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Structures in supercritical Marangoni and hybrid thermocapillary-rotation-driven flows 
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ABSTRACT: Evidence is provided that when the so-called phenomenon of PAS occurs, 

extended regions exist where ½ of the axial component of vorticity matches the angular 

frequency of the traveling wave produced by the instability of the Marangoni flow. Several 

cases are considered in which such axial component is varied by “injecting” vorticity into the 

system via rotation of one of its endwalls. The results show that both the resulting PAS lines 

and the trajectories of related solid particles undergo significant changes under the influence 

of imposed rotation. By analysis of such findings, a validation and a generalization/extension 

of the so-called “phase-locking” model are provided.  

 

I. INTRODUCTION 

 

One of the many characteristics of all dissipative systems (systems for which, evolution is 

driven by competition between a driving force and dissipation of energy) is that their phase 

trajectories are attracted by a geometric object called “attractor”. This means that different 

trajectories, arising from different points of the attractor, end on the attractor anyway. 

In such a context, much attention has been devoted over recent years to the so-called 

Marangoni flow. Apart from possible technological applications (which are numerous and 

multivariate
1
) the study of pure Marangoni convection with respect to flows of gravitational 

nature (which have enjoyed a larger attention in a variety of situations
 2,3

) has been aimed 

from an “ideological” synergetic point of view, to gaining further progress in the 

understanding of pattern-forming systems of different nature. 

It is such a line of research which led to identify for supercritical (oscillatory) Marangoni flow 

two distinct attractors in the phase space, which are today known more or less universally as 

“pulsating” and “traveling” regimes, the former being featured by the periodic growth and 

decay of disturbances at fixed positions in space, the latter by the propagation of such 

disturbances along a preferred direction, see, e.g., Lappa
2
 (the reader being also referred to 

Shevtsova et al.
4
 for additional exotic attractors due to the combined action of Marangoni and 

buoyancy forces). 
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More recent studies have shown that besides the existence of well defined attractors in the 

phase space, some special geometric objects seem also to exist in the “physical” space of such 

dissipative systems. Indeed, particular one-dimensional closed paths have been identified 

which tend to “capture” (as time passes) rigid particles seeded in the liquid (in general, tracers, 

which are injected in the liquid for visualization purposes) leading to the formation of 

apparently solid rotating threads (the so-called “particle accumulation structures”, generally 

referred to with the acronym “PAS”). This state should not be regarded as a mere 

manifestation in the physical space of the second attractor mentioned above, i.e. the rotating 

mode (or traveling wave). The apparently solid filaments, formed by the spontaneous self-

assembly of tracer particles, emerge only if the Marangoni number is in a proper range and 

some specific conditions are satisfied
5-11

. In particular, Schwabe and coworkers provided 

some evidence
12,13

 supporting the idea that PAS may occur as a resonance between the 

azimuthally traveling wave and the “turnover time” of the PAS-string in the thermocapillary 

vortex.  

Most recently, some numerical studies and related possible theories for explaining the 

ordering of inertial tracers that results in formation of one-dimensional particulate coherent 

patterns have appeared.  

After some initial interesting arguments based on the distinction between fluid and particle 

inertia
14,15

, a first concrete step in this direction was undertaken by Melnikov et al.
16

.  

Theoretical models are under development in which an attempt is being made to explain such 

dynamics in terms of a “phase locking” process between the hydrothermal traveling wave and 

the typical frequency of motion of a generic particle (a seminal work along this line of inquiry 

being represented by Pushkin et al.
17

). In such a context, it is also worth mentioning 

Kuhlmann and Muldoon
18

, who addressed the role of “free-surface collisions” in 

supporting/accelerating the process of transfer of particles from the bulk of liquid to the one-

dimensional attracting path. 

In the present work the phenomenon is investigated resorting to direct numerical solution 

(DNS) of the Navier-Stokes equations (together with the energy equation and appropriate 

boundary conditions) coupled with solution of the Maxey-Riley equation in its simplest form 

(the so-called “inertial equation” derived by Haller and Sapsis
19

 as an explicit dissipative 

equation describing the flow on the slow manifold that governs the asymptotic behavior of 

inertial particles).  The added value with respect to Pushkin et al.
17

 lies in the use of “injected” 

vorticity to allow a variation of the particle characteristic turnover motion at a fixed 

(supercritical) value of the Marangoni number (to see how this “added” vorticity interferes 
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with the oscillatory instability of Marangoni convection and the fundamental mechanism 

supporting PAS formation).  

Starting from the aforementioned cardinal concept of “phase locking”, a more spatial 

perspective, an application of what is generally regarded as “vorticity thinking”, is invoked 

and used to elaborate a specific mathematical formalism and some associated important 

microphysical reasoning. Moreover, this study is extended to the “classical” annular geometry 

which so much success has enjoyed in the literature for fundamental studies of Marangoni 

flow and related hierarchy of bifurcations (see, e.g., Li et al.
20

). 

 

II. MATHEMATICAL MODEL AND METHOD OF ANALYSIS 

 

Both considered geometries (Fig. 1) are featured by a free surface (cylindrical in the liquid-

bridge case, planar in the annular-pool case) supporting the development of oscillatory 

Marangoni convection in the presence of suitable temperature gradients.  

 

 

Fig. 1: a) the liquid bridge, a drop of liquid with cylindrical free liquid/gas interface held 

between two differentially heated disks of diameter D=2R placed L apart; b) the annular pool, 

a region having cylindrical symmetry with an open top free surface, a solid bottom, an inner 

solid wall (radius a), an outer wall (radius b), and depth L. 

 

Furthermore, from a theoretical standpoint, both allow modification of axial vorticity initially 

existing in the field (associated with the azimuthally traveling hydrothermal wave, which of 

supercritical Marangoni flow represents the typical manifestation) by imposing a physical 

rotation of one of the system walls, the top disk in the liquid bridge case or the outer 

cylindrical wall for the annular configuration (the related Reynolds number is defined here as 

Rewall=wallL
2
/ where L is the system axial extension, wall the imposed angular velocity  

and  the fluid kinematic viscosity). 
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The Navier-Stokes and energy equations have been solved in the nondimensional form 

obtained by scaling the cylindrical co-ordinates (r z, ) by L and the velocity components in the 

axial, radial and azimuthal directions ( VVV rz ,, ) by the energy diffusion velocity V = /L 

[the scales for time (t), pressure (p) and temperature (T) being, respectively, L/ /Land 

T]. These equations read:  

 V 0           (1) 

  VVVp
t

V 2Pr



        (2) 

  TTV
t

T 2



          (3) 

Following the same successful approach of Pushkin et al.
17

 the aforementioned inertial 

equation has been used to track particle motion (such equation allows significant 

computational simplicity while retaining the fundamental “physics” of the considered class of 

phenomena). In the frame of reference rotating with the wave the nondimensional form of this 

equation can be written in compact form as: 

)( 2
StO

Dt

VD
VV part              (4) 

where Vpart is the particle velocity, V is the fluid velocity,  1
2

 
L

,  is the ratio of the 

particle to the fluid density,  is the so-called relaxation time, related to the tracer radius R
~

 by 

the expression 



2~

9

2 R
 , and the Stokes number St is defined as 


UL

L

R
St

2~

9

2








 , U being 

the characteristic flow speed (here we limit to microgravity conditions, hence, buoyancy 

effects are absent).   

The use of this equation implies that, as in the earlier work by Pushkin et al.
17

, here PAS 

structures emerge only if  exceeds a threshold value (in other words, only if the particles 

satisfy given requirements in terms of density and size, as confirmed by experiments; see, e.g., 

Schwabe et al.
12

). Among other things, this means that all the values of  given in the present 

manuscript should be seen as values close to (slightly larger than) “threshold values”. 

Equations (1-3) have been solved numerically in primitive variables by a time-explicit finite-

difference method
1, 21-22

. The present code was successfully used for numerous studies of 

Marangoni flows and repeatedly validated also by comparison with other kinds of convection 

(of various natures, see, e.g., Lappa
2
).  
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The flow field required at an arbitrary point of the volume (occupied by the generic moving 

tracer) for integration of eq. (4) has been linearly interpolated on the computational grid.  

Unlike earlier studies [17, 18], where the particle equation was solved “separately” (the 3D 

solution was frozen to save computational time and the particle tracking equation solved 

using such a frozen solution as a “background” state), here eq. (4) has been dynamically 

integrated together with equation (1-3) (i.e. at the same time and with the same time 

integration step). Moreover, the following strategy has been used to guarantee that the 

emerging PAS are “physical” (i.e. not numerical artifacts): assuming no particle inertia 

(=0 no physical PAS of inertial nature can exist), it has been verified that the simulations 

performed with the time integration step t 5x10
-8

 (required for the stability of the numerical 

algorithm used for the solution of the 3D Navier-Stokes equations) did not produce PAS even 

by prolonging the simulation to t=50xPAS where PAS  is the time for PAS formation when  

is in the right range.  

 

Figure 2: Two consecutive positions taken by a generic particle along its spiral trajectory. 

The axial and azimuthal components of the associated vorticity vector are also shown.  

 

Let us recall that in Pushkin et al.
17

 the model for phase locking was based on the idea that, as 

originally argued by Schwabe et al.
12

, the turnover particle motion, defined as the time needed 

by a particle in the PAS to perform a complete revolution around the vortex centre (i.e. to 

move from position A to position B in Fig. 2), may tend to become synchronized with the 

rotating wave oscillations. In particular, a necessary condition for the existence of PAS was 

formalized as: 

 

part =wave           (5) 
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i.e. as the equality between the angular frequencies of the two involved phenomena. 

Here we focus expressly on such a relationship.  

In such a context, it is convenient to introduce a “spatial way” of thinking, by which the 

supercritical rotating state of Marangoni flow can be imagined
5-13

 as the superposition of an 

axisymmetric toroidal vortex roll (like that existing prior to the onset of 3D flow) and a wave 

traveling in the azimuthal direction. The two components of vorticity V  in the 

azimuthal, and axial directions can be written, respectively, as: 

 

















r

V

z

V zr

           (6a) 

  

















 
r

z

V
rV

rr

1
          (6b) 

 

The former contribution is generally regarded as a measure of the strength of the basic 

Marangoni toroidal flow (Fig. 2). It is, however, the latter contribution that assumes a 

particularly meaningful role in the present context. Indeed, it is zero in the axisymmetric 

(steady) state and nonzero in the supercritical state where, more specifically, its half (z/2) can 

be regarded as a measure of the local average angular velocity (spin) of the considered fluid 

element about the vertical direction
23

. It is hence, on this flow quantity that we concentrate; 

hereafter for simplicity it will be referred to as fluid or simply  (in Fig. 2, for instance, the 

average value (A
+B

)/2 would correspond to the average angular spin experienced by a 

particle moving from A to B).  

There is also another important physical connection which allows one to disregard the role 

played by the other components of vorticity. It is the almost two-dimensional nature of the 

hydrothermal traveling wave (the wave properties depend significantly on the radial and 

azimuthal coordinates, but, unless very special conditions are established
4
, the component 

propagating along the axial direction is rather weak, see, e.g, the review of literature in
2,4

). 

This means that an almost perfect analogy can be established between the behavior of the 

wave in each cross section z=const and a hypothetical two-dimensional flow with its 

associated vorticity vector perpendicular to the plane of the flow. 
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III. RESULTS 
 

Starting point of our analysis is represented by the liquid bridge considered by Melnikov et 

al.
16

 with aspect ratio (height/diameter) A=0.34, Pr=/=8 (NaNO3), Ma=20600 (Marangoni 

number defined as TTL/� where T is the applied temperature gradient,  the dynamic 

viscosity and T the surface tension derivative). Concerning the annular pool, we consider 

0.65 cs silicone oil (Pr=6.7) and internal and external radii (a=20 mm and b=40 mm)
24,25

. The 

height, is fixed to 20 mm (aspect ratio A=(b-a)/d=1). The considered value of the Marangoni 

number is Ma=20100, which corresponds approximately to two times the critical value (Grid 

NzxNrxN: 32x40x40 for the liquid bridge, 36x36x40 for the annular pool). 

PAS structures which form on the traveling wave state of both the liquid bridge and the 

annular pool (see Figure 3), starting from N particles (N=4x10
3
) arbitrarily seeded into the 

field (initially all at rest and contained in two perpendicular meridian planes) are shown as 

black lines in Figs. 4 and 5.  

It is, however, the tracer particles locations representation in space combined with the 

isosurfaces of ½ of the axial component of vorticity (fluid) which provides the most 

interesting insights into the phenomenon. 

 

a) b) 

 

Figure 3: Snapshot of traveling wave state: a) liquid bridge (Pr=8, A=L/D=0.34, Ma=20600, 

m=3, wave=71.4, Rewall=0), b) annular pool (Pr=6.7, A=(b-a)/L=1, Ma=20100, m=4, 

wave=38.01, Rewall=0). 
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a) b) 

Fig. 4 (color online): Two different views of PAS together with isosurfaces of fluid angular 

spin plotted for fluid=72 (liquid bridge, Pr=8, A=L/D=0.34, Ma=20600, m=3, wave=71.4, 

Rewall=0, hot disk on the top, cold disk on the bottom, adiabatic free interface; =1x10
-5

, 

which corresponds to particles with size 45 m considered by Melnikov et al.
16

). 

a) b) 

Fig. 5  (color online): Two different views of PAS together with isosurfaces of fluid angular 

spin plotted for fluid=38 (annular pool, Pr=6.7, A=(b-a)/L=1, adiabatic horizontal boundaries, 

Ma=20100, m=4, wave=38.01, Rewall=0, =1x10
-5

). 

 

Inspection of Figs. 4 and 5, in fact, reveals that a precise relationship between the one-

dimensional closed lines and the two-dimensional isosurfaces of fluid=ȗz/2 can be identified. 

Indeed, these figures provide evidence that PAS tend to “stay attached” for most of their 

azimuthal extension to the isosurfaces of  fluid axial angular velocity fluid (=ȗz/2) such that  

fluid=wave            (7) 

(where wave is the angular frequency of the traveling hydrothermal wave defined as 2f/m, f 

being the frequency of the temperature oscillation measured at a generic point).  



Phys. Fluids, Vol. 25, No 1, 012101, (2013) 

 9

What is even more remarkable in Figs. 4 and 5, is that the spatial shape and curvature of the 

isosurfaces does not determine solely the one-dimensional pattern created by the projection of 

the PAS circuit in the xy plane (Figs.4a and 5a); but it also drives the local inclination (with 

respect to the z axis or equivalently with respect to the horizontal boundaries) of PAS in the 

3D space (see, in particular, Figs 4b and 5b). 

Equation (7) may be hence regarded as a “practical implementation” of the necessary 

condition indicated by Pushkin et al.
17

 (with fluid representing the asymptotic value of the 

angular frequency of the turnover particle motion in the limit as the convergence of PAS 

formation process is attained). 

Further elaboration of these key arguments may be provided by referring again to Fig. 2 and 

using some of the considerations originally reported by  Pushkin et al.
17

. 

As already discussed, it is evident that the vorticity vector associated with the particle spiral 

motion along the Marangoni toroidal roll has two main components, one directed in the 

azimuthal direction (corresponding to the motion of the particle in the (r, z) plane) and the 

other directed axially (corresponding to the displacement undergone by the particle in the (r, ) 

plane).  

According to Pushkin et al.
 17

, “The physical essence of the mechanism lies in the adjustment 

of the azimuthal particle displacement after every particle turnover due to the inertial 

interaction with the wave” (leading to a modification of the particle azimuthal drift).  

The present numerical simulations corroborate this view by showing that a precise 

relationships exists for a PAS between the wave frequency and the axial vorticity, where the 

latter, at this stage, should be seen merely as a “measure” or a proper quantification of the rate 

at which the particle local azimuthal displacement takes place. 

 

IV. DISCUSSION 

 

Under a more general perspective, the empirical observation of the strong geometrical 

correspondence between the PAS structure and the isosurface of ½ axial vorticity may be seen 

as the “effect” (we may say a clear manifestation) of the phase locking mechanism, with the 

phase locking mechanism per se being the “cause”.  

Towards the end of further assessing the validity of the above statement, we have considered 

the possible influence of vorticity artificially injected in the system on the overall PAS 

formation mechanism. The angular frequency of the traveling wave, in fact, depends on the 

considered value of the rotation Reynolds number [e.g., for the liquid bridge, wave = 71.4, 

106.26, 153.92, 230.88, 340.77, 0 (no inst.) for Rewall = 0, 8.3, 50, 70, 100 and 200, 
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respectively; for the annular pool, wave = 38.01, 77.21, 0 (no inst.) for Rewall = 0, 30 and 50, 

respectively]. It is evident how the angular frequency becomes higher as Rewall is increased 

from zero, this trend being limited from above (at high values of Rewall) by the suppression of 

the Marangoni flow instability
23, 26

. 

Remarkably, we found the value of the  parameter for obtaining convergence of the particle 

accumulation phenomenon to scale with the Reynolds number as 0/Rewall (where 0 is the 

value required for Rewall=0), which from a physical point of view would correspond to particle 

tracers of decreasing size and/or decreasing density ratio as Rewall is increased. 

Moreover, for Rewall exceeding a given value (depending on the case considered: Rewall 30 

and Rewall 10 for the liquid bridge and the annular pool, respectively), some interesting 

morphological and/or topological changes in the structure of the resulting PAS structures can 

be observed. These are the emergence of “cusp points” in the projection of the PAS circuit in 

the xy plane and the displacement toward the top disk of the PAS spatial maxima (points with 

highest possible values of z) for the liquid bridge (compare Figs. 6a-b); similarly, 

morphological changes of the PAS branches can be seen for the annular pool when significant 

wall rotation is applied (the branches are shifted towards the external wall, see Fig. 7a-b).  

Paralleling such visible modifications is the increase of the proportionality factor between 

fluid and wave, as witnessed by the plot shown in Figure 8 (where the PAS line clearly stays 

attached to the isourfaces of fluid such that fluid =2wave). By contrast, imposed rotation does 

not seem to have a significant influence on the relationship between the PAS formation time 

(PAS) and the overall hydrothermal wave revolution period, which for all cases has been 

found to be approximately PAS2xwave (where wave=2/wave). 
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a) 

b) 

Fig. 6  (color online): Projection of the PAS structure in the xy plane and related 3D view at 

different values of the rotation Reynolds number for the liquid bridge (Pr=8, A=L/D=0.34, 

Ma=20600): a) Rewall=0; b) Rewall=50. 

 

a) 

b) 

Fig. 7  (color online): Projection of the PAS structure in the xy plane and related 3D view at 

different values of the rotation Reynolds number for the annular pool (Pr=6.7, A=(b-a)/L=1, 

Ma=20100): a) Rewall=0; b) Rewall=30. 
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Fig. 8  (color online): Combined view of PAS and isosurfaces of fluid angular spin plotted for 

fluid=308 (liquid bridge, Pr=8, A=0.34, Ma=20600, Rewall= 50, m=3, wave=153.92; z axis 

direction reversed, rotating hot disk on the bottom, cold disk on the top). 

 

Some additional insights into the influence exerted by imposed rotation on the resulting PAS 

and related underlying dynamics have been obtained by plotting the trajectory in the 

laboratory (fixed) frame of a generic particle (pertaining to the PAS structure).  

The results for the liquid bridge case are shown in Fig. 9. For Rewall=0 (Fig. 9a), in particular, 

one recovers the already known behavior
6-13

 with the particle moving along a spiral-like string 

(line) which is wound several times around the Marangoni toroidal roll. 

Moreover, the following statements are valid: 

 Even if all particle pertaining to the PAS move collectively such that an illusion of a 

solid circuit, rotating at the same angular velocity of the hydrothermal wave, is 

created, such a property, however, only applies to the pattern as such and not to 

individual particles. 

 The particle moves in the azimuthal direction at a velocity relatively small with 

respect to the angular frequency of the traveling hydrothermal wave, as witnessed by 

the high number of revolutions (orbits) performed by the particle around the toroidal 

Marangoni roll to cover 360 (the particle spends much of its time in radial or axial 

motion, while the rate at which displacement in the azimuthal direction occurs is 

relatively small, Fig. 9a). 

 

When rotation of the disk is applied (Fig. 9b), the particle follows in space relatively large 

orbits more extended in the azimuthal and radial directions with respect to the case of no 

rotation imposed; the projection of such orbits in the xy plane gives approximately circular 

paths of radius slightly smaller (25% less for Rewall=50) than the radius of the liquid bridge.  
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a) 

b) 

 

Fig. 9  (color online): Trajectory in the laboratory frame of a generic particle pertaining to the 

PAS structure  (projection in the xy plane and related 3D view) at two distinct values of the 

rotation Reynolds number for the liquid bridge (Pr=8, A=0.34, Ma=20600): a) Rewall=0; b) 

Rewall=50 (the trajectory of the particle and related orbits are plotted for a period 

corresponding to the overall time required by the particle to come back to its initial azimuthal 

position, with the exception of the projection of the trajectory in the xy plane for Rewall=50, 

for which only a reduced number of orbits has been included for the sake of clarity). 

 

The increased horizontal extension of such orbits (and the larger time potentially required by 

the particle to cover each orbit) becomes particularly meaningful in the present context if one 

considers that it might explain the reason why, on average, in the presence of wall rotation, a 

larger value of the particle angular velocity (a higher integer value of the proportionality 

factor between fluid and wave) is needed to allow phase locking with the traveling wave. 

 

V. CONCLUSIONS 

 

A validation of the so-called “resonant condition” for “phase locking” identified in earlier 

important works
17

 has been developed replacing theoretical entities appearing in the original 

formulations of such a condition with effective eulerian fluid-dynamic quantities as provided 

by the numerical simulations. In particular, the basic ideas of the so-called inertial theory for 

explaining PAS have been illustrated and extended phenomenologically (via numerical 

simulation) by incorporating ideas of vorticity-wave interactions. More specifically, it has 
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been shown how the system/problem becomes at once more manageable and more intuitive if 

it is cast in the form of axial vorticity dynamics and related physical connections with the 

mechanism supporting the formation of PAS. 

Further assessment of the elaborated arguments has been obtained by injecting axial vorticity 

into the system via rotation of one of its walls. The morphological and spatial properties of 

PAS change in response to the applied imposed rotation in agreement with the proposed 

theory/generalization by which PAS form on surfaces where ½ of the axial component of 

vorticity ȗz matches the angular frequency of the azimuthally traveling wave produced by the 

instability of Marangoni flow, or a multiple (integer) of such a frequency.  

In particular, a multi-fold effect related to the increase of the rotation Reynolds number has 

been identified, which is in line with the theoretical arguments developed in this work: First, 

it increases the characteristic angular frequency of the disturbance traveling in the azimuthal 

direction; second, the related value of the  parameter for PAS formation scales as 0/Rewall, 

this result being in agreement with the general requirement of inertial theory that the stronger 

the azimuthal flow (running wave), the smaller the inertia of the particles required in order to 

determine phase locking with the wave; third, it causes (if Rewall is larger than a give value 

depending on the case considered) the displacement of the locus of points in space where the 

condition for phase locking is satisfied towards the rotating boundary (where higher values of 

fluid occur, axial vorticity being dynamically produced by wall rotation); fourth, the 

proportionality factor n (integer) between fluid and wave increases. 

This last effect (n>1) might be explained by the influence of imposed rotation on the orbits 

(revolution motion around the basic Marangoni toroidal roll) which form the trajectory of a 

generic PAS particle in the fixed (laboratory) frame. Such orbits for Rewall0 change their 

inclination in space from a nearly meridional orientation (in the case of no rotation imposed), 

to a much more equatorial configuration, this change in inclination being accompanied by a 

significant increase in the horizontal extension of the orbit (and, therefore, by an increase of 

the overall distance covered by the particle per orbit, which, in principle, may explain why  

larger values of the particle azimuthal velocity and fluid are required on average to attain 

phase locking). 
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