
Paul, Greig and Irvine, James (2015) Take control of your PC with UEFI

secure boot. Linux Journal (257). pp. 58-72. ISSN 1075-3583 ,

This version is available at https://strathprints.strath.ac.uk/54721/

Strathprints is designed to allow users to access the research output of the University of

Strathclyde. Unless otherwise explicitly stated on the manuscript, Copyright © and Moral Rights

for the papers on this site are retained by the individual authors and/or other copyright owners.

Please check the manuscript for details of any other licences that may have been applied. You

may not engage in further distribution of the material for any profitmaking activities or any

commercial gain. You may freely distribute both the url (https://strathprints.strath.ac.uk/) and the

content of this paper for research or private study, educational, or not-for-profit purposes without

prior permission or charge.

Any correspondence concerning this service should be sent to the Strathprints administrator:

strathprints@strath.ac.uk

The Strathprints institutional repository (https://strathprints.strath.ac.uk) is a digital archive of University of Strathclyde research

outputs. It has been developed to disseminate open access research outputs, expose data about those outputs, and enable the

management and persistent access to Strathclyde's intellectual output.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Strathclyde Institutional Repository

https://core.ac.uk/display/42592123?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://strathprints.strath.ac.uk/
mailto:strathprints@strath.ac.uk
http://strathprints.strath.ac.uk/

Take Control of your PC with UEFI Secure Boot

Greig Paul

University of Strathclyde

Department of Electronic

& Electrical Engineering

Glasgow, United Kingdom

greig.paul@strath.ac.uk

James Irvine

University of Strathclyde

Department of Electronic

& Electrical Engineering

Glasgow, United Kingdom

j.m.irvine@strath.ac.uk

Abstract—UEFI secure boot is often regarded as a nuisance for
Linux users, but you can use it to protect your system by taking
control of it. Learn how to do this, sign your own bootloader, and
protect your whole system with full disk encryption (including
the kernel).

I. INTRODUCTION

UEFI (Unified Extensible Firmware Interface) is the open,
multi-vendor replacement for the aging BIOS standard, which
first appeared in IBM computers in 1976. The UEFI standard
is extensive, covering the full boot architecture. This article
focuses on a single useful but typically overlooked feature of
UEFI Secure Boot.

Often maligned, you’ve probably only encountered UEFI
secure boot when you disabled it during initial setup of your
computer. Indeed, the introduction of secure boot was mired
with controversy over Microsoft (an operating system vendor)
being in charge of signing third party operating system code
which would boot under a secure boot environment.

In this article, we explore the basics of secure boot, and
how to take control of it. We’ll look at how to install your
own keys, and sign your own binaries with these keys. We’ll
also show how you can build a single standalone GRUB EFI
binary, which will protect your system from tampering such as
cold-boot attacks. Finally, we show how full disk encryption
can be used to protect the entire hard disk, including the kernel
image (which ordinarily needs to be stored unencrypted).

II. UEFI SECURE BOOT

Secure boot is designed to protect a system against mali-
cious code being loaded and executed early in the boot process,
before the operating system has been loaded. This is to prevent
malicious software from installing a “bootkit”, and maintaining
control over a computer to mask its presence. If an invalid
binary is loaded while secure boot is enabled, the user is alerted
and the system will refuse to boot the tampered binary.

On each boot-up, the UEFI firmware inspects each EFI
binary that is loaded, and ensures it either has either a valid
signature (backed by a locally-trusted certificate) or that the
binary’s checksum is present in an allowed list. It also verifies
that the signature or checksum does not appear in the deny list.
Lists of trusted certificates or checksums are stored as EFI
variables within the non-volatile memory used by the UEFI
firmware environment to store settings and configuration data.

Platform Key (PK)

Key Exchange Key (KEK)

db (allow)

dbx (deny)

Fig. 1: Hierarchy of secure boot keys

A. UEFI Key Overview

The four main EFI variables used for secure boot are shown
in Figure 1. The Platform Key (often abbreviated to PK) offers
full control of the secure boot key hierarchy. The holder of
the PK can install a new PK, and update the KEK (Key
Exchange Key). This is a second key, which can either sign
executable EFI binaries directly, or be used to sign the db and
dbx databases. The db (signature database) variable contains a
list of allowed signing certificates, or the cryptographic hashes
of allowed binaries. The dbx is the inverse of db, and is used
as a blacklist of specific certificates or hashes, which would
otherwise have been accepted, but which should not be able to
run. Only KEK and db (shown in green) keys can sign binaries
which may boot the system.

The PK on most systems is issued by the manufacturer of
the hardware, while a KEK is held by the operating system
vendor (such as Microsoft). Hardware vendors also commonly
have their own KEK installed (since multiple KEKs can be
present). To take full ownership of a computer using secure
boot, you need to replace (at a minimum) the PK and KEK, in
order to prevent new keys being installed without your consent.
You should also replace the signature database (db) if you wish
to prevent commercially signed EFI binaries from running on
your system. Since there are signed binaries

Secure boot is designed to allow someone with physical

control over a computer to take control of the installed keys. A
pre-installed manufacturer PK can only be programmatically
replaced by signing it with the existing PK. With physical
access to the computer, and access to the UEFI firmware
environment, this key can be removed, and a new one installed.
Requiring physical access to the system to override the default
keys is an important security requirement of secure boot, to
prevent malicious software from completing this process. Note
that some locked-down ARM-based devices implement UEFI
secure boot without the ability to change the pre-installed keys.

III. TESTING PROCEDURE

You can follow these procedures on a physical computer,
or alternatively in a virtualised instance of the Intel Tianocore
reference UEFI implementation. The ovmf package available
in most Linux distributions includes this. The QEMU virtu-
alisation tool can launch an instance of ovmf for experimen-
tation. Note that the “fat” argument specifies that a directory,
“storage”, will be presented to the virtualised firmware as a
persistent storage volume. Create this directory in the current
working directory, and launch QEMU.

qemu-system-x86_64 -enable-kvm -net none \

-m 1024 -hda fat:storage/ -pflash \

/usr/share/ovmf/ovmf_x64.bin

Files present in this folder when starting QEMU will appear
as a volume to the virtualised UEFI firmware. Note that files
added to it after starting QEMU will not appear in the system
restart QEMU and they will appear. This directory can be used
to hold the public keys we wish to install to the UEFI firmware,
as well as UEFI images to be booted later in the process.

IV. GENERATING YOUR OWN KEYS

Secure boot keys are self-signed 2048-bit RSA keys, in
X.509 certificate format. Note that most implementations do
not support key lengths greater than 2048 bits at present. You
can generate a 2048-bit keypair (with a validity period of 3650
days, or 10 years) with the following openssl command:

openssl req -new -x509 -newkey rsa:2048 \

-keyout PK.key -out PK.crt -days 3650 \

-subj \"/CN=My PK/"

The CN subject can be customised as you wish, and its
value is not important. The resulting PK.key is a private key,
and PK.crt is the corresponding certificate (containing the
public key), which you will install into the UEFI firmware
shortly. You should store the private key securely on an
encrypted storage device, in a safe place.

The same process can now be carried out for both the KEK,
and for the db key. Note that the db and KEK EFI variables can
contain multiple keys (and in the case of db, SHA256 hashes
of bootable binaries), although for simplicity this article only
considers storing a single certificate in each. This is more than
adequate for taking control of your own computer. Once again,
the .key files are private keys which should be stored securely,
and the .crt files are public certificates to be installed into your
UEFI system variables.

Fig. 2: Taking ownership and installing keys

Fig. 3: Erasing the existing platform key

V. TAKING OWNERSHIP AND INSTALLING KEYS

Every UEFI firmware interface differs, and it is therefore
not possible to provide step-by-step instructions on how to
install your own keys. Refer to your motherboard or laptop’s
instruction manual, or search online for the maker of the
UEFI firmware. Enter the UEFI firmware interface, usually
by holding a key down at boot time, and locate the security
menu. Here there should be a section or submenu for secure
boot. Change the mode control to “custom” mode. This should
allow you to access the key management menus.

At this point, you should make a backup of the UEFI
platform keys currently installed. You should not need this,
since there should be an option within your UEFI firmware
interface to restore the default keys, but it does no harm to
be cautious. There should be an option to export or save the
current keys to a USB flash drive. It is best to format this
with the FAT filesystem if you have any issues with it being
detected.

After you have copied the backup keys somewhere safe,
load the public certificate (.crt) files you created previously
onto the USB flash drive. Take care not to mix them up with
the backup certificates from earlier. Enter the UEFI firmware
interface, and use the option to reset or clear all existing secure
boot keys.

This might also be referred to as “taking ownership” of
secure boot. Your system is now in secure boot “setup” mode,
which will remain until a new PK is installed. At this point,
the EFI PK variable is unprotected by the system, and a new

Fig. 4: Loading a new key from a storage device

value can be loaded in from the UEFI firmware interface, or
from software running on the computer (such as an operating
system).

At this point you should temporarily disable secure boot,
in order to continue following this article. Your newly installed
keys will remain in place for when secure boot is enabled.

VI. SIGNING BINARIES

After you have installed your custom UEFI signing keys,
you need to sign your own EFI binaries. There are a variety of
different ways to build (or obtain) these. Most modern Linux
bootloaders are EFI-compatible (for example, GRUB 2, rEFInd
or gummiboot), and the Linux kernel itself can be built as a
bootable EFI binary since version 3.3. It’s possible to sign and
boot any valid EFI binary, although the approach you take here
depends on your preference.

One option is to sign the kernel image directly. If your
distribution uses a binary kernel, you would need to sign each
new kernel update before rebooting your system. If you use a
self-compiled kernel, you would need to sign each kernel after
building it. This approach however requires you to keep on
top of kernel updates, and sign each image. This can become
arduous, especially if you use a rolling-release distribution,
or test mainline release candidates. An alternative, and the
approach we used in this article, is to sign a locked-down
UEFI-compatible bootloader (GRUB 2 in the case of this
article), and use this to boot various kernels from your system.

Some distributions configure GRUB to validate kernel
image signatures against a distribution-specified public key
(with which they sign all kernel binaries) and disable editing
of the kernel cmdline variable when secure boot is in use.
You should therefore refer to the documentation for your
distribution, as the section on ensuring your boot images are
encrypted would not be essential in this case.

The linux sbsigntools package is available from the
repositories of most Linux distributions, and is a good first
port-of-call when signing UEFI binaries. UEFI secure boot
binaries should be signed with an Authenticode-format signa-
ture. The command of interest is sbsign, which is invoked
as follows:

sbsign k e y DB.key c e r t DB.crt \

unsigned.efi --output signed.efi

Due to subtle variations in the implementation of the UEFI
standards, some systems may reject a correctly signed binary
from sbsign. The best alternative we found was to use the
osslsigncode utility, which also generates Authenticode
signatures. While this tool was not specifically intended for
use with secure boot, it produces signatures which match the
required specification. Since osslsigncode does not appear
to be commonly included in distribution repositories, you
should build it from its source code. The process is relatively
straightforward, and simply requires running make, which will
produce the executable binary. If you encounter any issues,
ensure you have installed openssl and curl, which are
dependencies of the package. See the resources section for a
link to the source code repository.

Binaries are signed with osslsigntool in a similar
manner to sbsign. Note that the hash is defined as SHA256
per the UEFI specification, and this should not be altered.

osslsigncode -certs DB.crt -key DB.key \

-h sha256 -in unsigned.efi -out signed.efi

VII. BOOTING WITH UEFI

After you have signed an EFI binary (such as the GRUB
bootloader binary), the obvious next step is to test it. Comput-
ers using the legacy BIOS boot technology load the initial
operating system bootloader from the MBR (master boot
record) of the selected boot device. The MBR contains code
to load a further (and larger) bootloader held within the
disk, which loads the operating system. In contrast, UEFI is
designed to allow for more than one bootloader to exist on one
drive, without the need for these bootloaders to cooperate, or
even know the others exist.

Bootable UEFI binaries are located on a storage device
(such as a hard disk) within a standard path. The partition
containing these binaries is referred to as the EFI System
Partition. It has a partition ID of 0xEF00 in gdisk, the GPT-
compatible equivalent to fdisk. This partition is conventionally
located at the beginning of the filesystem, and formatted with
a FAT32 filesystem. UEFI bootable binaries are then stored as
files in the EFI/BOOT/ directory.

This signed binary should now boot if it is placed at
EFI/BOOT/BOOTX64.EFI within the EFI system partition,
or an external drive which is set as the boot device. It is
possible to have multiple EFI binaries available on one EFI
system partition, which makes it easier to create a multi-boot
setup. For that to work however, the UEFI firmware needs a
boot entry created in its non-volatile memory. Otherwise the
default filename (BOOTX64.EFI) will be used, if it exists.

To add a new EFI binary to your firmware’s list of available
binaries, you should use the efibootmgr utility. This tool
can be found in distribution repositories, and is often used
automatically by the installers for popular bootloaders such as
GRUB.

At this point, you should re-enable secure boot within your
UEFI firmware. To ensure secure boot is operating correctly,

you should attempt to boot an unsigned EFI binary. To do
so, you can place a binary (such as an unsigned GRUB EFI
binary) at EFI/BOOT/BOOTX64.EFI on a FAT32-formatted
USB flash drive. Use the UEFI firmware interface to set this
drive as the current boot drive, and ensure a security warning
appears, which halts the boot process. You should also verify
that an image signed with the default UEFI secure boot keys
does not boot an Ubuntu 12.04 (or newer) CD or bootable
USB stick should allow you to verify this. Finally, you should
ensure that your self-signed binary boots correctly and without
error.

VIII. INSTALLING STANDALONE GRUB

By default, the GRUB bootloader uses a configuration file
stored at /boot/grub/grub.cfg. Ordinarily, this file could be
edited by anyone able to modify the contents of your /boot
partition, either by booting to another OS, or by placing your
drive in another computer.

A. Bootloader Security

Prior to the advent of secure boot and UEFI, someone with
physical access to a computer was presumed to have full access
to it. User passwords could be bypassed by simply adding
init=/bin/bash to the kernel cmdline parameter, and the
computer would boot straight up into a root shell, with full
access to all files on the system.

Setting up full disk encryption is one way to protect your
data from physical attack if the contents of the hard disk is
encrypted, the disk must be decrypted before the system can
boot. It is not possible to mount the disk’s partitions without
the decryption key, so the data is protected.

Another approach is to prevent an attacker from altering the
kernel cmdline parameter. This approach is easily bypassed on
most computers however, by installing a new bootloader. This
bootloader need not respect the restrictions imposed by the
original bootloader. In many cases, replacing the bootloader
may prove unnecessary GRUB and other bootloaders are
fully configurable by means of a separate configuration file,
which could be edited to bypass security restrictions such as
passwords.

B. GRUB Binary Installaton

There would therefore be no real security advantage in
signing the GRUB bootloader, since the signed (and verified)
bootloader would then load unsigned modules from the hard
disk, and use an unsigned configuration file. By having GRUB
create a single, bootable EFI binary, containing all the neces-
sary modules and configuration files, you no longer need to
trust the modules and configuration file of your GRUB binary.
After signing the GRUB binary, it cannot be modified without
Secure Boot rejecting it and refusing to load. This failure
would alert you to someone attempting to compromise your
computer by modifying the bootloader.

As mentioned earlier, this step may not be necessary on
some distributions, as their GRUB bootloader will automati-
cally enforce similar restrictions and checks on kernels, when
booted with secure boot enabled. This section is therefore
intended for those who are not using such a distribution,

or who wish to implement something similar themselves for
learning purposes.

To create a standalone GRUB binary, the
grub-mkstandalone tool is needed. This tool should be
included as part of recent GRUB2 distribution packages.

grub-mkstandalone -d \

/usr/lib/grub/x86_64-efi/ -O x86_64-efi \

modules="part_gpt part_msdos" \

--fonts="unicode" --locales="en@quot" \

--themes="" -o \

"/home/user/grub-standalone.efi" \

"boot/grub/grub.cfg=/boot/grub/grub.cfg"

A more detailed explanation of the arguments used here is
available on the man page for grub-mkstandalone. The
significant arguments are -o, which specifies the output file to
be used, and the final string argument, specifying the path to
the current GRUB configuration file. The resulting standalone
GRUB binary is directly bootable, and contains a memdisk,
which holds the configuration file and modules, as well as
the configuration file. This GRUB binary can now be signed,
and used to boot the system. Note that this process should be
repeated when the GRUB configuration file is re-generated,
such as after adding a new kernel, changing boot parameters,
or after adding a new operating system to the list, since the
embedded configuration file will be out of date with the regular
system one.

C. A Licensing Warning

As GRUB 2 is licensed under the GPLv3 (or later),
this raises one consideration to be aware of. While not a
consideration for individual users (who can simply install new
Secure Boot keys and boot a modified bootloader), if the
GRUB 2 bootloader (or indeed any other GPL-v3 licensed
bootloader) was signed with a private signing key, and the
distributed computer system was designed to prevent the use
of unsigned bootloaders, use of the GPL-v3 licensed software
would not be in compliance with the licence. This is as a
result of the so-called anti-tivo’ization clause of GPLv3, which
requires that users be able to install and execute their own
modified version of GPLv3 software on a system, without
being technically restricted from doing so.

IX. LOCKING DOWN GRUB

To prevent a malicious user from modifying the kernel
cmdline of your system (for example, to point to a different init
binary), a GRUB password should be set. GRUB passwords
are stored within the configuration file, after being hashed with
a cryptographic hashing function. Generate a password hash
with the grub-mkpasswd-pbkdf2 command, which will
prompt you to enter a password.

The PBKDF2 function is a slow hash, designed to be com-
putationally intensive and prevent brute-force attacks against
the password. Its performance is adjusted using the -c param-
eter if desired, to slow the process further on a fast computer
by carrying out more rounds of PBKDF2. The default is for
10000 rounds. After copying this password hash, it should be
added to your GRUB configuration files (which are normally

located in /etc/grub.d or similar). In the file 40 custom, add
the following:

set superusers="root"

password_pbkdf2 root <generated pass hash>

This will create a GRUB superuser account named root,
which is able to boot any GRUB entry, edit existing boot items,
and enter a GRUB console. Without further configuration, this
password will also be required to boot the system. If you prefer
to have yet another password on boot-up, you can skip the next
step. With full disk encryption in use though, there is little need
in requiring a password on each boot-up.

To remove the requirement for the supervisor password to
be entered on a normal boot-up, edit the standard boot menu
template (normally /etc/grub.d/10-linux), and locate the line
creating a regular menu entry. It should look somewhat similar
to the line shown below. Note that for reproducing in print
form, this line has been broken up.

echo "menuentry ’$(echo "$title" |

grub_quote)’ ${CLASS}

\$menuentry_id_option

’gnulinux-$version-$type-$boot_device_id’

{" | sed "s/ˆ/$submenu_indentation/"

Change this line by adding the argument
--unrestricted, before the opening curly bracket.
This change tells GRUB that booting this entry does not
require a password prompt. Depending on your distribution
and GRUB version, the exact contents of the line may differ.
Once again, for the purpose of reproduction in print, the line
has been broken up. The resulting line should be similar to:

echo "menuentry ’$(echo "$title" |

grub_quote)’ ${CLASS}

\$menuentry_id_option

’gnulinux-$version-$type-$boot_device_id’

--unrestricted {" | sed

"s/ˆ/$submenu_indentation/"

After adding a superuser account and configuring the
need (or otherwise) for boot-up passwords, the main GRUB
configuration file should be re-generated. The command for
this is distribution specific, but is often update-grub or grub-
mkconfig. The standalone GRUB binary should also be re-
generated and tested.

X. PROTECTING THE KERNEL

At this point, you should have a system capable of booting
a signed (and password protected) GRUB bootloader. An
adversary without access to your keys would not be able to
modify the bootloader, or its configuration or modules. Like-
wise, they would not be able to change the parameters passed
by the bootloader to the kernel. They could however modify
your kernel image (by swapping the hard disk into another
computer). This would then be booted by GRUB. While it
is possible for GRUB to verify kernel image signatures, this
requires you to re-sign each kernel update.

An alternative approach is to use full disk encryption
to protect the full system, including kernel images, the root

filesystem, and your home directory. This prevents someone
from removing your computer’s drive and accessing your data,
or modifying it without knowing your encryption password,
the drive contents will be unreadable (and thus unmodifiable).

Most online guides will show full disk encryption, but leave
a separate, unencrypted /boot partition (which holds the kernel
and initrd images) for ease of booting. By only creating a
single, encrypted root partition, there won’t be an unencrypted
kernel or initrd stored on the disk. You can, of course, create a
separate boot partition and encrypt it using dm-crypt as normal,
if you prefer.

The full process of carrying out full disk encryption
including the boot partition is worthy of an article in itself,
given the various distribution-specific changes necessary. A
good starting point, however, is the ArchLinux wiki (see
the Resources section at the end of this article). The main
difference from a conventional encryption setup is the use
of the GRUB GRUB_ENABLE_CRYPTODISK=y configura-
tion parameter, which tells GRUB to attempt to decrypt an
encrypted volume prior to loading the main GRUB menu.

To avoid having to enter the encryption password twice
per boot-up, the system’s /etc/crypttab can be used to
automatically decrypt the filesystem with a keyfile. This keyfile
can then be included in the (encrypted) initrd of the filesystem
(refer to your distribution’s documentation to find out how to
add this to the initrd, so it will be included each time it is
regenerated for a kernel update).

This keyfile should be owned by the root user, and does not
require any user or group to have read access to it. Likewise,
you should give the initrd image (in the boot partition) the
same protection, to prevent it from being accessed while the
system is powered up, and the keyfile being extracted.

XI. FINAL CONSIDERATIONS

UEFI secure boot allows you to take control over what code
can run on your computer. Installing your own keys allows you
to prevent malicious people from easily booting their own code
on your computer. Combining this with full disk encryption
will keep your data protected against unauthorised access and
theft, and prevent an attacker from tricking you into booting a
malicious kernel.

As a final step, you should apply a password to your
UEFI setup interface, in order to prevent a physical attacker
from gaining access to your computer’s setup interface, and
installing their own PK, KEK and db key, as these instruc-
tions did. You should be aware, however, that a weakness in
your motherboard or laptop’s implementation of UEFI could
potentially allow this password to be bypassed or removed,
and that the ability to re-flash the UEFI firmware through a
“rescue mode” on your system could potentially clear NVRAM
variables. Nonetheless, by taking control of secure boot and
using it protect your system, you should be better protected
against malicious software or those with temporary physical
access to your computer.

XII. RESOURCES

Information about third-party secure boot keys:
http://mjg59.dreamwidth.org/23400.html

More information about the keys and inner workings of
secure boot:
http://blog.hansenpartnership.com/
the-meaning-of-all-the-uefi-keys/

osslsigncode repository:
http://sourceforge.net/projects/osslsigncode/

ArchLinux wiki instructions for fully encrypted systems:
https://wiki.archlinux.org/index.php/Dm-crypt/Encrypting an
entire system#Encrypted boot partition .28GRUB.29

Guide for full-disk encryption including kernel image:
http://www.pavelkogan.com/2014/05/23/
luks-full-disk-encryption/

Fedora Wiki on their Secure Boot implementation:
https://fedoraproject.org/wiki/Features/SecureBoot

ACKNOWLEDGMENT

This work was funded by EPSRC Doctoral Training Grant
EP/K503174/1.

AUTHORS

Greig Paul is a PhD researcher in the mobile communica-
tions group at the University of Strathclyde, Glasgow (UK),
where he works on mobile device security and secure data
storage.

James Irvine is a Reader in the mobile communications
group at the University of Strathclyde, Glasgow (UK), focusing
in wireless communication resource management and security.

