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Abstract Ir(I) complexes of the type [(COD)Ir(NHC)(Py)]PF6 have been 

exposed as efficient catalysts in the area of hydrogen isotope exchange. 

More specifically, via an ortho-directed C-H activation process, high levels of 

deuterium incorporation have been achieved using low levels of catalyst 

over a range of functionalised aromatic compounds. Additionally, the 

developed protocol has been extended to include a selected 

pharmacological target, where chemoselective labelling is observed within 

such a multifunctional substrate.  
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Isotopic labelling with heavy hydrogen isotopes (D2 and T2) is 

widely used as a means to monitor the biological fate of a 

potential drug molecule.2 In relation to this, methods that 

deliver hydrogen isotope exchange (HIE) are of appreciable 

importance in accessing such isotopically-labelled species, 

whilst also being central to the provision of analogous 

deuterated compounds for use as internal standards as aligned 

with mass spectrometry,3 for kinetic isotope studies,4 and for 

the alteration of reaction pathways in total synthesis.5 As such, 

direct, flexible, and selective means of introducing hydrogen 

isotopes continues to be the focus of considerable research 

attention. In this regard, studies from our laboratory have 

shown that a range of iridium complexes of the type 

[(COD)Ir(IMes)(PR3)]X are very effective homogeneous 

catalysts which mediate the exchange of hydrogen with 

deuterium (or tritium) via an ortho-directed C-H activation 

process.2c,6 The key to their applicability in this area lies with 

the ability of such complexes to selectively target unactivated 

C-H bonds, whilst simultaneously allowing convenient isotope 

incorporation with the use of, practically convenient, 

deuterium or tritium gas (Scheme 1). Our developing 

methodology in this domain allows exchange with high levels 

of incorporation using low levels of catalyst and encompasses a 

comprehensive range of substrates including ketone, amide, 

nitro, and a spectrum of heterocyclic functionality, and, most 

recently, primary sulfonamides7 and esters,6f which were 

previously less accessible targets. Indeed, the developed series 

of iridium complexes have emerged to become some of the 

most active species now known in this area of labelling 

chemistry. 

 

Scheme 1 Hydrogen isotope exchange process 

In addition to an isotopic exchange process, our 

[(COD)Ir(IMes)(PR3)]X complexes have been shown to perform 

as effective hydrogenation catalysts, delivering reduced 

products under notably mild reaction conditions.8 In relation to 

this, studies by Nolan et al. have divulged that iridium species 

with the alternative specific combination of a bulky N-

heterocyclic carbene (NHC) and a pyridine ligand represent 

appreciably robust complexes that are active within both 

alkene hydrogenation9 and transfer hydrogenation protocols.10 

In view of these findings, and based on the knowledge that 

judicious and careful manipulation of the ligands supporting 

the iridium centre is critical for success within hydrogen 

isotope exchange processes, we turned our attention to the 

application of the general class of Ir(NHC)(py) complexes 
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within our developing HIE procedures. Herein, we report an 

assessment of iridium(I) complexes of the type 

[(COD)Ir(NHC)(py)]PF6 as an additional series of C-H activation 

catalysts in the deuteration of a range of functionalised arene 

substrates.  

Our initial investigations involved the preparation of catalysts 

3a-c9,10 via the modified preparative procedure shown in Table 

1. In this regard, the desired N-heterocyclic carbene was 

reacted with readily accessible [(COD)Ir(py)2]PF6, 2,11 via a 

simple ligand exchange reaction in toluene. Pleasingly, the 

desired complexes were obtained in very good chemical yield 

in every case. Moreover, this procedure allowed the 

preparation of these extremely stable catalyst species on gram 

scale. 

Table 1 Preparation of Ir complexes -c12 

 

 

Entry NHC Catalyst Yield (%) 

1 IMes, R = 2,4,6-trimethylphenyl  88 

2 IiPr, R = iso-propyl  82 

3 SIMes, R = 2,4,6-trimethylphenyl  97 

 

Having successfully prepared complexes 3a-c, we looked to the 

standard HIE protocol developed within our laboratory for the 

labelling of a variety of substrates. As shown in Scheme 2, 

catalysts 3a-c displayed very good levels of efficiency in our 

labelling protocol. Using only 5 mol% catalyst loading, high 

levels of deuterium incorporation at the expected ortho-

positions were achieved for the selected substrates over 16 h. 

Ketones, amides, pyrazole, and imidazole functionalities were 

all viable within this system, with catalyst 3c, derived from 

SIMes, proving the most active in the majority of cases. Notable 

examples include the labelling of benzamide, 4c; despite this 

substrate previously requiring extremely high levels of catalyst 

and delivering variable results,13a,b complexes 3a-c delivered 

consistently high isotope incorporations for this substrate 

within our study. The [(COD)Ir(NHC)(py)]PF6 complex class 

was also able to deliver very good levels of deuteration with 

acetanilide, 4f, facilitating isotope exchange in C-H bonds 

positioned five bonds away from the required coordinating 

functionality i.e. via a 6-membered metallacyclic intermediate 

(6-mmi). This process is believed to be energetically more 

demanding and, as such, often leads to lower levels of 

deuteration.6a,d Moreover, the delivery of deuterium labelled 

heterocyclic derivatives 5g and 5h displays additional 

versatility and illustrates the overall robustness of this 

catalytic system. Whilst we believe that the encumbered nature 

of the iridium centre within this wider catalyst series is key to 

the high levels of activity shown,6 we were conscious that these 

same steric constraints may disfavour the initial coordination 

of larger and more tetrahedral directing functional units such 

as sulfonamides.7 Having stated this, we were able to induce 

high levels of incorporation within compound 5i, albeit by 

moving to a much higher catalyst loading of 50 mol%. 

Similarly, an increased loading of 10 mol% was required to 

more effectively deliver deuterated ester 5j at a level of 94% D 

incorporation under ambient conditions; again, this was a 

pleasing outcome given the well-documented difficulties 

arising with such a weakly binding aromatic ester group.6f,13  

At this point, it is important to reflect on the preparation and 

performance of this [(COD)Ir(NHC)(py)]PF6 complex class and 

their new application as C-H activation catalysts, as compared 

to our existing and more well-established 

[(COD)Ir(IMes)(PR3)]PF6 series. In relation to this, both 

catalyst classes are readily accessible and provide stable and 

readily handled species for use in HIE processes. Indeed, access 

to the NHC/pyridine complexes described here is relatively 

 

Scheme 2 HIE reaction scope.14 Average incorporation into the positions shown over two separate reaction runs; the percentage given refers to the level of D 

incorporation over the total number of positions shown, e.g. 94% for the two possible positions in  indicates 1.88 D incorporation. a Reaction run using 50 mol% 

catalyst. b Reaction run using 10 mol% catalyst. 
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Table 2 HIE time study using catalyst  

 

Entry Product % D after 30 mina % D after 16 ha 

1  96 94 

2  89 94 

3  33 72 

4  90 96 

5  97 >99 

6  75 89 

7  89 92 

8  10 90 

9  30 (65)b 58 (94)b 

a Average incorporation into the positions shown over two separate reaction 

runs; the percentage given refers to the level of D incorporation over the 

total number of positions shown, e.g. 96% for the two possible positions in 

 indicates 1.92 D incorporation. b Reaction run using 10 mol% catalyst. 

 

more direct overall, notwithstanding the requirement for the 

use of a glove box technique at the outset of the preparative 

process.12 With regards to catalyst performance within the 

described HIE processes, in an overall qualitative sense, the 

NHC/pyridine complexes generally compare well with our 

existing NHC/phosphine series, especially when considering, 

for example, substrates such as acetophenone (4a), 

benzophenone (4b), and 2-phenylpyrazole (4g).6a,d 

Additionally, this current set of catalysts delivered good levels 

of isotopically-labelled benzamide (5c) across the series, 

where the [(COD)Ir(IMes)(PR3)]PF6 complexes delivered 

somewhat more variable results with this primary amide 

substrate.6a,d Moreover and as described above, moving to 

slightly increased catalyst loading, 3c was able to 

accommodate ester functionality at ambient temperatures, 

whereas our previous [(COD)Ir(IMes)(PR3)]PF6 systems 

employed moderately elevated temperatures to deliver similar 

levels of incorporation in ester containing compounds at lower 

catalyst loading.6f  

Encouraged by the results obtained to this stage, we looked to 

more fully probe the reaction parameters in an attempt to 

explore the wider capability of the NHC/pyridine catalyst 

series within these HIE processes. As such, varying levels of 

catalyst loading were explored, as well as a study on the 

reaction rate. Despite lower quantities of catalyst being 

utilisable in the hydrogen isotope exchange of acetophenone, 

4a,15 it was recognised that a reliable quantity of 5 mol% of the 

requisite iridium species was optimal over a range of 

substrates. In addition to these experiments, as shown within 

Table 2, we were pleased to realise that our developed 

labelling protocol was indeed more rapid than anticipated. As 

detailed, after only 30 minutes, using 5 mol% of SIMes catalyst 

3c, comparably high levels of incorporation were achieved 

with the majority of substrates tested as part of our studies. In 

contrast, at 30 minutes reaction time the more demanding 

substrates, benzamide 4c, 2-phenylimidazole 4h, and ethyl 

benzoate 4j did not deliver the high levels of incorporation 

obtained over the more prolonged 16 h process.  

In an extension of these studies and to further illustrate the 

capability of catalysts of type 3, we applied the SIMes derived 

complex 3c in the hydrogen isotope exchange of Sanofi-Synthélaboǯs pharmacological targetǡ 6 (Scheme 3). The ability 

to label fully functionalised drug scaffolds is central to the 

application of HIE catalysis, especially as aligned to the 

endeavours of pharmaceutical partners. In this instance we 

were pleased to obtain 86% D incorporation using 20 mol% of 

catalyst, albeit over 42 h. Notably, the observed labelling was 

completely selective, with incorporation occurring at the least 

hindered site of the complex drug target and as directed by the 

adjacent amide functionality via a 5-mmi.  

 

Scheme 3 HIE of a pharmaceutical agent, SR 121463. 

In summary, we have revealed the escalated capability of 

complexes of the type [(COD)Ir(NHC)(py)]PF6 within transition 

metal catalysis. Specifically, such complexes have been shown 

to perform within an ortho-directed C-H activation and 

hydrogen isotope exchange process, delivering high levels of 

deuterium incorporation over a series of functionalised 

aromatic substrates. The established system displays notable 

efficacy under mild reaction conditions and over short reaction 

times. From these studies, catalyst 3c has proven to be the 

most versatile and broadly applicable of the series applied, and 

also providing high levels of selective isotopic labelling within 

a fully functional drug target. With HIE now a key procedure in 

the optimisation of the drug discovery process, the results 

presented in this study are of direct value and importance to 

pharmaceuticals partners. Indeed, ongoing studies within our 

laboratory have the goal of discovering catalysts that are 

compatible with increasingly complex organic molecules and 

alternative drug-like substrates, as well as in the establishment 

of alternative CΫ( activation processes in a wider sense. 
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% D = 100 Ȃ [(residual integral/no. of labelling sites) x 100] 

 

Acetophenone, 4a: 1H NMR (400 MHz, CDCl3Ȍ Ɂ( ʹǤͶͷ ȋsǡ ͵(ȌǢ 
7.32 (t, 2H, J = 8.0 Hz); 7.41 (t, 1H, J = 8.0 Hz); 7.81 ppm (d, 2H, J 

= 8.0 Hz). Labelling expected at Ɂ( ͹ǤͺͳǤ Determined against integral at Ɂ( ʹǤͶͷǤ 
(15) In experiments using 2.5 mol% of catalysts 3a or 3c in DCM over 

16 h at room temperature, 81% and 90% D incorporation was 

obtained, respectively, in the labelling of acetophenone (4a). 

 


