very attractive quality of this mesoscale method that allows the simulation of more 

practical systems. The dissipative (繋沈珍帖) force describes viscous, frictional forces and it is a function of interatomic 

distances and relative velocities between atoms in the system. Finally, the term 繋沈珍眺 is a stochastic force that 

introduces Brownian motion. The dissipative and random forces emulate the internal degrees of freedom (i.e., the 
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atomic fluctuations within the pseudo-particles) of these mesoscale particles and regulate the temperature (they act 

as a Langevin thermostat). Once the force is defined, Newton’s second law of motion (Equation 2.1) is used for 

advancing the trajectory of the system through phase space. The conservative force is then given by 

 繋沈珍寵 噺 欠沈珍拳寵岫堅岻司沈珍 3.7 

where 欠沈珍  is the maximum repulsion between the dissipative particle 件 and 倹, 堅 is their interatomic distance, and 拳寵岫堅岻 is a weight function, often set to  

 拳寵岫司岻 峽岫な 伐 堅岻 堅 隼 な┻どど 堅 半 な┻ど 3.8 

This formulation only includes a repulsive component. Although this is an accurate approximation of gases, for 

more complex systems such as multi-phase flow an attractive component should also be added. In this case, the 

weight function can be given by (Liu et al., 2006; Liu et al., 2007) 

  

 拳寵岫司岻 噺  伐岷畦激旺怠岫堅┸ 堅頂怠岻 伐  稽激旺態岫堅┸ 堅頂態岻峅 3.9 

where 激怠岫堅┸ 堅頂怠岻 and 激態岫堅┸ 堅頂態岻 are spline functions representing the repulsive and attractive interactions; 畦 and 稽 

define their strengths; and 堅頂怠 and 堅頂態 are their cut-off distances. 

Modeling stationary solid surfaces can be achieved by fixing or freezing the pseudo-solid particles (as is the 

case with MD). The solid-liquid interactions must be modelled accordingly to prevent liquid atoms from penetrating 

the solid walls. Although this can be achieved by increasing the solid density as well as the assigning a greater 

repulsive interaction between the two phases, such methods have presented inaccurate physical behaviour (Kong et 

al., 1994; Jones et al., 1999; Willemsen et al., 2000). Instead, reflection algorithms can be used to reverse the 

velocity of the fluid particles, in a manner similar to LBM (Revenga et al., 1998). 
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4 Hybrid Molecular-Continuum Methods 

 

Fig. 4.1 General classification of. Hybrid Molecular-Continuum Methods (HMCM)  Geometric decomposition and 

pointwise coupling differ with respect to the implementation of the molecular and continuum solvers in the simulation 

box. 

An alternative method for dealing with systems at microscales is the the Hybrid Molecular-Continuum 

Methods (HMCM) in which both molecular (usually MD or MC) and continuum (usually CFD and FEM) solvers 

are used (Kalweit & Drikakis, 2011). The basic principle behind these hybrid techniques is to limit the use of the 

molecular solver as much as possible. The size of the domain (i.e., number of atoms) is the biggest bottleneck in 

molecular methods. Therefore, all HMCM decouple the length scales by running molecular simulations in one or 

more subdomains, small relative to the overall size of the system. In addition, some HMCM decouple the timescales 

by running the molecular simulations for only selected periods. Fig. 4.1 illustrates a general categorisation of the 

available HMCM. Geometric decomposition and pointwise coupling are based on how the model allocates the 

system to the molecular and continuum solvers. Geometric decomposition divides the system spatially and 

exclusively allocates one of the two solvers for each region. The appropriate exchange of information between them, 

either state variables or fluxes, ensures transparency of the computational division and continuity in the physics of 

the system. On the other hand, the pointwise coupling method solves the entire system in a continuous fashion and 

uses microscopic refinement around the grid points. Although all HMCM decouple the length scales, only some of 
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them decouple the macroscopic and microscopic timescales. Note that employing equilibrium kinetic theory 

concepts to what is definitely a non-equilibrium process should be borne in mind when considering the limitations of 

multiscale methods. Although this is recognised by the present authors, it is an issue that requires further elaboration 

that is beyond the scope of the present study. The aforementioned methods are discussed in more detail below. 

4.1 Geometrical Decomposition 

Geometrical decomposition (GD) refers to a HMCM in which the simulation domain is decomposed into 

regions, some of which are dealt with by the molecular and others by the continuum solver. As the objective of such 

hybrid methods is to minimise computational resources, the higher resolution molecular regions should be much 

smaller than the continuum regions. 

The continuity of thermodynamic and transport properties between the various parts of the system is integral in 

modelling a physically accurate environment. It is therefore crucial to define a protocol in which the two solvers 

share information with each other and adjust in order to conform to the laws of physics. This is achieved by defining 

an overlapping region near the interface of the two regions, called Hybrid Solution Interface (HSI), which is treated 

both by the continuous and molecular components. 

Fig. 4.2 depicts the process behind GD. The continuum region on the left, highlighted in light blue, is solved 

using a finite volume method and is therefore divided into cells. The grid is extended slightly into the molecular 

domain. The coinciding cells are called ghost cells. Although the domain in molecular methods is not traditionally 

divided into a grid, virtual cells are defined which coincide with the ghost cells of the continuum solver. This sets up 

a framework enabling the exchange of information between the two.  

The coupling of the solvers is bidirectional. The molecular component calculates properties within the virtual 

cells and imposes them onto the ghost cells. In turn, these will adjust the boundary cells (dark blue cells in Fig. 4.2). 

On the other hand, macroscopic properties in the ghost cells are imposed onto the molecular domain by adjusting the 

number and velocities of the atoms within the corresponding virtual cells.  

The protocol at the HSI varies significantly between GD implementations. However, all GD schemes need to 

satisfy a set of fundamental requirements; namely: 

 The conservation laws of mass, momentum and energy should hold across the boundary. 

 The state variables across the boundary must portray a physically accurate behaviour. This means that by 

looking at the flow solution of the simulation (i.e. density profiles), the position of the HSI should not be 

identifiable.  

The coupling must be also designed in the most simplistic and computationally efficient manner possible.  

GD can differ in the type of information used for coupling the two solvers. Two broad categories can be 

identified 

1. State Coupling 

2. Flux Coupling 

These will be discussed in the sections below. 
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Fig. 4.2 Schematic representation of GD. 

4.1.1 State-Coupling 

State coupling refers to the sharing of state variables such as density, temperature and velocity, across the HSI. 

Fig. 4.3 illustrates a one-dimensional setup for coupling by states with the continuum region being on the left and 

the molecular region on the right. The vertical separation is merely an artefact to aid in the visual clarity of the 

figure.  

 

Fig. 4.3 A one-dimensional illustration of coupling by states in both directions. The continuum and molecular 

domains are separated to aid visualisation. The arrows symbolise the transfer of states from the continuum to the 

molecular domain (C->M) and vice versa (M->C). 

As already mentioned, this exchange of information occurs from the continuum to the molecular region and 

vice versa. The transfer of data from the molecular to the continuum domain is not so complicated since the 
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macroscopic quantities can be obtained through spatial and temporal averaging of the atomic behaviour. In general, 

a state variable 鹿 has an instantaneous value, obtained by averaging the behaviour of many atoms at an arbitrary 

instance. As a statistical quantity, this value can fluctuate significantly across different points in time. The reduction 

of these fluctuations is achieved through averaging the instantaneous calculations over a suitably long timescale by: 

 極鹿玉痛 噺  な絞建 豹 鹿岫建岻穴建┸痛轍袋弟痛
痛轍  4.1 

where 極鹿玉痛 denotes the time average of the quantity 鹿; 建待 denotes the initial timeframe in which the value is 

calculated; 絞建 is the timescale over which the quantity is averaged; and 鹿岫建岻 is the instantaneous calculation. For 

computational purposes, the equation can be written in discrete form as 

 極鹿玉痛 噺  な軽痛 布 鹿岫建岻朝禰
邸退待 ┸ 4.2 

where 酵 denotes the timestep of the molecular simulation and 軽痛 is the number of timesteps used for the averaging. 

The ghost and boundary cells can trivially inherit the calculated values. 

Transferring information from the continuum to the molecular domain is a more complicated task. The 

difficulty arises from the requirement to construct a microscopic state of は軽 degrees of freedom (momentum and 

position of 軽 atoms) from the macroscopic state, with only 5 degrees of freedom (貢┸ 四 and 結) (Asproulis et al., 

2009). This interpolation requires additional assumptions or stochastically generated values.  

For incompressible flows, this is achieved by matching the atomic number density and average velocity in the 

HSI with the corresponding continuum values. Inserting or deleting atoms in the virtual cells controls the density. 

The momentum is coupled by rescaling the atomic velocities accordingly. The temperature can also be regulated 

based on the equipartition theorem, according to the equation 

  劇 噺  にぬ腔喋 結賃博博博 4.3 

where 結賃博博博 is the average kinetic energy of all atoms about their mean position, i.e., excluding the kinetic energy of 

the center of mass within that cell and 腔喋 is the Botlzmann constant.  

State coupling becomes much more complicated for compressible flows as the positions and momenta of the 

atoms must also match the continuum energy. Although in its own right this is not a difficult task, the abundance of 

microscopic states fulfilling this constraint must further be reduced to those maximising the entropy of the system 

and, in turn, satisfy the second law of thermodynamics. Such a task greatly increases the computational complexity 

of the algorithm, a highly undesirable outcome. 

Initially, MD-CFD based state coupling methods were used to study 1D incompressible Couette flow, which 

did not permit mass, or energy transfer across the HSI (O’Connell & Thompson, 1995). The molecular and 

continuum environments were coupled by exchanging velocities using constrained Lagrangian dynamics. A 2D 

state-coupling scheme was proposed shortly after for the study of Poiseuille and Couette flows of supercritical 

Argon (Hadjiconstantinou & Patera, 1997) and the moving contact line problem (Hadjiconstantinou, 1999). The 

method allowed mass flow across the MD/CFD interface by enclosing the molecular region within a bigger 
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simulation box with periodic boundary conditions serving as a particle reservoir. More recent advances in state 

coupling, MD-CFD methods emulated mass flow by inserting and deleting particles that cross the HSI (Werder et 

al., 2005). The model has been used to study flow of a Lennard-Jones fluid around a Carbon Nanotube (CNT) the 

results of which agreed with those similar cases treated exclusively with MD. State-coupling methods suitable for 

unsteady flows have also been derived (Liu et al., 2008).  

Methods for reducing the noise resulting from the thermal fluctuations in the molecular domain have also been 

proposed (Ko et al., 2014). This has been achieved by sampling the state variables from multiple, replicated 

molecular systems set at different initial conditions. Furthermore, by spatial and temporal regressions, a more 

accurate exchange of variables can be achieved. 

4.1.2 Flux Coupling 

Rather than exchanging information on the state of each region, flux coupling methods update the state 

variables by monitoring the inflow and outflow of mass, momentum and energy. The monitoring is required to 

account for all ways in which quantities can be transported. Mass can only be transferred through convection; the 

bulk motion of fluid particles. Momentum can be transferred by both convection and the stresses applied on atoms 

by their neighbours. Finally, energy can be transferred by convection, through interatomic stresses, as well as 

through conduction. 

As in the case of state coupling, the transfer of information from the molecular to the continuum domain is 

simpler than the inverse exchange (continuum to molecular). We achieve this by monitoring and calculating the flow 

of a quantity through a virtual cell face within the overlapping region or an arbitrary volume enclosing the surface. 

This flow can then be imposed on the corresponding ghost cells (or corresponding volume enclosing the ghost cell’s 

face). This can be seen in Fig. 4.4 where the vertical, black, dashed line indicates the face of the cell. Fig. 4.4a 

illustrates that the flux is measured by the rate in which atoms or molecules cross this surface. In Fig. 4.4b, the 

shaded red region is the volume containing the surface, in which the fluxes are calculated. Once the atomic 

trajectories are translated into fluxes (again through the use of statistical mechanics), and time averaged, as shown in 

Eq. 4.2, the fluxes are imposed onto the continuum region. 
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a) Across Cell 

 

b) Across Volume 

Fig. 4.4 Schematic representation of Flux coupling. 

The exchange of fluxes from the continuum to the molecular domain is again more complicated as the fluxes in 

and out of the ghost cells must be mapped onto the virtual cells. To account for convective fluxes, atoms are inserted 

or deleted in the virtual cells of the HIS. The number of atoms regulates the mass transfer, and their velocities 

control the convective momentum and energy transfer. In order to impose momentum transfer through stress, 

appropriate force fields are applied onto the atoms. Finally, the conductive flux can be realised by rescaling the 

velocities of the atoms, emulating energy transfer. 

Incompressible, isothermal flows are significantly simpler than compressible cases as the two energy fluxes 

(stress and conductive) can be ignored (Hadjiconstantinou & Patera, 1997; Barsky, 2004; De Fabritiis, 2007). 

However, all fluxes can be incorporated into the molecular domain, allowing for the simulation of compressible 

flows (Delgado-Buscalioni & Coveney, 2003a). Additionally, this method is suitable for phenomena whose 

characteristic time scales are comparable to molecular time scales, such as waves (Delgado-Buscalioni, 2005; De 

Fabritiis, 2007). However, due to the constant need to monitor the fluxes across the molecular and continuum 

regions, GD flux coupling methods do not decouple timescales and are, therefore, not preferred by some authors 

(Wijesinghe & Hadjiconstantinou, 2004; Koumoutsakos, 2005). 

Researchers initially used flux-coupling methods to study incompressible flows (Flekkoy & Feder, 2000; 

Wagner, 2002). Mass and momentum fluxes were exchanged within the HSI by having a reservoir around the MD 

region in which atoms were either inserted or deleted, emulating in and out flow. The model was further extended to 

account for compressible flows by incorporating the coupling of energy fluxes (Delgado-Buscalioni & Coveney, 

2003a). This was later improved by introducing an algorithm for inserting atoms (Delgado-Buscalioni & Coveney, 

2003b) and even polar molecules, such as water (De Fabritiis et al., 2004) to achieve the desired energy levels. The 

applicability of this flux coupling approach has rendered it the preferred method for various researchers (Delgado-

Buscalioni & Coveney, 2003b; Flekkoy & Feder, 2000). The method was applied on incompressible isothermal 

flows over an oscillatory wall (Delgado-Buscalioni & Coveney, 2004) and, successfully, simulated single tethered 
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polymer in a solvent, subjected to oscillatory flow (Barsky, 2004). Past studies have investigated the boundary 

conditions used in the flux coupling approaches attempting to smoothen any numerical artifacts and discontinuities 

induced at the HSI (Kalweit & Drikakis, 2008a; Kalweit & Drikakis, 2008b; Kalweit & Drikakis, 2010). Extensions 

to the flux coupling models have been proposed to take into account the fluctuations of state variables when 

transferring information from the molecular to the continuum region. This can be achieved by adapting the 

macroscopic equations as well as by implementing a relatively fine grid near the HSI. Such flux coupling methods 

have successfully simulated sound waves propagating through water and reflected by a lipid monolayer (Delgado-

Buscalioni, 2005; De Fabritiis, 2007). Previous investigations have also used GD to couple fluxes from the 

continuum to the molecular domain in connection with the study of dynamic friction between crystal silver on 

copper at high pressure (Barton et al., 2011). 

4.2 Pointwise Coupling 

Rather than having regions treated exclusively by a molecular or continuum solver (as is the case with GD), the 

pointwise coupling (PWC) solves the entire domain using the continuum solver, with the molecular component 

acting as a refinement by providing information used for more accurate calculations (Asproulis et al., 2012). There 

are two types of problems in which such methods are effective: 

a) Problems in which the boundary conditions (e.g. velocity slip) need to be resolved by the microscopic 

solver; 

b) Problems in which the constituent relations need to be extracted from the molecular models. 

Running molecular simulations in regions small compared to the continuum cell size decouples the length 

scales (Fig. 4.5). In addition, PWC decouples timescales by computing the microscopic information in small bursts, 

i.e., a small number of time steps (Fig. 4.6). 
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Fig. 4.5 A schematic illustration of length decoupling in PWC.  

 

 

The entire domain is solved by the continuum model (blue), while the microscopic solver is used at specific grid 

points (red) to assist the macroscopic solution. Several PWC based coupling methods (for both solids and fluids) 

have been proposed based on the above description. These differ in the involvement of the molecular solver and the 

means by which the properties in question are computed and can be generalised into two categories. 

1. Heterogeneous multiscale Method 

2. Equation-free approach 

a. Patch dynamics 

b. Gap-tooth method 

These are described in the following sections. 
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Fig. 4.6 A schematic illustration of length decoupling in PWC. For coupled timescales, the molecular and continuum 

simulations run in parallel. For decoupled timescales the molecular simulation runs for a number of microscopic time 

steps at specific macro time steps. 

4.2.1 Heterogeneous Multiscale Method 

The heterogeneous multiscale method (HMM) (Enguist & others, 2003) assumes knowledge of the physical, 

continuum equations required for the calculation and evolution of the flow field. As the macroscopic field is not 

explicitly known across the entire domain, there is often a lack of data essential for the solution of these equations, 

e.g., stress tensor. The microscopic solver provides the relevant information.  

For modelling the physical system, the following should be considered 

 The continuum model to be used. 

 The data computed by the microscopic solver to be fed into the macroscopic model. 

 Conversion of a continuum state into a consistent microstate (as explained in the Section 4.1.1). 

 Conversion of averaging a microstate to realise the continuum value. 

The system is then advanced based on the following steps 

1. From a macroscopic state variable 戟, the microstate is reconstructed by adjusting the positions and 

momenta of the atoms. 

2. Using the molecular solver, the system is evolved and the necessary data (usually stress tensor or slip 

condition) is computed. 

3. The data are then inserted into the macroscopic model to realise the field at a later time 

Initial implementations of HMM have successfully simulated phenomena such as homogenisation, dislocation 

dynamics and crack propagation (Weinan et al., 2003). Subsequent studies have used such methods to model 

complicated flows, e.g., driven cavity flows (Ren & Weinan, 2005). MD was used to calculate the stress tensor from 

first principles, using the Irving-Kirkwood formula, instead of relying on assumptions that are inaccurate 

for ,Newtonian fluids. Hence the investigation concludes that such approaches are suitable for complex fluids, e.g., 
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polymeric fluids. Traditional formulation of HMM is unable to study steady-state problems since the velocity field 戟, used to impose boundary conditions on the molecular solver, vanishes along with the time derivative in equation 

2.4. Recent studies have circumvented this problem by using the Laplacian of the streaming velocity and 

temperature (Alexiadis et al., 2013) to calculate momentum and heat transfer. In addition, their method avoids using 

the complicated Irving-Kirkwood equations to calculate the stress tensor and, instead, uses the simpler ‘framed’ cell 

approach (Hadjiconstantinou & Patera, 1997; Massarotti et al., 2010). The approach was validated by simulating a 

flow through a channel under the effect of gravity. 

A variation of the HMM, is the Internal-flow Multiscale Method (IMM), tailored for micro and nanoflows 

through channels of high aspect ratios. The system is again treated entirely by the continuous solver. However, the 

microscopic component treats thin strips across the entire width of the channel rather than small regions around grid 

points. The rationale is that for very narrow channels, the molecular regions of traditional HMM which need to have 

a minimum volume (depending on the mean free path of the system), might overlap introducing a computational 

overhead surpassing the computational expense of full MD. Rather than imposing the velocity field onto the 

molecular region, IMM imposes pressure gradient, emulated through an applied force. 

 

Fig. 4.7 Schematic representation of IMM. The entire channel is solved with a continuum solver. The molecular 

component is used over sparsely placed, thin regions, spanning the entire width of the channel. 

 

The spacing between the molecular slices depends on the rate of change of the flow and geometric properties. 

The faster the change is, the closer these regions should be. Hence, such methods are not so effective in simulating 

channels interconnected through junctions where the geometry varies significantly within small length scales; a 

scenario which is quite common in engineering (e.g. reservoir inlet/exit junction). To accommodate such models, an 

extension of the model has been proposed which treats channels of high aspect ratio with IMM, while covering the 

junction components entirely through MD (Borg et al., 2013b). The IMM approach has further been adopted for 

compressible flows (Patronis et al., 2013) using the direct simulation Monte Carlo (DSMC) method. 
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Recent studies have introduced the field-wise coupling (FWC) approach (Borg et al., 2013a), circumventing the 

limitation of traditional HMM methods in relatively coarse grids.. In contrast to PWC  that couples the molecular 

region to a node of the continuum grid, FWC couples the MD and CFD regions. MD simulations are used to 

calculate stress and velocity profiles within molecular domain, and feed their values into the CFD solver. The 

microscopic elements can have an arbitrary position and size, hence increasing the versatility of the method for 

different characteristic system dimensions and enabling flow phenomena of varying length scales to be modelled. 

The HMM-FWC approach in conjunction with DSMC was also extended to model heat transfer problems in rarefied 

gases (Docherty et al., 2014). 

To further improve the computational efficiency of PWC models, MD calculations can be cached into suitable 

data structures for use at a later timestep (Asproulis & Drikakis, 2013). If the information requested by the 

continuum model resembles previously processed data, then the molecular result is extracted from the cache, rather 

than requiring re-computing. Furthermore, artificial neural networks can be trained to optimise the volume of stored 

information and to minimise the molecular fluctuations.  

4.2.2 Equation-Free Approach 

The Equation-Free Approach (EFA) is a PWC method, which circumvents the need for continuum closed form 

equations (Kevrekidis et al., 2003; Kevrekidis et al., 2004). The main idea is that small bursts of appropriately 

initialised microscopic simulations can be used to calculate the same information that explicit continuum formulas 

would produce. The gap-tooth method defines small regions (referred to as “teeth”) in space where the microscopic 

solver calculates desired observation variables (e.g. density) (Gear et al., 2003). Spatial interpolation between the 

calculations of these regions can compute the macroscopic field. This successfully decouples the microscopic and 

macroscopic spatial scales but does nothing to decouple the time between them. 

Patch dynamics can then be used to decouple timescales. In general, given the initial value of a property 潔, 

marked as 潔待, as well as its time derivative 
鳥頂鳥痛, one can use the forward Euler method 

 潔津袋怠 噺 潔津 髪  ぷ 穴潔穴建  4.4 

to calculate the value of 潔 at future times.  Here, ぷ is the macroscopic timestep. Although a model would normally 

be used for the derivative, the patch dynamics approach calculates it by allowing the microscopic solver to run for a 

small period of time. We can then project the solution to the next macroscopic timestep ぷ using the forward Euler 

method (or more generally a Taylor series). During this macroscopic timestep, the molecular solver is not used at all. 

However, following the projection step, the microscopic simulation must be re-initialised accordingly to obtain the 

derivative for the next iteration. Since the molecular component runs for a short period of time, following the 

macroscopic timestep, the patch dynamics approach also decouples the macro and micro timescales. 

The macroscopic and microscopic timestep used for the EFA can vary significantly depending on  the problem 

to be modelled and the computational method employed. In fact, this approach is by no means restricted to a specific 

type of microscopic model. Many applications have used mesoscale models to compute the field in between 

projections for a wide range of applications. Using the LBM, previous studies investigated the interaction between 
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arrays of bubbles in a two-phase liquid (Sankaranarayanan et al., 2002; Sankaranarayanan et al., 2003; 

Theodoropoulos et al., 2004). The EFA, in conjunction with the LBM, has also been used to study reaction-diffusion 

problems (Kevrekidis et al., 2003). Investigations have also used patch dynamics with kinetic Monte Carlo to study 

a model of heterogeneous catalytic surface reactions (Makeev et al., 2002; Siettos et al., 2003).  

Although the above investigations have demonstrated that this method is effective, it is usually restricted to 

problems where the macroscopic physics are not well understood. In the case where continuum, closed-form 

equations are available, HMCM such as GD or HMM are preferred. 

5 Conclusions 

The recent academic and industrial interest in micro and nanofluidic devices has necessitated the development 

of computational strategies that can assist the design of such devices. From the perspective of the physical 

understanding of such systems, the high-resolution molecular methods are ideal approaches. Their computational 

cost, however, significantly limits their use to systems containing a modest number of atoms. For larger scales, the 

computational efficiency of continuum methods such as CFD is particularly appealing but the steep gradients and 

discontinuities characterising microflows are beyond the scope of the Navier-Stokes equations. 

This review presented the efforts for the design of computational models attempting to bridge the gap between 

accuracy and computational efficiency. Various mesoscale models, which provide an intermediate resolution for 

computation, and hybrid methods, which use both molecular and continuum solvers for the description of the fluid 

field were presented. To date, there is no universal method, which covers all regimes. The appealing simplicity of 

the LGA is compromised by the discrete nature of the velocities and density, which produces unrealistic physical 

phenomena for complex systems. Although the more refined LBM has been improved significantly over the years to 

include various effects, e.g. multi-phase flows, boundary conditions, disadvantages emerging from the limitation of 

lattice-based system dynamics, still exist. As a coarse-grained version of MD, DPD is an appealing method with the 

capability of providing an accurate representation of complex systems. However, depending on the grouping of the 

molecules, the dissipative pseudo-particles, interatomic and intermolecular interactions can be blurred.  

HMCM provide a good comprise by using both solvers. Complications arise, however, in the choice of the 

regions in which the molecular solver will be applied. GD for example, might not be appropriate in systems, where 

the entire channel is governed by microscopic phenomena and, therefore, the definition of a continuum region is not 

possible without compromising accuracy. PWC based approaches generally seem to be the most versatile, 

potentially providing information across the entire domain. However, when the geometries and gradients vary 

significantly within small length scales the number of molecular regions needs to increase, which can quickly add to 

the overall computational expense. 

For highly variable geometries and gradients the number of molecular regions needs to increase, which can 

quickly add to the computational expense. Furthermore, no mesoscale or HMCM methods are capable of dealing 

efficiently and effectively with problems in which the molecular timescales are comparable to and greater than the 

macroscopic ones. Phenomena falling within this category are adsorption and sedimentation. Whether such physical 

behaviour can be simulated using multiscale approaches is yet to be seen. 
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Finally, although significant advances in multiscale modelling are yet to be made, the efforts of the last three 

decades have facilitated a number of options, which can be considered for a large spectrum of flow regimes of 

interest in engineering. 
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