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Incorporating Practice Theory in Sub-Profile

Models for Short Term Aggregated

Residential Load Forecasting
Bruce Stephen, Senior Member, IEEE, Xiaoqing Tang, Poppy R. Harvey,

Stuart Galloway, and Kyle I. Jennett

Abstract—Aspirations of grid independence could be achieved
by residential power systems connected only to small highly
variable loads if overall demand on the network can be accu-
rately anticipated. Absence of the diversity found on networks
with larger load cohorts or consistent industrial customers
makes such overall load profiles difficult to anticipate on even
a short term basis. Here, existing forecasting techniques are
employed alongside enhanced classification/clustering models in
proposed methods for forecasting demand in a bottom up man-
ner. A Markov chain based sampling technique derived from
practice theory of human behavior is proposed as a means
of providing a forecast with low computational effort and
reduced historical data requirements. The modeling approach
proposed does not require seasonal adjustments or environ-
mental data. Forecast and actual demand for a cohort of
residential loads over a five-month period are used to eval-
uate a number of models, as well as demonstrate a signif-
icant performance improvement if utilized in an ensemble
forecast.

Index Terms—Human factors, load modeling, power systems,
practice theory, renewable generation.

I. INTRODUCTION

L
EGACY power systems featuring large and geograph-

ically distributed load bases connected to centralized

generation can exploit routine and climatic diversity to smooth

out their demand profiles. Even without predictable large

industrial and commercial loads, residential loads are present

in sufficient numbers that some system operators assign them

a single load profile on the assumption that the large cohort

will average out the diversity [1]. Small power systems, pos-

sibly in rural areas, with diverse housing stock face a greater

challenge in evaluating their anticipated demand making grid

independence a less viable proposition without maintaining

prohibitively expensive reserve margins. Behavioral changes

driven by consumer routine and building stock variation [2]
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Fig. 1. Residential feeder metered load profile compared against a scaling
of the U.K. standard residential load profile [1] over a single week.

result in abrupt temporal changes consistent with a statistically

complex distributed process, which rules out regression-based

forecasting techniques [1] that can be employed at higher

levels of load aggregation such as the primary substation.

The nature of this problem can be better understood if

the underlying residential loads are considered in context.

Pursuing the approach typically adopted at national levels,

e.g., [1] whereby a single load profile is assumed to merely

increase by a factor of the number of loads, offers insuffi-

cient accuracy as Fig. 1 demonstrates: on a small cohort of

123 residential customers, the aggregated load fails to match

the U.K. domestic load profile class scaled up accordingly.

The absence of diversity increases shoulder period variability

and can result in load voids at both peak and trough peri-

ods. Although a key problem is the overestimate of peaks and

troughs this is an understandable overestimate at a national

level to accommodate generation margins but a potential prob-

lem for islanded microgrids that require foreknowledge of the

local load to absorb or supplement the renewable generation

resource.

The challenge presented by this data is three-fold: firstly,

residential loads lack the predictable patterns that may be
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used to forecast future behavior using conventional stationary

regression time series models; secondly, while environmen-

tal data is often incorporated into load forecast models at the

regional and national level [2], [3], highly localized data is

rarely available and thirdly, historical load data is almost non-

existent for specific residential and low voltage customer loads

so seasonally adjusted predictions are not possible in most

cases. The models employed in this paper are used to fore-

cast an aggregated load profile on a day-ahead basis, based

on short term generalizations of consumption derived from

a reduced number of very recent constituent half hourly electri-

cal load measurements taken at the premises incomer. Neither

seasonal nor daily correction/standardization is applied as the

model learns only from data supplied weeks or days prior

to the forecast, nor are additional parameters are required to

be measured (such as humidity or ambient temperature) and

subsequent forecasts rely only on the load profile observed on

the previous day. The aggregated load on the network feeder is

then forecast by aggregating the forecasts from all constituent

premise loads on the network to evaluate generation require-

ments in a bottom up manner. The advantage of aggregating

the forecasts in this way is that it takes into account the con-

stituent behaviors whereas a single forecast would not include

the details of this inherent variability.

This paper is organized as follows: the next section reviews

load forecasting techniques previously used in power sys-

tems operation and planning – many of these techniques have

produced highly accurate forecasts but on at the higher volt-

age levels of the network where diversity produces smoother

and more consistent load profiles. Section III reviews the

reasons that motivate different models for smaller power sys-

tems and the models that can accommodate them. Section IV

proposes extensions to this methodology and draws justifi-

cation for this from the field of Practice Theory in Human

Factors analysis. Section V shows how these models, inher-

ently stochastic, can be sampled to provide forecasts of

load on a 24 hour ahead (the typical definition of short

term load forecasts) basis. Section VI utilizes a metered

residential premises data set to demonstrate forecasting per-

formance for the proposed model and the most prominently

used models in the field: Persistent forecasting, Feed Forward

Neural Networks and Autoregressive models. Performance

metrics are also discussed as the dynamics of this partic-

ular data set can render the outputs of some traditional

error measures misleading. Section VI compares the per-

formance of the 5 models and comments on their rela-

tive strengths. Section VII concludes with potential areas

of model improvement and an analysis of where forecast-

ing presents the greatest challenges in the context of power

systems.

II. SHORT TERM LOAD FORECASTING

Load forecasting techniques for 24 hours in advance, com-

monly referred to as ‘short term’, are well established for

the zonal/HV/MV and national scale networks, e.g., [4]–[6].

Two frequently used approaches to short term load forecast-

ing are Autoregressive (AR) type models [4], [5] such as

Autoregressive Moving Average (ARMA) and Autoregressive

Integrated Moving Average (ARIMA); and also Neural

Network (NN) based approaches [6], [7]. AR models utilize

recurring patterns in time series data that imply a linear rela-

tion between time points and use these to predict a specified

number of time points into the future. The number of time

points considered is denoted as the order of the model, so

a model that uses the previous time point to predict the next

is a first order model, one that uses two time points is a second

order model and so on. The NN models are essentially univer-

sal approximators to an arbitrary relation between input and

output data shown to the model: in the load forecasting appli-

cation, the output data would be the time points of the forecast

period while the inputs may be the corresponding load at the

current days’ time points. For example, in [8] a NN approach

was used to forecast loads one day in advance on a 230 node

feeder/network. This produced 24 hourly load estimates as

its output from an input of the previous days load observa-

tions coupled with weather forecasts and day indicators. This

model was learned over 210 weekdays and then tested on

30 weekdays – weekends were not considered. Reference [8]

also employed AR/ARMA/ARIMA models utilizing 6 weeks

of data; ARMA and ARIMA models are estimated on a previ-

ous weeks basis (5 days over 24 hours leads to a model order

of 120). As might be expected, the progressively more com-

plex models yielded higher accuracy. Reference [8] noted the

varying accuracies of load forecasting achieved at the various

levels of the power system: 13.8% Mean absolute percentage

error (MAPE) at village level, 5.15% at University Campus

level compared with a 1.97% best at national level, although

it should be remembered that a ‘campus’ case is akin to a com-

mercial load and is susceptible to business hours base loads

that will reduce the challenge of forecasting. Reference [9]

highlighted the more specific case of a number of residential

feeder scenarios with forecast MAPE of between 10-35%.

III. SUB-PROFILED RESIDENTIAL LOADS

References [9]–[11] note the greater levels of unpredictabil-

ity exhibited by microgrids and sensitivity to end usage. The

assumptions of weekend/weekday distinction, outlined by the

uniform load profiling approach, are clearly not always valid

and similar assumptions of weekday homogeneity are simi-

larly invalid. References [5], [8], and [13] identified this and

omitted weekends from their forecast model, placing focus

entirely on weekdays. Several previous works have proposed

the notion of representing individual loads using sub-profiles

learned through clustering type algorithms. Exemplifying the

difference between weekend and weekday behavior, [13] maps

and then automatically classifies load pattern clusters as week-

end and weekdays such is the difference between weekend

and weekday behavior. Routine often dictates behavior [11]

rather than the day of the week and this has motivated works

such as [14]–[16] to first find generalizations of load profiles

and forecast from this starting point. Weekend and public hol-

idays can invoke changes in routine that manifests itself as

different load profiles. Because of these shifts in behavior,

there are resulting shifts in distribution which leads to the
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Fig. 2. Optimal January model – 22 half hourly load profiles recovered as
Gaussian means; scale is in kWh.

advance data exhibiting what is termed as non-stationarity,

thus motivating the choice of cluster type models to general-

ize load before predicting what it will do next. One simple

approach to generalizing load profiles is to look at it on

a timestep by timestep basis - [17] presents an aggregated LV

model of several feeders that is considered with a probabil-

ity distribution generated for each time step in the same vein

as [18], where loads are stratified. Reference [14] and [16]

both use Self Organizing Maps (SOM) to identify recurring

behaviors in daily load profiles.

To achieve a similar objective [18], [19] used mixtures of

univariate and multivariate Gaussians respectively for mod-

eling electrical load advances at various times of day but

in a manner that still preserved the load profile within the

model in an intuitive manner. Reference [19] demonstrated

how this could be used to recover a number of recurring

load profiles as the mean parameters of a Gaussian mix-

ture model. For a randomly chosen subset of 30 houses over

30 days, Fig. 2 demonstrates the 22 profiles that recurred

prominently. A key problem with using mixture models is

estimating the model cardinality or the number of mixtures

needed to best approximate the implied probability density of

the non-stationary residential cohort load profile. Cardinality

of the mixture model is dependent on data; model selection

involves training a range of differently parameterized models

and selecting one based on a predetermined criteria. Patterns

will inevitably repeat over the course of the year – some load

profiles observed in unoccupied properties (or possibly proper-

ties with good thermal insulation) will be observed irrespective

of the time of year or outside conditions. The changes in

behavioral diversity invoked by seasonal change will result in

certain behaviors not being observed in all months. The 22 pro-

files recovered from the 900 (30 customers over 30 days) and

shown in Fig. 3 were from a deemed optimal model selected

by the formal criteria specified in [19].

Fig. 3. Profile labels for five customers over the period of a single month
-blue bars represent weekdays and red and pink bars represent Saturdays and
Sundays respectively.

Fig. 4. Day to day movement between profile labels for each month encoded
as transition matrices: rows represent labels; columns represent labels for the
same premises on the following day. The color of each cell represents the
frequency of a label occurring on a given day: blue represents infrequent
through to red as most frequent.

Using a trained optimal mixture model on a set of meter

data results in the load profiles being replaced with daily labels

as would be possible with the models proposed in [14]–[17].

Fig. 4 shows the 22 profile model from Fig. 3 being applied

to 5 households over a 1 month period. Day t is given a label

c according to the load profile l observed:

ct = max
c

πcN(lt;µc, �c)

22
∑

m=1

πmN(lt;µm, �m)

(1)

A mixture model has scaling parameter π , along with a mean

µ and covariance Σ for each Gaussian component. Each day

is consequently given a label of between 1 and 22 thus poten-

tially reducing the problem of forecasting, broadly, to one of

selecting the most likely next label in the sequence.
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IV. TRACKING CHANGES IN DEMAND

As Fig. 3 indicates, the occurrence of a particular load

profile is not completely random. The change and stability

characteristics of energy usage behavior are dependent on var-

ious factors arising from personal and established routines

which must be captured through additional model parameters.

Extending the approach of [14], [15], and [19] to find the sub-

populations, the conditional distribution of the profile labels

given a particular day and also the transitions probabilities

between profile labels, could also be estimated.

Justification for such modeling design decisions may be

derived from the application of Practice Theory [20] to energy

usage; [21] noted that the use of technology, in the form

of appliances in the home contributed to overall energy

usage in an ensemble effect through ‘practices’ – a ‘practice’

being a “temporally evolving, open ended set of doings and

sayings. . . ”. These ‘doings and sayings’ (actually performa-

tive and communicative acts associated with executing daily

routine) are identified as constituting hierarchical constructs

along with tasks and projects that are executed ‘occasionally,

rarely or novelly’. The constraints and lower level cognitive

predicates with which practices are assembled were identi-

fied by [21]: Practical Understanding, Rules, Teleoaffective

Structures and General Understandings. These can be under-

stood in the context of energy use as follows: ‘Practical

Understanding’ constitutes not the activity but the underly-

ing knowledge that governs its execution, that is, what to do,

how to do it (e.g., the ordering of tasks) how to identify and

react accordingly to cues or outcomes – examples may include

wet appliance usage in domestic laundry tasks. ‘Rules’ indi-

cate the basic constraints governing the technical or regulatory

limits of the system, e.g., the rating of a particular appli-

ance or the maximum/minimum duration it can be usefully

operated. ‘Teleoaffective structures’ capture the goal oriented

behaviors driven by ‘normative moods or views’ – these in

turn may result from short term circumstance, e.g., boiling

a kettle. From a longer term perspective, [2] noted on the

subject of ‘Habitus’, the persistent patterns of thought per-

ception and action, which could be driven by commuting

habits and is therefore influenced by location which results in

a consistently repeated behavior – charging an electric vehi-

cle or use of wet appliances [22]. By the same reasoning,

‘General Understandings’ are shared beliefs possibly oriented

by religious or ethical concern, may have a greater degree of

persistence over time and occur at a regular interval or on

a given day. Drawing on the behavioral influence of culture

group and the routine driven nature of practice supports the

notion of sub-profile load profiles – these practices will be

repeated (albeit with noise and temporal variation) but will

essentially play out on a regular basis resulting in a sequence

of related dispersed practices that will manifest as transitions

between particular daily load profile shapes. Much of this rea-

soning was implicitly drawn on in [23] to synthesize domestic

load profiles from aggregating routine behavior patterns in

appliance usage, themselves derived from survey participant

responses.

Load profile classification approaches such as the mixture

model approach of [19] allows each day to be retrospectively

Fig. 5. Probabilistic relation between day of week (columns) and load profile
label occurrence (rows) – the color of each cell represents the frequency of
a label occurring on a given day: blue represents infrequent through to red as
most frequent.

(at the completion of a single days’ metering) assigned a label

representing the model load profile that best represents the

days load. This reduces a series of continuous valued load

measurements to a much shorter sequence of discrete labels

as Fig. 3 demonstrates.

By looking at the temporal variation in profile label along

a sequence for a given premises, a matrix of transition proba-

bilities, that embody the state space behaviors implied by [22]

can be formed. Fig. 4 shows the transition matrices for a single

optimal model produced from a 6 individual months’ worth of

data, demonstrating that the consecutive occurrence of partic-

ular load patterns does not remain the same from month to

month. Day to day transition probabilities can be calculated

for label c as:

P(ct, ct+1) = Ai=ctj=ct+1
(2)

Particular behaviors will also be dictated by days of week

as [13] noted. The probabilities for profile labels conditioned

on weekdays (dt) are given by a normalized count of their

occurrence:

P(ct|dt ) = Wi=xtt,j=dtt (3)

As with the transition probabilities shown in Fig. 4, recal-

culating these on a monthly basis for the same model shows

how habits differ between months, akin to the findings of [24].

Fig. 5 shows this behavior evolving as a year progresses. Some

load profiles have a high probability of occurring on a partic-

ular day – winter public holidays for example feature more

pronounced behaviors than spring ones suggesting a spread

of different behaviors as opposed to a ‘staying in’ behavior

associated with the colder period.

However, across all premises monitored, both Fig. 4 and

Fig. 5 demonstrate, that there are frequently recurring trends

in transitions and day conditional load profile behaviors as the
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red colored cells indicate. In summary, extensions to the classi-

fication model of [19] to permit electrical demand forecasting,

would consist of the following elements:

• An m-component Gaussian Mixture in d-dimensions

where d are the number of measurements over a single

day and m are the number of recurring profiles observed,

selected by a theoretically valid model selection crite-

ria such as [25]. This model will encode m load profiles

as an m element set of d dimensional mean vectors and d

by d covariance matrices. The mixture components for the

model, indicative of the probability a sub profile has of

occurring, are represented by an m dimensional vector π .

• A m by 9 conditional probability matrix W, of the likeli-

hood of seeing a given load profile m on a given day of

the week, a holiday or an extraordinary day.

• A m by m transition matrix A, denoting the proba-

bility of moving from one load profile to another on

consecutive days.

The probability of any profile label being observed given

a day of the week and a profile label from the previous day

is given as follows

P(ct+1|ct, dt+1) = P(ct+1|dt+1 )P(ct+1, ct) (4)

With a model in place for capturing recurring behaviors and

how they occur over time, the next stage of development is

to use the model to forecast how these behaviors recur on

a day-ahead basis.

A. Learning Day Ahead Demand Model for

Residential Loads

For a given, but not extensive, set of loads from individual

premises over a short time period, an algorithm for the training

of a load model would proceed as follows:

1. For metering data with d daily advances, organize

data from N days and M meters into N by M

d-dimensional records of load. Initialize and train a mix-

ture model on this d-dimensional historical load data

and use this to evaluate the model order and therefore

the form of the model distributions in the same man-

ner as [19]. Initialization may be carried out by using

randomly selected daily load profiles as the initial mix-

ture means or estimating initial values using k-Means

clustering.

2. From the same exemplar data, create M sequences of

d-dimensional load ordered by date.

3. Utilizing the trained model, replace the d-dimensional

load profiles in each of the M sequences with a label rep-

resenting the generalized profile that best approximates

it as illustrated in Fig. 3.

4. Sum the label transition counts along each sequence

and then normalize to obtain matrix A – the transition

probability matrix (2).

5. Sum the label occurrences against each day of the

week and then normalize to obtain day conditional

matrix W (3).

6. Replace the model by repeating from step 1 at the end

of each month to account for seasonal change.

B. Day Ahead Demand Forecasting for Residential Loads

For a trained model, a load profile forecast on a day ahead

basis for any metered premises can then be conducted as

follows:

1. If there is no previous days use, sample from a multi-

nomial distribution using the mixture weights from the

optimal model;

ct = ĉt ∼ Multinomial(·|π ) (5)

Which yields an estimate of the most likely load profile

label c at time t.

2. Otherwise:

a. Use the actual profile label for the previous days

load profile l obtained from the mixture model:

ct = max
c

πcN(lt;µc, �c)

M
∑

m=1

πmN(lt;µm, �m)

(6)

b. Sample from the transition matrix row associated

with the current day label to get the next day’s

label

ĉt+1 ∼ Multinomial(P(dt = tomorrow|· )) (7)

c. Sample from the day type matrix to get the most

likely label for the given day of week

ĉt+1 ∼ Multinomial(P(·|xt =ct)) (8)

d. Using the forecast label, select the Gaussian dis-

tribution in the profile model that is associated

with it

3. Using the most likely mixture component – draw sam-

ples from the Gaussian distribution associated with it

l̂t+1 ∼ N
(

µĉt+1
, �ĉt+1

)

(9)

4. At the end of the monitoring day, use the observed load

profile to correct the label for the day using (7)

V. SUPPORTING MODELS

This section outlines the alternative or possibly complemen-

tary forecasting techniques to the proposed method. All are

expected to be trained on the same set of data and forecast

over the same period and for the same time horizon.

A. Flat Forecast

A flat forecast is obtained in the manner of [26] by averag-

ing over the load of the previous week and employing this as

a forecast regardless of the time of day for all premises.

B. Persistent Forecast

A persistent forecast employing only the previous weeks

advances averaged over a test data set and then employed at

the corresponding time of day in the manner of [26].
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Fig. 6. Distribution of forecast MAE for all 5 models over the entire test period with disaggregation by hour and weekday. The rightmost plots represent
the ensemble forecast encompassing all models except for the flat forecast.

C. Feed Forward Neural Network

A feed-forward Neural Network of the same design as used

in [8] is employed; that is, one with 49 input nodes and 48 out-

put nodes: one input for each half hourly time step plus an

input for the day of week indicator. A forecast is made based

on the previous days load observations as input. Different

from the approach used by [8] is that all days of the week

are forecast for, not just weekdays.

D. ARIMA Model

An ARIMA load forecast model was selected over the

simpler AR and ARMA models to accommodate the known

non-stationarity in the data. This is designed with a lag of

48 samples as in [8], and like this design, features distinct

models for forecasting weekend and weekday behaviors. As

with the Neural Network model, the forecast is made on the

basis of the previous days load for each premises.

VI. RESIDENTIAL FORECASTING PERFORMANCE

The loads used were taken from a 6 month January to June

period. In many ways, this test network presents a challenging

forecasting case - these are all drawn from real U.K. housing

stock and feature very little homogeneity in terms of con-

struction materials; occupant backgrounds/demographics are

similarly diverse. The absence of any supporting data set,

such as environmental measurements, means that this is an

entirely load data driven model, emphasizing that the approach

to electrical load forecasting advocated here is agnostic to

demographic, building construction, environmental conditions

and seasonal effects. The models are all learned from random

25% subsets of premises load data from a month previously

and then tested on all customers from the subsequent month

(e.g., train on January and forecast for February). Forecasts

with all models are made at midnight every day for subse-

quent 48 half hourly increments. Load forecasts across all

123 premises on the network are aggregated together and

compared to the actual aggregate load.

TABLE I
COMPARISON OF PERFORMANCE FORECAST OVER 5 MONTH PERIOD

A. Error Metrics

Error metrics used are the Mean Absolute Error (MAE),

the Mean Absolute Percentage Error (MAPE) as well as

the Permutated 4-Norm proposed in [26]. MAE is a stan-

dard measure for predictive efficacy while MAPE gives an

impression of the order of magnitude of the forecast error [5];

the 4-Norm has been chosen to accommodate temporal shift

in observed behaviors that may be attributable to delays in

domestic routine.

Table I shows the overall performance comparison for the

five short term load forecast models plus ensembles of various

combinations. All models were implemented in Matlab and

run on an Intel Quad Core i7 at 3.8 GHz with 16GB RAM.

Fig. 6 shows how each model performs over the entire test-

ing period. Notable from Fig. 6 is the performance at morning

peak times: the ARIMA models exhibit high errors whereas

the Neural Network, the Gaussian approach and the persis-

tent forecast have much lower errors at these times. This

situation reverses for evening peaks, with the ARIMA model

banding errors more tightly. Errors for all but the Gaussian

forecast model are symmetric – the Gaussian model tends to

underestimate load, reflected in the number of positive errors
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Fig. 7. Forecast and actual aggregated load comparison for the ARIMA,
neural network and Gaussian load profile.

Fig. 8. Ensemble forecast and actual aggregated load comparison.

TABLE II
COMPARISON OF MODEL COMPUTATION TIME

in the histogram. The Neural Network overestimates with

a pronouncedly reduced tendency for extreme underestimates.

Clearly, as with more predictable demands, different mod-

els have different strengths and weaknesses according to the

dynamics exhibited at a given time or day. Emphasizing this,

Fig. 7 shows a four day time series comparison of three of

the four models showing the diversity of the forecasts. This

apparent lack of correlation between errors motivates the use

of an ensemble forecasting approach [3], [27]: even the simple

average of forecasts will provide a more accurate forecast than

any one forecast on its own. Fig. 8 and Table I demonstrate

the superior performance of ensemble forecasts comprising the

ARIMA model (AR), the Gaussian Load Profile model (G),

the Neural Network (N) and the Persistent forecast.

Table I shows that this forecast is superior in most respects

to its constituent forecast models although in the adjusted

4-norm it offers marginal advantages over the next best model,

the Gaussian Load Profile on its own. Employing these mod-

els in practice may require scalability or reduced computing

power (forecasting on the meter, a data concentrator or on

a substation computer). Accordingly, Table II shows the corre-

sponding computational effort required to make a forecast. The

pre-trained ARIMA model, while a superior performer, takes

significantly longer to forecast for the cohort of 123 premises

than any other model. The Gaussian load profile and the Neural

Network are roughly equivalent in terms of order of magnitude

although the performance of the former model is superior. The

flat and persistent forecasts are low computational effort, with

the persistent forecast offering performance almost equivalent

to that of the Neural Network at lower computational expense.

VII. CONCLUSION

This paper has demonstrated several methods for forecasting

residential electrical demand for small power systems which

could allow more reliable scheduling of embedded generation

permitting grid independence. Electrical networks that would

benefit from progressively higher accuracy electrical demand

predictions may be privately owned and with either network

reinforcement constraints, community aspirations for sustain-

ability or the desire to operate as an islanded power system.

Although a challenging problem domain, without the support-

ing historical data that may accompany larger scale systems,

it has indicated there are several algorithmic improvements

for demand forecasting at the distribution and domestic LV

networks that could be investigated to improve forecasting

performance. As with HV/MV level forecasts, ARIMA mod-

els continued to offer high levels of forecasting accuracy

albeit at higher computational expense. The Gaussian-Markov

approach proposed here has been demonstrated to provide

almost equivalent levels of accuracy to the ARIMA model but

at lower computational expense, indicating that an on-meter

solution could be a viable means of practical deployment. An

ideal model would see the intra-day load profile characteristic

encoding incorporated into the Gaussian model in a ‘switch-

ing’ type autoregressive model [28]. As more extensive and

complete data sets become available, the day to day relation-

ship between load profiles could be encoded as more complex

mover-stayer [29] type models [30]. The diversity of forecast-

ing techniques used motivated the investigation of an ensemble

forecast using the models demonstrated – on the small data set

presented this offered a significant reduction in both MAE and

MAPE – if computation effort was no object, this solution

would offer the highest accuracy. Further investigation in this

field would be in the choice of constituent forecasts as well

as the means of aggregating them – significant performance

increase was attained through simple averaging but this could

be further improved by weighting model outputs according to

their time of day or day of week specialization.
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