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Prognostics	of	transformer	remaining	life	can	be	achieved	through	a	statistical	

technique	called	particle	filtering,	which	gives	a	more	accurate	prediction	than	

standard	methods	by	quantifying	sources	of	uncertainty.	

Introduction	

	

The	 adoption	 of	 prognostics	 for	 critical	 assets	 has	 the	 potential	 to	 advance	 asset	

management	 in	 the	 power	 industry	 significantly.	 While	 diagnostic	 techniques	 can	

identify	the	presence	of	incipient	faults,	prognostics	aims	to	predict	the	future	state	

of	a	given	asset	[1],	[2].	Prognostics	can	therefore	be	used	to	estimate	the	remaining	

useful	life	(RUL)	of	the	asset,	and	help	plan	maintenance	while	minimizing	the	risk	of	

failure	in	service.		

	

Prognostics	 requires	 a	 good	model	of	 the	process	of	 deterioration,	 from	 inception	

through	to	failure	[1]-[3].	Deterioration	may	be	due	to	aging,	as	in	the	case	of	paper	

insulation,	 or	 it	 may	 be	 due	 to	 a	 fault.	 Regardless	 of	 the	 cause	 of	 deterioration,	

prognostics	 is	 useful	 only	 if	 the	 deterioration	 is	 slow	 enough	 that	 maintenance	

(repair	 or	 replacement)	 can	 be	 scheduled	 during	 the	 predicted	 RUL.	 	 Thus	

prognostics	is	not	superior	to	diagnostics	if	the	deterioration	is	so	rapid	that	failure	

cannot	be	prevented.	

	

A	deterioration	model	can	take	the	form	of	a	physics-of-failure	(PoF)	model,	or	it	can	

be	derived	from	data	[3].	Within	the	power	industry,	a	major	difficulty	of	the	latter		

is	‘hazard	censoring’,	where	little	data	relating	to	asset	failures	is	available	because		

most	 assets	 are	 removed	 from	 service	 before	 failure.	 	 A	 PoF	 model	 may	 be	

preferable	 since	 it	 can	 offer	 some	 quantitative	 support	 for	 the	 RUL	 prediction.	 In	

either	case,	there	is	always	some	uncertainty	about	an	asset’s	future	deterioration.		

A	prognostics	system	should	ideally	quantify	this	uncertainty	as	well	as	modeling	the	

deterioration.		

	

Several	techniques	can	be	used	for	prognostics	[3].	Those	more	familiar	as	diagnostic	

techniques	 can	 also	 be	 used	 for	 prognostics,	 e.g.,	 neural	 networks	 [4]	 or	 support	

vector	regression	[5].	Techniques	which	are	commonly	used	for	forecasting,	such	as	

linear	regression	[6],[7],	or	autoregressive	integrated	moving	average	[8],	can	also	be	

used.	 Those	 specific	 to	 prognostics	 include	 similarity-based	 prognostics	 [9]	 or	



particle	 filtering	 [10]-[12].	 Of	 the	 latter,	 a	 statistical	 filtering	 technique	 called	 the	

particle	filter	is	one	of	the	most	versatile,	as	it	places	few	constraints	on	the	form	of	

the	 deterioration	 function,	 and	 incorporates	 explicit	 handling	 of	 uncertainty.	 It	

should	 be	 noted	 that,	 in	 this	 context,	 a	 “particle”	 is	 a	 system	 simulation,	 not	 a	

physical	particle	(impurity)	in	transformer	oil.	

	

Prognostics	is	more	widespread	in	industries	where	the	safety-related	nature	of	the	

application	 leads	 to	 higher	 levels	 of	 component	 monitoring	 than	 in	 the	 power	

industry.	In	particular,	the	particle	filtering	approach	has	been	applied	to	mechanical	

faults	 in	 aerospace	 assets,	 e.g.,	 crack	 growth	 propagation	 [10]	 and	 impeller	 wear	

[11].	However,	with	growing	volumes	of	data	being	collected	from	power	networks,	

following	 increased	adoption	of	smart	grid	technologies	and	 lower	costs	of	sensors	

and	storage,	online	prognostics	is	now	becoming	more	common	for	electrical	assets.			

	

In	 this	 article	 the	 particle	 filter	 as	 a	method	 of	 prognostics	 for	 transformer	 paper	

aging	is	described.	The	PoF	model	of	deterioration	at	the	core	of	the	particle	filter	is	

derived	 from	 the	widely	accepted	 IEEE	 standard	C57.91.	The	key	advantage	of	 the	

particle	 filter	 approach	 is	 that	 it	 quantifies	 various	 sources	 of	 uncertainty	 in	 the		

paper	aging	process,	from	uncertainty	in	the	measurements	used	to	derive	hotspot	

temperature	 to	 uncertainty	 in	 the	 activation	 energy	 required	 to	 break	 cellulose	

chains	 in	 the	 insulation	 paper	 of	 a	 given	 transformer.	 Over	 the	 course	 of	 a	

transformer’s	service	life,		these	small	sources	of	uncertainty	may	lead	to	significant	

prognostic	 error.	 By	 adding	 a	 probabilistic	 layer	 of	 analysis	 to	 the	 deterministic	

equations	in	C57.91,	the	particle	filter	can	provide	a	utility	with	a	more	informative	

but	less	precise	estimate	of	remaining	paper	lifetime.	

	

The	Particle	Filter	

	

A	particle	filter	is	a	probabilistic	simulation	of	a	system—in	the	case	of	prognostics,	

the	 deterioration	 of	 a	 component	 [13].	 Within	 the	 filter,	 a	 large	 number	 of	

simulations	 (called	 ‘particles’)	 are	 run	 in	 parallel	 with	 slightly	 different	 initial	

conditions	 and	 probabilistic	 state	 transitions.	 Each	 particle	 captures	 one	 possible	

fault	 trajectory.	Once	one	or	more	measurements	of	 the	 system	have	been	made,	

each	particle	is	given	a	weighting	based	on	the	likelihood	of	it	representing	the	true	

state	of	 the	system.	The	prediction	of	 the	time	to	reach	a	given	state,	e.g.,	 failure,		

emerges	through	agreement	between	the	majority	of	highly-weighted	particles.	

	

The	 system	 is	 modeled	 as	 two	 parts,	 namely	 the	 process	 model	 f	 	 and	 the	

measurement	model	h	[14]:	

	

!! ! !!!!!!!!!!		 	 	 	 	 (1)	

!! ! !!!! ! !!!		 	 	 	 	 (2)	

	

where	xt		is	the	system	state	at	time	t,	yt		are	the	measurements	at	time	t,	and	u	and	

v		are	noise	terms.	The	process	model	f	captures	the	underlying	deterioration	of	the	

system,	 which	 must	 be	 Markovian,	 i.e.,	 the	 system	 state	 depends	 only	 on	 its	



immediate	previous	state	and	current	conditions,	and	not	on	historical	 states	 [13].	

The	measurement	model	h	 represents	 the	difference	between	measurements	 and	

the	true	state	of	the	system,	due	to	noise	or	known	biases	in	the	instrumentation,	or	

because	the	system	state	is	not	directly	observable	and	must	be	inferred	from	proxy	

variables.	

	

At	each	time-step,	two	calculations	are	made	for	each	particle	i :	

	

1. Simulation	of	the	new	system	state	!!
!,	given	the	previous	system	state	!!!!

! :	

	

	 	 	 !!
!
! ! !!!!

! !!! !!!		 	 	 	 	 (3)	

	

2. Weighting	of	the	particle	likelihood	!!
!,	given	the	probability	of	new	

measurement	values	occurring	if	this	particle	represents	the	true	system	

state	! !! !!
!!,	combined	with	the	weight	of	this	particle	at	the	previous	

timestep	!!!!
! :	

	

	 	 	 !!
!
! ! !! !!

!
!!!!!!!

!
!!!		 	 	 	 (4)	

	

Equation	(3)	provides	prognostic	capability,	as	it	predicts	the	next	timestep.	Equation	

(4)	 is	 a	 diagnostic	 step,	 as	 it	 uses	measurements	 to	 adjust	 the	 probability	 of	 each	

particle	 representing	 the	 true	 current	 state	 of	 the	 system.	 Predictions	 at	 longer	

times	 can	 be	 generated	 by	 repeated	 use	 of	 (3),	 with	 predicted	 outputs	 being	 fed	

back	as	inputs	for	subsequent	timesteps.	

	

The	result	generated	by	the	particle	filter	is	derived	from	the	state	of	all	particles.	A	

common	approach	is	to	look	at	the	spread	of	possible	states	at	a	given	future	time,	

as	 in	 [11].	 In	 that	 case	 all	 particles	 simulate	 health	 in,	 say,	 a	 year’s	 time,	 and	 the	

expected	 distribution	 of	 RUL	 values	 at	 that	 time	 is	 calculated	 from	 individual	 RUL	

values	in	each	particle.	Important	parameters	of	this	distribution	include	the	median	

RUL	(the	50
th
	percentile),	and	expected	upper	and	lower	limits	on	RUL	such	as	the	5

th
	

and	95
th
	percentile	bounds.		

	

Application	to	Transformer	Paper	Aging	

	

Transformers	are	the	most	expensive	single	asset	in	the	power	system,	and	are	

critical	to	network	performance	targets	being	met.	It	can	therefore	be	cost-effective	

to	install	monitoring	equipment	and	track	the	condition	of	key	transformers,	with	

the	aim	of	delaying	repair	or	replacement	until	they	are	essential.	As	a	result,	a	large	

body	of	research	and	practice	has	focused	on	transformer	monitoring	and	

degradation	mechanisms,	so	that	significant	scope	for	the	application	of	prognostics	

to	transformers	now	exists.	

	

The	life-limiting	parameter	for	a	transformer	is	the	degree	of	polymerization	(DP)	of	

the	paper	insulation	at	its	most	aged	location.	New	paper	has	a	DP	of	approximately	

1000–1200	 [15],	while	 end	 of	 life	 is	 typically	 considered	 to	 be	DP	 =	 200	 [16].	 The	



factors	with	most	influence	paper	DP	are	thought	to	be	temperature,	moisture	and	

oxygen	content,	and	to	a	lesser	extent	acid	and	contaminant	content	[16],[17].	

	

The	main	mechanisms	of	paper	breakdown	are	hydrolysis,	oxidation,	and	pyrolysis,	

which	 occur	 at	 different	 rates	 depending	 on	 temperature,	 moisture,	 and	 oxygen	

levels	within	the	paper	[16].	Pyrolysis	requires	extreme	temperatures	(greater	than	

140	
o
C),	and	can	therefore	be	 largely	discounted	under	normal	operation	[16],[17].	

Oxidation	requires	the	presence	of	oxygen,	and	may	therefore	be	considered	highly	

important	for	free-breathing	transformers	and	less	so	for	sealed	units	[16].	However,	

over	the	life	of	a	sealed	transformer,	oxidation	can	play	an	important	role	because	it	

leads	 to	 the	 generation	 of	 acids,	 which	 catalyze	 deterioration	 [16].	 Hydrolysis	 is	

dependent	on	 temperature	and	the	presence	of	moisture.	Since	 the	paper	 is	dried	

during	transformer	construction	and	moisture	levels	tend	to	increase	during	service,	

the	rate	of	hydrolysis	is	generally	expected	to	increase	as	the	transformer	ages	[16].	

	

For	 a	 newly-built	 sealed	 transformer,	 the	 main	 deterioration	 mechanism	 is	

hydrolysis,	and	 the	 rate	of	aging	on	a	day-to-day	basis	 is	dominated	by	changes	 in	

temperature	 rather	 than	 by	 changes	 in	moisture	 content.	 	 A	model	which	 relates	

temperature	 to	 rate	of	 change	of	 paper	DP	 is	 found	 in	 IEEE	 Standard	C57.91	 [18],	

which	defines	an	aging	acceleration	factor	!!!		

	

!!! ! !

!∀###

!∀!
!!

!∀###

!∀#!!! 		 	 	 	 	 (5)	

	

where	!!	is	the	temperature	(in	
o
C)	of	the	transformer	hotspot.	C57.91	states	that	

the	transformer	paper	will	reach	end-of-life	DP	after	180,000	hours	at	110	
o
C.	Aging	

is	faster	and	lifetime	is	shorter	at	higher	temperatures.	

	

(5)	can	be	rearranged	by	converting	it	into	a	recurrence	relation	for	remaining	paper	

lifetime:	

	

!! ! !!!! ! exp !15000! !!!
!

!∀!
! !

!

!∀#!!!!!

		 	 	 (6)	

	

where	!	is	 the	 time	 in	 service	 in	 hours,	!!	is	 the	 RUL	 at	 time	!,	!!! 	is	 the	 hotspot	

temperature	 at	 time	!,	 and	!! 	is	 process	 noise.	 There	 are	 two	 main	 sources	 of	

uncertainty	in	this	model,	namely	the	initial	condition	!!,	which	is	the	initial	number	

of	hours	of	expected	service	life	corresponding	to	the	initial	DP	of	the	paper,	and	the	

process	noise	which	 is	 the	slight	variation	 in	 lifetime	reduction	 for	a	given	hotspot	

temperature.	The	latter	is		due	to	small	differences	in	the	activation	energy	required	

to	break	cellulose	(paper)	chains.	

	

The	 measurement	 model	 must	 capture	 the	 relationship	 between	 hotspot	

temperature	 and	 transformer	 measurands,	 and	 measurement	 noise.	 Since	 the	

transformer	hotspot	temperature	is	not	directly	observable,	it	must	be	inferred	from	

other	 parameters.	 C57.91	 [18]	 gives	 an	 equation	 for	 hotspot	 temperature	!! ,	

assuming	 a	 known	 ambient	 temperature	!! ,	 a	 known	 top	 oil	 temperature	 rise	



!!!∀!!!!!relative	to	!!,	and	a	known	hot	spot	temperature	rise		!!!!!∀		relative	to	

top	oil	temperature	!TO	:	

	

!! ! !!! ! !!!∀!! ! !!!!!∀		 	 	 	 (7)	

	

The	steady-state	top	oil	temperature	rise	over	ambient	can	be	calculated	as:	

	

!!!∀!! ! !!!!∀!!
!
!!!!

!!!

!

		 	 	 	 (8)	

	

where	!!!∀!! 		 and	!	are	 respectively	 the	 top	oil	 temperature	 rise	over	 ambient	 at	

the	 transformer	 rated	 load	 and	 the	 ratio	 of	 load	 loss	 at	 rated	 load	 to	 loss	 at	 zero	

load,	!	is	the	ratio	of	measured	load	to	rated	load	(!!!!),	and	!	is	a	constant	for	a	

given	cooling	mode.		

	

The	hotspot	temperature	rise	over	top	oil	can	be	calculated	as:	

	

!!!!!∀ ! !!!!!! !!!!
!!		 	 	 	 (9)	

	

where	!!!!! 	is	the	transformer	design	parameter	hotspot	temperature	rise	over	top	

oil	at	rated	load,	!	is	as	defined	immediately	above,	and	!	is	another	constant	for	a	

given	cooling	mode.	

	

Hotspot	temperature	can	be	calculated	from	measurement	of	ambient	temperature	

and	load,	in	combination	with	a	number	of	design	parameters	and	constants.	The	

final	step	in	building	a	particle	filter	measurement	model	is	to	incorporate	the	sensor	

noise	!!	and	!!!superimposed	on	measurements	of	ambient	temperature	and	load	

respectively:	

!! ! ! !!! ! !!!! !!!∀!!
!
!!!!

!!!

!

! !!!!! !!!!
!!!! !

!!!!!!

!!

		 	 (10)	

	

This	measurement	model	assumes	that	a	simulation	time-step	is	long	enough	for	the	

hotspot	temperature	to	be	taken	as	its	steady	state	value.	

Case	Study	Example	

	

The	 Power	 Networks	 Demonstration	 Centre	 (PNDC)	 is	 an	 11kV/400V	 test	 facility	

located	 near	 Glasgow,	 UK,	 used	 for	 trial	 and	 demonstration	 of	 smart	 grid	

technologies.	 It	 was	 built	 to	 resemble	 a	 distribution	 network	 of	 the	 future,	 with	

significant	levels	of	automation	and	communications,	embedded	generation,	and	the	

capability	to	generate	resistive	balanced	and	unbalanced	faults	[19].	

	

The	site	is	fed	through	an	11kV/11kV	2MVA	isolation	transformer.	The	health	of	this	

transformer	 is	 critical	 for	 the	 site,	 since	 any	 transformer	 downtime,	 e.g.,	 for	

maintenance,	 	means	 the	 site	 is	 offline	until	maintenance	 is	 completed.	Given	 the	

high	data	collection	capability	on-site,	online	prognostics	of	the	transformer	can	be	

achieved	 without	 additional	 instrumentation.	 The	 transformer	 parameters	 for	 the	

measurement	model	of	the	particle	filter	are	given	in	Table	1.		



	
Table	1:	Transformer	parameters	for	measurement	model	

Parameter	 Value	

Rating	 2	MVA	

Cooling	mode	 ONAN	

Oil	temperature	rise	over	40	
o
C	ambient			 60	

o
C	

No	load	losses	 3100	W	

Load	losses	at	rated	current	 21000	W	

	

	

The	particle	filter	will	now	be	used	to	examine	two	cases,	firstly	the	aging	to	

September	2015	of	the	transformer	in	service,	followed	by	its	expected	aging	over	

the	next	five	years.	

	

Aging	to	date	

	

The	PNDC	site	was	commissioned	in	January	2014.	The	on-site	load	is	atypical	for	a	

distribution	feeder,	since	it	is	limited	almost	entirely	to	weekday	business	hours.	Due	

to	 the	 testing	 of	 equipment,	 including	 novel	 protection	 devices,	 the	 network	may	

experience	 a	 higher	 number	 of	 faults	 than	 a	 utility	 would	 consider	 acceptable.	

However,	 the	 duration	 of	 fault	 current	 is	 limited	 by	 standard	 backup	 protection	

schemes,	and	consequently	will	not	cause	significant	heating	in	the	transformer.	

	

A	data	set	of	load	and	temperature	between	January	2015	and	September	2015	was	

generated.	 Load	was	measured	 using	 a	measurement	 class	 1	 current	 transformer,	

with	automatic	 logging	initiated	in	January	2015.	Prior	to	this,	 logging	was	initiated	

manually	 and	 consequently	 some	 service	 data	 were	 not	 recorded.	 However,	 no	

significant	transformer	 loading	occurred	in	2014	as	the	site	went	through	stages	of	

equipment	commissioning.	Ambient	temperature	data	were	collected	from	a	nearby	

airport	weather	station.	Minimum,	mean,	and	maximum	were	 logged	at	both	daily	

and	hourly	intervals.		

	

The	network	is	usually	de-energized	overnight,	with	experimental	work	beginning	at	

0900h.	It	is	used	for	various	experiments	until	the	working	day	ends	at	1700h,	when	

it	 is	 again	 de-energized.	 The	 current	 measured	 at	 the	 isolation	 transformer	 is	

typically	 20–30	 A,	 and	 fluctuates	 due	 to	 network	 reconfiguration	 and	 changing	

loadbank	 settings.	 On	 multiple	 occasions	 current	 peaked	 at	 80-105	 A,	 and	

interruptions	occurred	due	to	introduction	of	faults.		

	

The	particle	 filter	was	 initialized	with	 1000	particles,	 each	with	 the	process	model	

from	equation	(6),	the	measurement	model	from	equation	(10),	and	the	initial	life	of	

the	insulation	paper	!!	drawn	from	a	normal	distribution	with	a	mean	of	180,000	h	

and	a	standard	deviation	of	500	h	 (!!180000! 500!!!!This	 standard	deviation	was	

selected	based	on	engineering	judgment.	If	higher	accuracy	were	desired,	data	from	

the	 paper	 supplier	 or	 from	 testing	 of	 samples	 could	 be	 used	 to	 refine	 these	

distribution	parameters.	



	

The	 measurement	 noise	 !! 	superimposed	 on	 the	 ambient	 temperature	

measurement	 was	 chosen	 to	 be	!!!! !!,	 with	 a	 standard	 deviation	 of	 1	 oC	 to	

account	for	the	temperature	being	measured	nearby	rather	than	on	site.	The	noise		

!!	superimposed	on	load	current	measurements	is	due	to	the	measurement	class	1	

current	transformers	used	to	determine	the	transformer	loading.	The	process	noise	

!,	chosen	as	! !! 20 	on	the	basis	of	an	assumed	uncertainty	ΔEA	up	to	0.5	kJ/mol	

in	the	activation	energy	of	the	paper	degradation	process,	causes	a	variation	in	the	

constant	15,000	in	equation	(6).	That	variation	could	be	up	to	

	
!!!

!
! !

!!!

!!314!!!10!!
! 60!!!!	

	

where	!	is	the	universal	gas	constant.	The	value	of	60.1	K	was	assumed	equivalent	

to	three	standard	deviations	in	the	value	of	the	mean	activation	energy	(accounting	

for	 over	 99%	 of	 events).	 Thus	 the	 process	 noise	 u	 was	 drawn	 from	 a	 normal	

distribution	with	a	standard	deviation	of	one	third	of	60.1	K.	

	

Starting	from	these	initial	conditions,	the	service	condition	data	were	filtered	to	give	

a	 diagnosis	 of	 the	 health	 of	 the	 transformer	 paper	 in	 September	 2015.	 Figure	 1	

shows	 the	 resulting	probability	distribution	 functions	of	 the	RUL,	derived	 from	 the	

predictions	of	all	1000	particles.	The	median	RUL	at	the	start	of	life	is	just	below	the	

mean,	 at	 179,986	 hours,	 and	 is	 estimated	 to	 have	 dropped	 to	 179,631	 hours	 by	

September	2015.		

	
Figure	1:	The	probability	density	functions	of	remaining	useful	life	at	the	start	of	life	(red)	and	after	nine	

months	in	service	(blue).	



The	relatively	light	loading	of	this	transformer	compared	to	its	rated	load	means	that	

the	life	consumption	of	its	paper	is	slow,	although	step	changes	in	RUL	can	be	seen	

when	the	load	current	approaches	its	rated	value.	Figure	2	shows	a	typical	nine-day	

period	 of	 relatively	 light	 loading	 compared	 to	 rated	 load,	 where	 the	 decrease	 in	

median	value	of	RUL	can	hardly	be	seen.	In	contrast,	Figure	3	shows	a	much	higher	

load	on	3	September,	with	a	readily	visible	reduction	in	RUL.	

	

	

	
Figure	2:	A	typical	nine	day	period	of	transformer	load	current	(blue),	with	the	corresponding	RUL	(red).	

	

	
Figure	3:	An	example	of	high	transformer	load	causing	a	step	change	in	RUL.	



	

Prognostics	Under	Normal	Conditions	

	

After	 determining	 RUL	 to	 September	 2015,	 the	 particle	 filter	 was	 used	 to	 predict	

remaining	life	after	a	further	five	years	of	operation.	The	existing	loading	data	were	

assumed	to	be	representative	of	future	loading,	and	the	weather	data	for	all	of	2014	

were	assumed	to	be	representative	of	future	weather	conditions.	Figure	4	shows	the	

probability	density	function	(PDF)	of	the	RUL	in	September	2015	in	red,	and	the	PDF	

of	the	predicted	RUL	in	five	years’	time	in	blue.	It	can	be	seen	that	the	overall	shape	

of	 both	 distributions	 remains	 roughly	 the	 same,	 with	 similar	 variance,	 skew,	 and	

kurtosis.	The	median	RUL	is	predicted	to	drop	by	1,952	hours	to	177,679	hours.	

	

	
Figure	4:	Probability	density	functions	of	RUL	in	September	2015	(red),	and	predicted	after	a	further	five	years	

of	service	(blue).		

	

Prognostics	Under	Overload	Conditions	

	

The	 particle	 filter	 can	 be	 used	 to	 explore	 the	 effects	 of	 various	 conditions	 on	

transformer	 life.	 In	particular,	 the	effects	of	an	overload	for	a	given	period	of	 time	

can	be	visualized.	This	can	help	with	decision-making	about	whether	it	is	advisable	to	

allow	 an	 overload	 to	 occur.	 Figure	 5	 shows	 a	 load	 profile	 over	 a	 20-hr	 period	

containing	a	current	spike	with	a	maximum	corresponding	 to	1.6	 times	rated	 load.	

The	effect	on	 the	median	RUL	 is	a	 step-reduction	of	385	hours	occurring	over	one	

hour	of	operation.	 The	5
th
	 and	95

th
	 percentiles	of	 the	RUL	 fell	 by	382	and	378	hrs	

respectively.	



	

	
Figure	5:	Load	profile	over	a	20-hr	period	containing	an	overload,	with	corresponding	reduction	in	RUL.	

Discussion	

	

The	particle	 filter	 is	 a	 statistical	 tool	which	 can	predict	 the	 future	health	of	 assets	

under	different	operating	regimes.	While	the	 IEEE	equations	 for	 transformer	paper	

aging	given	in	C57.91	provide	estimates	of	the	effects	of	load	and	temperature,	they	

do	 not	 include	 uncertainty	 estimates.	 On	 the	 other	 hand	 the	 particle	 filter	 can	

enhance	the	information	available	by	accounting	for	uncertainty	in	the	precise	rate	

of	degradation	and	in	the	measurements.		

	

The	 approach	 shown	here	 can	be	 extended	 to	 include	 the	 effects	 of	 factors	 other	

than	temperature	on	paper	aging.	Thus	an	 increase	 in	 the	moisture	content	of	 the	

paper	would	affect	the	activation	energy	of	the	deterioration	process,	and	therefore	

the	constant	value	15,000	 in	 (6).	The	statistical	particle	 filtering	approach	could	be	

modified	 to	 take	 account	 of	 online	 moisture	 sensor	 data	 through	 an	 appropriate	

expansion	of	(6).		

	

A	utility	may	also	periodically	gain	updated	information	about	the	true	state	of	the	

paper	 in	a	 transformer.	One	approach	 is	 through	 sacrificial	 paper	 strips	within	 the	

transformer	 tank,	 which	 can	 be	 removed	 and	 the	 DP	 measured	 directly.	

Alternatively,	 the	furan	content	of	 the	transformer	oil	can	be	used	to	estimate	the		

DP	value	[20].	This	information	can	be	compared	against	the	paper	state	estimated	

by	the	filter,	to	assess	how	accurately	the	latter	is	tracking	paper	aging.	Additionally,	

the	 filter	estimate	can	be	 incorporated	 in	 the	value	of	!!!!	in	 (6),	 thereby	ensuring	

future	predictions	are	based	on	the	most	recent	information.		

	



The	output	of	the	filter	is	a	probability	density	function,	which	captures	the	range	of	

possible	values	and	their	probabilities.		A	deterministic	model	such	as	that	described	

in	 C57.91	 will	 provide	 a	 very	 precise	 estimate,	 i.e.,	 a	 single	 value,	 which	 may	

however	 be	 in	 error.	 The	 probabilistic	 approach	 gives	 a	 range	 of	 values,	 which	 is	

likely	 to	 contain	 the	 true	 remaining	 life	 value.	 Further,	 the	probabilistic	 prediction	

can	be	set	to	be	pessimistic,	such	as	taking	the	5
th
	percentile,	in	order	to	err	on	the	

side	of	avoiding	a	failure	in	service.		

	

Prognostic	 information	 can	 assist	 with	 various	 types	 of	 decision	 making	 within	 a	

utility.	Most	obviously,	asset	management	can	benefit	from	the	predicted	window	of	

time	 in	 which	maintenance	 can	 successfully	 avoid	 a	 failure.	 However,	 prognostics	

can	also	be	useful	 in	an	operational	context,	by	giving	extra	 information	about	the	

effects	 of	 a	 possible	 overload	 on	 the	 health	 of	 the	 assets.	 Adopting	 prognostics	

within	a	utility	offers	clear	gains	over	 relying	on	expert	 judgment,	and	 this	 topic	 is	

expected	 to	 drive	 further	 fundamental	 research,	 case	 studies,	 and	 adoption	 by	

industry	over	the	coming	years.	
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