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We show that pivoting property of graph states cannot be derived from the axioms of the ZX-calculus,

and that pivoting does not imply local complementation of graph states. Therefore the ZX-calculus

augmentedwith pivoting is strictly weaker than the calculus augmentedwith the Euler decomposition

of the Hadamard gate. We derive an angle-free version of the ZX-calculus and show that it is complete

for real stabilizer quantum mechanics.

The ZX-calculus is a formal theory for reasoning about quantum computational systems [3]. It con-

sists of a graphical language based on the Pauli Z and X observables, and a collection of axioms expressed

as graph rewrite rules. The ZX-calculus is expressive enough to represent any quantum circuit, and its

equations are complete for the stabilizer fragment of quantum mechanics [1]. Due to its graphical nature,

and its close relationship to the Z and X observables, the ZX-calculus is particularly well adapted to the

study of graph states and measurement-based quantum computation [9, 7].

In addition to the two observables, the ZX-calculus also contains an operator for the Hadamard map:

this is the map which exchanges the Z and X bases, and thus provides a duality principle for the graphical

language. In previous work [8] the authors showed that if the Hadamard can be expressed in terms of

Z and X rotations—that is, as an Euler decomposition—then Van Den Nest’s theorem [14] about local

complementation of graph states follows, and vice versa. Furthermore, these results cannot be derived

from the original axioms, hence the theory “ZX-calculus + Euler” is strictly stronger than the plain ZX-

calculus.

In this paper we find a theory intermediate between the two, albeit having a similar flavour. We

consider an operation on graph states called pivoting and show that its defining property is equivalent to

the possibility to express (one of) the Pauli matrices in terms of the Hadamard. Since pivoting can be

done via local complementation, “ZX-calculus + Euler” is stronger than “ZX-calculus + Pivot”. However,

we will show that, once again, these equations cannot be derived from the plain ZX-calculus.

The theory “ZX-calculus + Euler” is known to be complete for the stabiliser fragment of quantum

mechanics [1]: the stabiliser fragment corresponds to the sub-calculus where all angles are multiples of

π/2. We show that the intermediate calculus “ZX-calculus + Pivot” is complete for the real stabiliser

fragment of quantum mechanics, and that this fragment admits an angle-free axiomatisation.

Real quantum mechanics is sufficient for quantum computing [2], in the sense that any unitary evo-

lution on n-qubits can be simulated (using a simple encoding) by a real unitary evolution acting on n+1

qubits. As a consequence, while not complete for (complex) quantum mechanics, the intermediate cal-

culus “ZX-calculus + Pivot” might be useful and simpler than the the whole “ZX-calculus + Euler” for

proving properties of quantum systems, for example via rewriting.

Remark. There is some variation about which axioms comprise the ZX-calculus. In [8] we considered

fewer axioms than we do here; whereas in some later work, notably [1], the Euler decomposition of the

Hadamard is included as an axiom.

http://dx.doi.org/10.4204/EPTCS.171.5
http://creativecommons.org
http://creativecommons.org/licenses/by-nd/3.0/
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1 The Graphical Formalism

We recall the syntax, semantics, and basic properties of the ZX-calculus. For a full exposition, see [3].

Definition 1.1. An open graph is a triple (G, I,O) consisting of a finite undirected graph G= (V,E) and
distinguished subsets I,O⊆V of degree one vertices, called the inputs and outputs, respectively. The set

of vertices I∪O is called the boundary of G, and V \(I∪O) is the interior of G. An open graph is called

empty if its interior is empty; it is called prime if it is connected and its interior is a singleton.

We view the inputs and outputs as finite ordinals, and write γ : n→ m for a graph with n inputs and

m outputs. Open graphs form a self-dual compact category: composition is achieved by identifying the

inputs of one graph with the outputs or another and erasing the resulting vertices; the tensor product is

simple juxtaposition of graphs. The unit and counit maps are generated from the unique empty graphs

d : 0→ 2 and e : 2→ 0. Note that, due to general results [10, 15, 6], a pair of graphs can be deformed

from one to other if and only if they are equal by the axioms of compact categories.

The terms of the ZX-calculus are certain open graphs we call diagrams.

Definition 1.2. A diagram is an arrow of the free category D generated by the following prime graphs:

Zn
m(α) = α

· · ·

· · ·
Xn
m(α) = α

· · ·

· · ·
H =

where n and m are the number of inputs and outputs respectively, and α ∈ [0,2π) is an angle called

phase. If α = 0 it will be omitted from the diagram.

We define the semantics of diagrams via an interpretation functor J·K :D →FdHilbwp, where FdHilbwp
is the category of complex Hilbert spaces and linear maps under the equivalence relation f ≡ g iff there

exists θ such that f = eiθg. A diagram f : n → m output defines a linear map J f K : C⊗2n → C
⊗2m as

follows:

JZn
m(α)K =

{

|0〉n 7→ |0〉m
|1〉n 7→ eiα |1〉m

JXn
m(β )K =

{

|+〉n 7→ |+〉m
|−〉n 7→ eiβ |−〉m

JHK = 1√
2

(

1 1

1 −1

)

.

The map J·K extends in the evident way to a monoidal functor. We can now see where the name ZX-

calculus calculus comes from: the Z vertices are defined in terms of the Z basis of C2 while the X

vertices are defined in terms of the X basis.

The interpretation of D contains a universal set of quantum gates. Note that Z1
1(α) and X1

1 (α) are the
rotations around the X and Z axes, and in particular when α = π they yield the Pauli X and Z matrices.

The ∧Z is defined by:

∧Z =
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α

β

· · ·

· · ·

= α+β

· · ·

· · ·

α

· · ·

· · ·

= α

· · ·

· · ·

=

(S1) (S2) (S3)

· · ·

π

α
=

· · ·
π

−α

π · · ·
α = · · ·

· · ·
α

=

· · ·

α

(π) (C) (H1)

α

β

· · ·

· · ·

=

α

β

· · ·

· · ·

= =

(Hpf) (Bi) (H2)

Figure 1: Equations for the ZX-calculus

In order to obtain the ZX-calculus we quotient the free category D by the equations shown in Figure 1;

the quotient category we denote by D.

The equations of Fig 1 are sound with respect to the interpretation functor J·K introduced above.

Proposition 1.3. There exists a canonical functor J·K∼ : D→ FdHilbwp making the following diagram

commute:

D ✲✲ D

FdHilbwp

J·K∼
❄

J·K
✲

In the rest of this paper we won’t make any distinction between D and D, nor between the interpretation

functors. Indeed, we will abuse notation and refer to both as J·K.
Remark. Note that in the presence of the equations (S1)-(S3), which we refer to collectively as the

“spider rule”, we could have made other choices for the generators of the X and Z families of vertices.

For example, the prime graphs

δ = ε = pα = α
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are used in the formulation that emphasises the fact that each family forms a Frobenius algebra. From

that perspective the spider rule is effectively a normal-form theorem; see [4] for details.

Proposition 1.4. The following are direct consequences of the axioms.

• Any connected diagram containing only Z or only X vertices is equivalent to a prime graph.

• Any diagram without any H is equivalent to a simple bipartite graph.

• Any diagram is equivalent to (a) a diagram with no Z vertices; and (b) a diagram with no X

vertices.

• Any equation which holds between two graphs, also holds with Z and X exchanged.

Remark. Note that although Figure 1 seems to favour one colour over the other, by the last point of

Proposition 1.4 we know that all the rules apply with the colours reversed.

Euler decomposition of H . The following axiom is not part of the definition of the ZX-calculus

=

π/2

π/2

π/2

(EU)

In [8] we proved that the Euler decomposition cannot be derived from the axioms of the ZX-calculus;

however, in that paper we considered slightly weaker axioms. It is straight-forward to give a counter-

model for the ZX-calculus of today.

Lemma 1.5. The Euler decomposition of H cannot be derived by the rules of the ZX calculus.

Proof. We define an alternative interpretation functor J·K0 : D → FdHilbwp by

JHK0 = JHK
JZn

m(α)K0 = JZn
m(0)K

JXn
m(β )K0 = JXn

m(0)K .

It’s easy to verify that all the equations of Figure 1 still hold under J·K0 but (EU) fails.

2 Graph states and Local complementation

Definition 2.1. Let G= (V,E) be an undirected graph. Then the graph state |G〉 is defined by

|G〉=
(

∏
uv∈E

∧Zuv
)

⊗

v∈V
|+〉

Given a graph G we can directly write down the diagram DG such that JDGK = |G〉 as follows: (1)
for each v ∈V we add a Z vertex, connected to an output; (2) for each edge uv ∈ E we add an H vertex,

connected to those Z vertices corresponding to the vertices u and v.
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Example 2.2. Consider the case when G is just a triangle:

G= DG =

Proposition 2.3. Let G= (V,E) be a graph with v ∈V and define

Kv =

(

∏
u∈N(v)

Zu

)

Xv .

Then Kv |G〉= |G〉.

Proof. We apply an X(π) to the output corresponding to v and a Z(π) on all the outputs of the neighbours
of v:

· · ·
π

π

π

v

=
· · ·

π

π

π

π

v

= · · ·
π

π

π

π

v

=

· · ·

v

Definition 2.4. Suppose G = (V,E) is a graph with v ∈ V . Let E1 = E ∩ (N(v)×N(v)) and E2 =
(N(v)×N(v))\E1. Then the local complementation of G at v is defined by

G∗ v= (V,(E \E1)∪E2) .

Equivalently, if u,u′ are neighbours of v then uu′ is an edge of G∗ v if and only if it is not an edge of G;

otherwise the two graphs are the same.

For graph states local complementation can also be expressed in terms of a product of single qubit

operations:

Proposition 2.5 ([14]). Let G be a graph with vertex v; define

Mv =

(

∏
u∈N(v)

Z(−π/2)u

)

·X(π/2)v

Then |G∗ v〉=Mv |G〉.
Note that M2

v = Kv hence local complementation is involutive on graph states.

Example 2.6. Here we consider the local complementation of the triangle by its top vertex:

=

−π
2

−π
2

π
2

Theorem 2.7 ([8]). Proposition 2.5 is equivalent to Equation (EU) in the ZX-calculus, hence it cannot

be proven in the ZX-calculus.
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3 Pivoting

Pivoting, also known as edge-local complementation, is a local transformation of graphs. Given a graph

G with an edge uv, G∧ uv, the graph obtained by pivoting according to uv, consists in exchanging the

two vertices u and v and in complementing the tripartite subgraph formed by (i) the common neighbours

of u and v; (ii) the exclusive neighbours of u; and (iii) the exclusive neighbours of v (see Figure 2).

v v

A BA

D

B

D

CC

u u

Figure 2: Pivoting on uv. C = N(u)∩N(v), A= N(u)\C, B= N(v)\C, and D is the rest of the vertices.

Pivoting on uv exchanges vertices u and v, and for any (x,y) ∈ (A×B)∪ (B×C)∪ (A×C), the edge xy
is deleted if xy was an edge, and added otherwise.

Pivoting is a combination of local complementations, G∧uv=G∗u∗v∗u (Notice that G∗u∗v∗u=
G ∗ v ∗u∗ v) and can be performed on graph states by applying Hadamard on vertices u and v and Z on

their common neighbours:

Proposition 3.1 (Pivoting Property [13, 12]).

|G∧uv〉= Hu,vZN(u)∩N(v) |G〉

Pivoting of graph states have several applications in quantum information processing. In particular

the universality of the triangular grid as a resource of measurement-based quantum computing has been

proved using pivoting [12]; pivoting can also be used to compute the minimal distance of linear codes

[5].

In the rest of this section, we prove that an additional axiom, strictly weaker that the Euler decompo-

sition of H , needs to be added to the ZX-calculus to prove the pivoting property. However, when u and v

have no common neighbours, the pivoting property can be proved in the plain ZX-calculus:

Lemma 3.2. For any graph G = (V,E) and any u,v ∈V which have no common neighbour, |G∧uv〉=
Hu,v |G〉 can be derived in the ZX-calculus.

Proof. The proof is based on the generalised bialgebra law [8]:

=

Assume for the moment that there is no edge between the neighbours of u and the neighbours of v. In

that case applying H on both u and v permutes u and v and creates a complete bipartite graph between



56 Pivoting makes the ZX-calculus complete for real stabilizers

the neighbours of u and this of v. For instance, if u and v both have two neighbours:

vu

=

u v

=

u v

=

vu

The first equation is via rule (H1) while the second follows from the generalised bialgebra. The final

equation uses rule (H1) again to remove all the red vertices, followed by the spider rule, and some

rearrangement of the graph. Now suppose that in fact there were some edges between the neighbours of

u and those of v. The procedure above will add an additional edge, and then both may be removed since

= by (HpF).

As a consequence, pivoting of triangle-free graphs or bipartite (or 2-colourable) graphs can be derived

in the ZX-calculus. Notice that the pivoting preserves bipartiteness (but not triangle freeness), so one can

prove a series of pivotings on bipartite graphs in the ZX-calculus.

In the following we prove that the pivoting of arbitrary graph can be derived in the ZX-calculus

augmented with a new rule for π-rotations:

Theorem 3.3. Pivoting of arbitrary graph can be proved in the ZX-calculus augmented with the follow-

ing axiom:

π = (HL)

This new axiom is called the H-loop axiom as it can be rewritten as π = .

Proof. We illustrate the proof on the particular case where the u and v have two common neighbours:

π

π

vu

=

vu

=

vu

=

u v

=

u v

The left-most diagram corresponds to a graph state on which H is applied on two vertices u and v and

Z (green π-rotation) on their two common neighbours. The second diagram is obtained using the (HL)

axiom. This transformation splits each common neighbour of u and v in such a way that Lemma 3.2 can

be applied, leading to the third diagram. The application of the spider rule (fourth diagram) and the Hopf

law (fifth diagram) completes the proof for this particular graph.

The general case is similar. First, the π-rotations on the common neighbours are removed using

the (HL) axiom, which splits the common neighbours. Then, in the absence of common neighbours

Lemma 3.2 is used. Finally spiders and the Hopf Law complete the proof.
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In the following, we show that one can derive pivoting if and only if Equation (HL) holds:

Lemma 3.4. In the ZX-calculus, the pivoting property for the triangle implies that the π-rotation is

equivalent to a “H-loop”, i.e.

π

= ⇒ π =

Proof. = = = =

π

=

π

=

π

= π

Lemma 3.5. π = cannot be derived from the rules of the ZX-calculus.

Proof. We consider the interpretation functor J.K0 introduced in Lemma 1.5, which preserves all the

axioms of the ZX-calculus, but for which we have:

1

2

(

1 0

0 −1

)

= J K0 6= J π K0 =

(

1 0

0 1

)

Like the Euler decomposition of H (Equation (EU)), Equation (HL) cannot be derived from the

rules of the ZX-calculus. The completeness for the stabilisers of the ZX-calculus augmented with Euler

decomposition of H guarantees that equation (HL) can be derived from the Euler decomposition of H .

Indeed,

=
π/2

π/2

π/2

=
π π/2

=
π π/2

= π .

In the following, we prove that Equation (HL) is actually strictly weaker than the Euler decomposi-

tion in the sense that the Euler decomposition cannot be derived from Equation (HL) in the ZX-calculus.

Lemma 3.6. The Euler decomposition of H cannot be derived in the ZX-calculus augmented with the

axiom π = .
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Proof. We consider the following functor J.K♭ which maps diagrams to diagrams:

s {♭

=

s {♭

=

r z♭
=

r z♭
=

s {♭

=

s {♭

=

s
α

{♭

=

s
α

{♭

=

Notice that the axioms of the ZX-calculus are satisfied. Indeed, for diagrams without H , the functor J.K♭
consists in doubling the picture and trivialising the rotations. Regarding the axioms which involve H , we

have s {♭

= = =

s {♭

and

s {♭

= = =
r z♭

for instance, the other ones are satisfied similarly.

The H-loop axiom is satisfied as well:

u
v

}
~

♭

= = = =

s
π

{♭

,

but the Euler decomposition is not:

u
wwwwwv

π/2

π/2

π/2

}
�����~

♭

= and

s {♭

= .

The combination of Lemmas 3.5 and 3.6 proves that “ZX-calculus + H-loop” is indeed an intermedi-

ate theory between the ZX-calculus and “ZX-calculus + Euler”.

4 Angle-free calculus for Real Stabilizers

Backens [1] considered a syntactic restriction on the terms of the ZX-calculus: by demanding that all the

phases occurring in a term are multiples of π
2
, the resulting ZX-calculus terms are in exact correspondence

with stabilizer states. Furthermore, the theory of ZX-calculus + Euler is sufficient to decide the equality

for these states. In other words, the theory is complete for stabilizer quantum mechanics.
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We will now consider a stronger syntactic restriction, namely that all phases must be either 0 or π .

Semantically this yields the real-valued fragment of stabilizer quantum mechanics. We will also modify

the axiom scheme by dropping the axioms (π) and (C) and replacing them with

· · ·
= · · ·

· · ·

π

= · · ·
π π

(C1) (C2)

Note that these equations are both derivable in the full ZX-calculus. The resulting system we call the

weak ZX-calculus.

Lemma 4.1. The following equations are derivable in the weak ZX-calculus:

π
=

π π

π

π
=

π

π

Proof. For the first equation we have

π
=

π

=

π

= π

π

=

π π

by spider, (B), (C2), and spider. Making use of this equation, in both its original and colour-switched

form, we have:

π

π
=

π

π

=

π

π
π

=

π

π

π

=
π π

π

π
=

π

π

where the scalar factor was dropped at the last step.

However, in the presence of Equation (HL) there is no need for the angle π at all. We can now define

the “angle-free ZX-calculus” by replacing all the π vertices with loops:

π 7→ and π 7→

and replacing axiom (C2) with (L):

· · ·
=

· · ·
(L)

Evidently, the resulting calculus is strictly stronger than the weak ZX-calculus and weaker than the

restricted ZX-calculus + Euler considered by Backens.

We will show that the angle-free ZX-calculus is complete for real-valued stabilizers.
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4.1 Real stabilizer quantum mechanics

Recall that the Clifford operations are the normalisers of the Pauli operators, i.e. Cn= {U |∀g∈Pn,UgU† ∈
Pn} where Pn is the Pauli group on n qubits. The real Cliffords—i.e. those satisfying U =U—form a

subgroup of Cn generated by {Z,H,∧Z}. We call real stabilizer quantum mechanics any quantum evo-

lution that can be described by real Clifford operations, |0〉 initialisations, and |0〉 projections. Notice

that the image of the angle-free ZX-calculus under the functor J·K coincides with real stabiliser quantum

mechanics. We now show the completeness of the angle-free ZX-calculus for real stabiliser quantum

mechanics, i.e. for any two diagrams D1 and D2, if JD1K = JD2K then D1 = D2 can be proved in the

calculus.

We follow the proof of the completeness of the ZX-calculus together with the Euler decomposition

for (complex) stabiliser quantum mechanics [1]. Due to the Choi-Jamoilkowski isomorphism it suffices

to consider input-free diagrams (since any input can be turned into an output). A diagram with no input

is called a diagram state.

Definition 4.2. A diagram is called a GS-RLC diagram if it consists of a graph state with arbitrary single

real Clifford operator applied on each output.

Lemma 4.3. Any angle-free diagram state is equal to some GS-RLC diagram within the angle-free ZX-

calculus.

Proof Sketch. The proof is by induction. Intuitively, every red dot can be turned into a green dot using H;

the spider rule is used to merge green dots connected by a wire; parallel H-edges are removed using the

Hopf law. If there is a green dot which is not connected to an output, then either this dot is disconnected

from the rest of the diagram and can be ignored, or the dot can be removed by pivoting with one of its

neighbours as shown:

= = = = =

That is, the bottom dot is removed by pivoting along one of its incident edges.

Definition 4.4. A reduced GS-RLC diagram, is a GS-RLC diagram such that

(1) every vertex Clifford operator is one of , , or

(2) two adjacent vertices must not both have vertex operators that include an H .

Lemma 4.5. Any angle-free diagram state is equal to a reduced GS-RLC diagram.

Proof Sketch. Any real local Clifford is a combination of H , X and Z. Notice that using Proposition 2.3,

every X can be transformed in Zs on its neighbours. As a consequence the vertex Clifford operators are

either I, Z, H or HZ. Moreover, if two adjacent vertices have a vertex operator which include an H , then

one can do a pivoting which is consuming the Hs, transforms the graph and produces Z on the common

neighbours.

Suppose that a pair of GS-RLC diagrams describe states with the same number of qubits, that is, they

have the same set of outout vertices. Such a pair is called simplified if there is no pair of qubits u and v

which are adjacent in at least one diagram and such that H is applied on u but not v in the first diagram,

and on v but not u in the second diagram.

Lemma 4.6. Any pair of angle-free diagrams of reduced GS-LRC diagrams can be simplified.
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Proof Sketch. If there exists a pair u, v which are adjacent in the first diagram such that H is applied on

u and not on v, then one can apply a pivoting on u,v in this graph. This pivoting consumes the H on u

and add an H on v. This transformation does not introduce nor remove H on the other vertices, so this

transformation can be applied inductively to any pair of vertices which do not satisfies the conditions of

simplified pairs of GS-RLC.

Theorem 4.7. Given two reduced GS-RLC diagrams D1 and D2 which form a simplified pair, JD1K =
JD2K if and only if D1 and D2 are identical.

Proof. Since D1 and D2 are reduced GS-RLC diagrams, there exist two graphs G1 = (V,E1) and G2 =
(V,E2), and four subsets A1,A2,B1,B2 ⊆V such that JDiK=HAi

ZBi
|Gi〉, whereHA =

⊗

u∈AHu. Diagrams

D1 andD2 are identical iff A1=A2, B1 =B2 andG1 =G2. First we show that A1 =A2. Notice that JD1K=
JD2K iff HAZB1

|G1〉 = ZB2
|G2〉 where A = A1∆A2 is the symmetric difference of A1 and A2. By contra-

diction, for any u ∈ A1∆A2, |G1〉 is a fix point of XuZNG1
(u), so ZB1

|G1〉 is an eigenvector of XuZNG1
(u).

Moreover, since D1 is in a reduced form there is no H applied on qubits adjacent to u, so HAZB1
|G1〉 is an

eigenvector of ZuZNG1
(u). Indeed HAZB1

|G1〉 = HAZB1
XuZNG1

(u) |G1〉 = ±ZuZNG1
(u)HAZB1

|G1〉. Regard-
ing the second state, ZB2

|G2〉 is an eigenvector of XuZNG2(u)
. The two operator XuZNG2(u)

and ZuZNG1
(u)

are anti commuting so they cannot have a common non-zero eigenvector, as a consequence A1 = A2.

Thus JD1K = JD2K implies ZB1
|G1〉 = ZB2

|G2〉. Moreover, it has been proved (Lemma 3 in [12]) that

ZB1
|G1〉= ZB2

|G2〉 implies B1 = B2 and G1 =G2. As a consequence the two diagrams are identical.

5 Conclusion and Perspectives

We have introduced a new calculus, intermediate between the ZX-calculus and the ZX-calculus aug-

mented with the Euler decomposition of H . As the introduction of the Euler decomposition was driven

by local complementation, the new axiom we consider, namely the H-loop, is driven by another graph

transformation, namely pivoting. We prove the H-loop axiom cannot be derived in the plain ZX-calculus,

and is strictly weaker than the Euler decomposition of H . When restricted to 0- and π-rotations this new

calculus is complete for real stabiliser quantum mechanics. Moreover this restricted language admits

a simple equivalent angle-free calculus. We believe this angle-free calculus will be the cornerstone for

an axiomatisation of real quantum mechanics. Real quantum mechanics is known to be universal for

quantum computing, moreover the restriction to the real field provides some useful simplifications in

terms of diagrammatic quantum mechanics (for example, the object A and its dual A∗ have the same in-

terpretation). Another example is that, when restricted to real numbers, the unbiased bases are perfectly

captured by the complementary observables X and Z of the ZX-calculus, whereas the axiomatisation of

the third (complex) mutually unbiased base for qubit, albeit possible (see [11]) is less intuitive. On the

other hand applications which require complex numbers like local tomography cannot be captured by

this intermediate language, and require additional axioms (e.g. Euler decomposition of H).
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