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ABSTRACT  

 

 This study presents the ordinary state-based peridynamic constitutive relations for plastic 

deformation based on von Mises yield criteria with isotropic hardening. The peridynamic force 

density-stretch relations concerning elastic deformation are augmented with increments of force 

density and stretch for plastic deformation. The expressions for the yield function and the rule of 

incremental plastic stretch are derived in terms of the horizon, force density, shear modulus, and 

hardening parameter of the material. The yield surface is constructed based on the relationship 

between the effective stress and equivalent plastic stretch. The validity of peridynamic predictions 

is established by considering benchmark solutions concerning a plate under tension, a plate with a 

hole and a crack also under tension. 

 

Keywords: peridynamics, plasticity, isotropic, hardening, failure 

 

 

1  Introduction 

 Structural metals exhibit plastic deformation when loaded beyond their elastic limit. In the 

absence of cracks, their behavior is well understood from a computational point of view within the 

classical continuum mechanics. Fracture of such components is often preceded by an extensive 

plastic deformation. The traditional approaches to predict failure usually employ concepts from 

linear elastic fracture mechanics (LEFM), which is conceptually limited to materials exhibiting 

brittle behavior. Therefore, the applicability of fracture toughness as defined by LEFM becomes 

questionable in the presence of plastic deformation. Furthermore, the assumption of a sharp crack 

tip in LEFM may no longer be valid due to the presence of plastic deformation. Also, unlike elastic 

fracture, ductile fracture is inherently a path-dependent process involving irreversible energy 

dissipation by yielding and fracturing of materials.  

 Peridynamics (PD), introduced by Silling (2000), is a reformulation of the classical continuum 

mechanics equations that introduces an internal length scale that is lacking in the classical form of 

the equations. Peridynamics is based on integro-differential equations as opposed to the partial 

differential equations of classical continuum mechanics. It is extremely suitable for failure analysis 

of structures because it allows cracks to grow naturally without resorting to external crack growth 

laws. An extensive literature survey on peridynamics is given by Madenci and Oterkus (2014). 

Peridynamics is not limited to linear elastic material behavior. As part of "nonordinary" state-based 

peridynamics, Taylor (2008) and Foster et al. (2010) considered viscoplastic material behavior.  

Also, Foster et al. (2011) proposed critical energy density as an alternative critical parameter for 

such material behavior.  However, “nonordinary” state-based models employ constitutive relations 
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that are non-native to PD theory.  It is prone to oscillations in the regions of steep gradients such 

as the crack tip.  The source of such oscillations is due to the inadequate approximation in the force 

density vector.  Breitenfeld et al. (2014) presented various non-mathematical techniques to reduce 

these oscillations.  Free of such oscillations, Mitchell (2011) presented an ordinary state-based PD 

model for ideal plastic deformation of materials in the absence of crack propagation. 

 This study presents an ordinary state-based PD plasticity model in accordance with von Mises 

yield criteria and isotropic hardening. Also, it presents a peridynamic J-integral based damage 

criteria to predict crack propagation.  Furthermore, it includes an innovative approach to impose 

nonlocal boundary conditions.  The peridynamic predictions concern equivalent plastic stretch and 

effective stress in a plate with a hole and a crack along with J-integral calculations.  

 

 

2. Peridynamic equation of motion 

 

 The peridynamic equation of motion introduced by Silling (2000) and later generalized by 

Silling et al. (2007) is a nonlinear integro-differential equation in time and space in the form 

 

           , , , , , ,
H

t t t dH t           x u x t u u x x t u u x x b x , (1a) 

 

which can be discretized as  

 

    ( ) ( ) ( )( ) ( ) ( ) ( ) ( ) ( )( ) ( ) ( ) ( ) ( ) ( ) ( )

1

, , , ,
N

k k k j j k j k j k k j k j j k

j

t t V


        u t u u x x t u u x x b  , (1b)

  

in which each material point is identified by its coordinates, ( )kx , and is associated with an 

incremental volume, ( )kV , and a mass density, ( )( ).k x   With respect to a Cartesian coordinate 

system, the material point ( )kx  experiences displacement, ( )ku , and its location is described by the 

position vector ( )ky  in the deformed state. The displacement and body load vectors at material 

point ( )kx  are represented by ( ) ( )( , )k k tu x  and ( ) ( )( , )k k tb x , respectively. The family of material 

point ( )kx  is denoted by 
( )k

Hx , shown in Fig. 1. Similarly, material point ( )jx  interacts with 

material points in its own family, 
( )j

Hx .  

 As illustrated in Fig. 2, the material point ( )kx  interacts with its family of material points, 

( )k
Hx , and it is influenced by the collective deformation of all these material points, thus resulting 

in a force density vector, ( )( ) ,k jt  acting at material point ( )kx . It can be viewed as the force exerted 

by material point ( )jx . Similarly, material point ( )jx  is influenced by deformation of the material 

points, 
( )j

Hx , in its own family. 

 The integrand in Eq. (1a) does not contain any spatial derivatives of displacements. Thus, it 

is valid everywhere whether or not displacement discontinuities exist in the material. The region 

H  defining the range of material point x   is specified by  ,   referred to as the “horizon.” Also, 
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the material points within a distance   of x  are called the family of x , H x . The locality of 

interactions depends on the horizon, and the interactions become more local with a decreasing 

horizon, .  Hence, the classical theory of elasticity can be considered a limiting case of the 

peridynamic theory as the horizon approaches zero (Silling and Lehoucq, 2008).  

 

 
 

Fig. 1. Peridynamic material points and interaction of points at ( )kx   and ( )jx . 

  

 

 
 

Fig. 2. Peridynamic material points x  and x'  influenced by the collective deformation of others 

in their families.  

 

 

3. Peridynamic strain energy density 

 

 For an elastic and isotropic material, the PD strain energy density in terms of deformation at 

a material point ( )kx   can be expressed as (Madenci and Oterkus, 2014) 
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 ( ) ( ) ( )k k kW W W   , (2a) 

 

where 

 

 
2

( ) ( )k kW a
   (2b) 

 

and  

 

  2
2

( ) ( )( ) ( ) ( ) ( ) ( ) ( ) ( )

1

N

k k j j k j k j k

j

W b w V a




 
     
 
 y y x x  , (2c) 

 

with ( )kW 
 and ( )kW 

 representing the dilatational and distortional parts of the strain energy density 

and ,a   ,a  ,b  and d the material parameters. The dilatation ( )k  can be expressed in discrete 

form as 

 

  ( ) ( )( ) ( ) ( ) ( ) ( ) ( )( ) ( )

1

N

k k j j k j k k j j

j

d w V


     y y x x  , (3a) 

 

with 

 

 
( ) ( ) ( ) ( )

( )( )

( ) ( ) ( ) ( )

j k j k

k j

j k j k

 
  

 

y y x x

y y x x
 . (3b) 

 

Madenci and Oterkus (2014) gave, the influence function, ( )( )k jw , in the form 

 

 
( )( )

( ) ( )

k j

j k

w



x x

 . (4) 

 

They also determined the peridynamic parameters ,a  ,a  ,b  and d in terms of engineering 

material constants by considering two simple loading conditions: isotropic expansion and simple 

shear. Their specific expressions are given as  

 

 
1

2
a  , 

5

6
a


 , 

5

15

2
b


 

 , and 
4

9

4
d

 
   for (3-D), (5a) 

 

 a  , 2a  , 
4

6
b

h


 

 , and 
3

2
d

h 
   for (2-D), (5b) 

 

 0a  , 0a  , 
32

E
b

A
 ,  and 

2

1

2
d

A
   for (1-D), (5c) 
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with   and   representing the bulk modulus and shear modulus of the material. The parameters 

h  and A  represent the thickness and cross-sectional area of the structure, respectively. A 

parameter a , serving as coefficient of the dilatation term, can be defined as a a a   . If 

dilatation is not distinguished as in the case of bond-based peridynamics, the parameter a  reveals 

the constraint condition on the Poisson’s ratio associated with the bond-based peridynamics as 

5 / 3   or 1/ 4   and 2   or 1/ 3  .  

 The values of these parameters depend on the horizon size, and the dimension of the analysis. 

It is worth noting that the PD material parameters are determined for material points whose 

horizons are completely embedded in the material. In other words, they are only valid for a material 

point whose horizon is not truncated due to the presence of a boundary surface. Otherwise, they 

need to be corrected in order to account for the loss of family members within the horizon, as 

explained in Appendix A. 

 

 

4. Force density-stretch relations for elastic deformation 

 

 As derived by Madenci and Oterkus (2014), with this representation of the strain energy 

density, the force density vector, ( )( )k jt , at material point ( )kx  can be obtained from 

 

    
( ) ( )( )

( )( ) ( ) ( ) ( ) ( )

( ) ( ) ( )( ) ( )

1
, ,

j kk

k j j k j k

j j kj k

W
t

V


  

 

y y
t u u x x

y yy y
, (6a) 

 

which leads to the force density vector in the form 

 

 
( ) ( )

( )( ) ( )( )

( ) ( )

j k

k j k j

j k

t





y y
t

y y
, (6b) 

 

where 

 

   ( )( )

( )( ) ( ) ( )( )

( ) ( )

2 2
k j

k j k k j

j k

t a a d bs    


  
x x

. (6c) 

 

The stretch, ( )( )k js , between material points ( )kx  and ( )jx  is defined as 

 

 
( ) ( ) ( ) ( )

( )( )

( ) ( )

j k j k

k j

j k

s
  




y y x x

x x
. (7) 

 

The force density vector can be decomposed into its dilatational and distortional parts as 

 

 ( )( ) ( )( ) ( )( )k j k j k j

  t t t , (8a) 
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where 

 

 
( ) ( )

( )( ) ( )( ) ( )

( ) ( ) ( ) ( )

2 j k

k j k j k

j k j k

a d  


 
 

y y
t

x x y y
 (8b) 

 

and 

 

 
( ) ( )

( )( ) ( )( ) ( )( ) ( )

( ) ( ) ( ) ( )

2
2

j k

k j k j k j k

j k j k

a d
bs

 
 

 
   

   

y y
t

x x y y
. (8c) 

 

 

 By using Eqs. (8b) and (8c), the dilatation, ( )k , and stretch, ( )( )k js , can be expressed in terms 

of force density as 

 

 
( ) ( )

( ) ( )( )

( )( )2

j k

k k j

k j

t
a d













x x
 (9a) 

 

and 

 

 
( )( )

( )( )

( )( ) ( )

( ) ( )

1

2 k j

k j

k j k

j k

d
s t a

b b


 



         x x
. (9b) 

 

The total stretch can also be decomposed into its dilatational and distortional parts as 

 

 ( )( ) ( )( ) ( )( )k j k j k js s s   , (10) 

 

where 

 

 
( )( )( )( )

1

2 k jk js t
b

 


     (11b) 

 

and 

 

 
( )( )

( )( ) ( )

( ) ( )

k j

k j k

j k

a d
s

b

 
 

  
  x x

. (11b) 

 

Substituting for the influence function ( )( )k jw  from Eq. (4) and rearranging terms in Eq. (2c), the 

distortional part of the strain energy density expression can be rewritten in terms of stretch as  
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 2 2

( ) ( )( ) ( ) ( ) ( ) ( )

1

N

k k j j k j k

j

W b s V a
 



   x x . (12) 

 

Similarly, substituting for the stretch ( )( )k js  from Eq. (9b), this equation can be expressed in terms 

of force densities as 

 

 
( )( )

2

( )( ) 2

( ) ( ) ( ) ( ) ( ) ( )

1 ( ) ( )

1

2 k j

N
k j

k k j k j k

j j k

d
W b t a V a

b b

 
   



 
    

  
 x x

x x
. (13) 

 

 

5. Peridynamic theory for plastic deformations 

 

 If a body experiences plastic deformation, the stretch depends not only on the final force 

density vector, but also on the loading history. Because the plastic deformation is an irreversible 

process, it can only be described by introducing response functions. This ensures irreversibility 

since a history cannot be reversed. The parameters describing the plastic deformations are 

effectively time dependent, and they increase continuously. Furthermore, the force density-stretch 

relations concerning elastic deformation must be replaced by increments of force density and 

stretch for plastic deformation. 

 

5.1.  Incremental stretch and yield function 

 

 For an increment of applied load, the corresponding increment of force density is ( )( )k jt , and 

the increment of stretch is ( )( )k js . The incremental stretch, ( )( )k js , can be decomposed as  

 

 ( )( ) ( )( ) ( )( )

e p

k j k j k js s s    , (14) 

 

in which ( )( )

e

k js  and ( )( )

p

k js  represent the incremental elastic and plastic stretches between the 

material points.  

 With this decomposition, the incremental dilatation can be decomposed into elastic, 
 

and plastic, ( )

p

k , parts in the form  

 

 ( ) ( ) ( )

e p

k k k      , (15a) 

 

in which 

 

 ( ) ( )( ) ( )( ) ( )

1

N
e e

k k j k j j

j

d s V 


     (15b) 

 

and 

( ) ,
e

k
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 ( ) 0p

k   (15c) 

 

under the assumption of zero dilatation due to plastic deformation.  

 If ( )( )

p

k js  represents the rate of plastic stretch at each instant of time, t , then the increment of 

plastic stretch in the time interval t  becomes ( )( ) ( )( )

p p

k j k js s t   . The total plastic stretch after 

each successive yielding, ( )( )

p

k js , is the summation of the rate of plastic stretch as 

 

 ( )( ) ( )( ) ( )( )
0

( 0) ( )
t

p p p

k j k j k js s t s t dt    . (16) 

 

Under the assumption of yielding commencing when the distortional component of strain energy 

density, Eq. (13), reaches the strain energy due to the uniaxial tensile stress, Y , the initial yield 

condition can be stated as 

 

 
( )6Y kW   , (17) 

 

in which Y  represents the initial yield stress of the material. 

 Substituting for the distortional part of the strain energy from (12), the yield condition can be 

rewritten as  

 

 
2

2 2

( )( ) ( ) ( ) ( ) ( )

1 6

N
Y

k j j k j k

j

b s V a
 


   x x , (18) 

 

Thus, the yield function with strain hardening can be expressed as  

 

 ( ) ( ) ( )( )p

k k kF W G s  , (19) 

 

where ( )( )p

kG s  represents the final state of strain hardening, and its value may vary from point to 

point throughout the body.  Its form depends on the strain hardening model.  For a linear isotropic 

strain hardening model, it can be defined as 

 

 
 2

( )

( )( )
6

p

Y kp

k

K s
G s





 , (20) 

 

in which ( )

p

ks  and K  represent the equivalent plastic stretch and tangent modulus of the material, 

respectively. 
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5.2. Strain hardening and flow rule 

 

 Provided that ( ) ( )( )( ) 0k k jF t  , concerning an increment of force density, ( )( )k jt , the rate of 

change of the yield function and its value dictates loading, neutral, and unloading states. Thus, 

unloading occurs for  

 

 
( ) ( )

( ) ( )( ) ( )( )

1 ( )( ) ( )( )

1
0

4

N
k k

k k j j k

j k j j k

F F
F t t

t t

  
        

 . (21a) 

 

Otherwise, loading occurs if 

 

 
( ) ( )

( ) ( )( ) ( )( )

1 ( )( ) ( )( )

1
0

4

N
k k

k k j j k

j k j j k

F F
F t t

t t

  
        

 , (21b) 

 

or neutral loading occurs if 

 

 
( ) ( )

( ) ( )( ) ( )( )

1 ( )( ) ( )( )

1
0

4

N
k k

k k j j k

j k j j k

F F
F t t

t t

  
        

 . (21c) 

 

For the state of unloading, there is no change in plastic deformation, i.e., 

 

 
( )( )

( )( ) 0

p

k j p

k j

ds
s

dt
  . (22) 

 

In the case of ideal plastic deformation without strain hardening, the yield function, ( )kF , is not 

affected by ( )( )

p

k js , thus it is always neutral during loading from a plastic state. 

 The strain energy density increment in the transfer from the plastic state of ( )( )k jt  and ( )( )k js  to 

another plastic state of ( )( ) ( )( )k j k jt t  and ( )( ) ( )( )k j k js s  can be expressed as 

 

 ( ) ( ) ( )

e p

k k kW W W     , (23) 

 

where 

 

      ( ) ( )( ) ( )( ) ( )( )

1

1

4

e e e

k k j j k j kk j j

j

W t s t s V




        (24a) 

 

and 
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      ( ) ( )( ) ( )( ) ( )( )

1

1

4

p p p

k k j j k j kk j j

j

W t s t s V




      . (24b) 

 

According to Drucker (1951), ( ) 0p

kW   represents strain hardening and ( ) 0p

kW   represents 

ideal plastic deformation without strain hardening. For ideal plastic deformation, Eqs. (21c) and 

(24b) can be rewritten in a slightly different form as 

 

 
( ) ( )

( ) ( )( ) ( )( )

1 ( )( ) ( )( )

1
0

4

N
k k

k k j j k

j k j j k

F F
F t t

t t

  
        

 , (25a) 

 

or 

 

( ) ( )

( )(1) (1)( )( )(1) (1)( )

( )

( )( ) ( )( )( ) ( )

( )( ) ( )( )

. .. .
1

. .. .
4

. .. .

k k

k kk k

k

k N N kk k

k N N k

F F

t tt t

F

t tF F

t t

      
                                     
       
       

             
         

0












, (25b) 

 

and 

 

      ( ) ( )( ) ( )( ) ( )( )

1

1
0

4

p p p

k k j j k j kk j j

j

W t s t s V




       , (25c) 

 

or 

 

( )(1) (1)( )( )(1) (1) (1)( ) (1)

( )

( )( ) ( )( )( )( ) ( ) ( )( ) ( )

. .. .
1

. . 0. .
4

. .. .

p p
k kk k

p

k

p p
k N N kk N N N k N

t ts V s V

W

t ts V s V

         
       
                                                           

. (25d) 

 

Note that the dot products of the vectors concerning the yield function and stretch with the vector 

of incremental tractions in Eq. (25b) and (25d) vanish.  It is observed that these vectors concerning 

the yield function and stretch must be parallel to each other.  Therefore, the following relation can 

be obtained: 
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( )

( )(1)( )(1) (1)

( )

( )( ) ( ) ( )

( )( )

. .

. .

. .

k

p
kk

k

p

k N N k

k N

F

ts V

C

s V F

t

 
               

   
   
     

  

 (26a) 

 

and 

 

 

( )

(1)( )(1)(k) (1)

( )

( )( ) ( ) ( )

( )( )

. .

. .

. .

k

p
k

k

p

N k N k

N k

F

ts V

C

s V F

t

 
               

   
   
     

  

. (26b) 

 

For each interaction between material points ( )kx  and ( )jx , this relationship can be recast as  

 

 
( )

( )( ) ( )

( ) ( )( )

1 kp

k j k

j k j

F
s C

V t


 


, (27a) 

 

or 

 

 
( )

( )( ) ( )

( ) ( )( )

1 kp

k j k

j k j

F
s C

V t


 


. (27b) 

 

Substituting for the yield function, ( )kF , and performing the necessary algebraic manipulations 

result in the expression for the incremental plastic stretch as 

 

 
( )( )( )( ) ( ) ( ) ( ) ( )( ) ( )

1
1

2 k j

p

k j k j k k j k

d a
s C t a

b b a









 
           

x x , (28) 

 

where ( )kC  is a positive proportionality constant. This expression provides the rule for incremental 

plastic stretch, and serves as the normality condition.  
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5.3. Equivalent stress-equivalent plastic stretch 

 

 The relationship given by Eq. (17) describes the yield surface for the loading path of uniaxial 

loading only. If the loading path is different than that of uniaxial loading, the yield surface is 

constructed based on the concept of equivalent stress and equivalent plastic stretch. The equivalent 

stress can be defined as 

 

  ( ) ( ) ( )( )6e k k k jW s   , (29a) 

 

or 

 

 

1/2

2 2

( ) ( )( ) ( ) ( ) ( ) ( )

1

6
N

e k k j j k j k

j

b s V a   


 
   

 
 x x . (29b) 

 

An equivalent plastic stretch increment, ( )

p

ks , can be defined as  

 

  ( ) 0 ( ) ( )( )

p p

k k k js A W s   , (30) 

 

in which ( ) ( )( )( )p

k k jW s   represents the distortional part of the strain energy density due to the 

incremental plastic stretch, ( )( )

p

k js . As described in Appendix B, the parameter 0A  is determined 

in such a way that ( )

p

ks  recovers the incremental plastic stretch due to uniaxial tension. According 

to the dimension of the analysis, it can be determined as  

 

 0 3

1
A

Ab
  for (1-D), (31a) 

 

 
0 4

3
A

bh 
  for (2-D), (31b) 

 

 0 5

5
A

b 
  for (3-D). (31c) 

 

After substituting for ( ) ( )( )( )p

k k jW s   from Eq.(12) and invoking ( ) 0p

k  , the equivalent plastic 

stretch increment can be expressed as  

 

  2

( ) 0 ( )( ) ( ) ( ) ( )

1

N
p p

k k j j k j

j

s A b s V


    x x . (32) 
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6. Imposition of boundary conditions 

 

 The constraint conditions are, in general, not necessary for the solution of an integro-

differential equation because the PD equations of motion do not contain any spatial derivatives. 

Unlike the local theory, the boundary conditions are imposed through a nonzero volume of 

fictitious boundary layers. Based on numerical experiments, Macek and Silling (2007) suggested 

that the extent of the fictitious boundary layer be equal to the horizon,  , in order to ensure that 

the imposed prescribed constraints are accurately reflected in the real domain. 

 The displacement boundary conditions can be imposed by assigning constraints to the material 

points in the fictitious layer in such a way that the condition is satisfied explicitly on the boundary 

surface. Therefore, the value of the displacement in the fictitious layer is approximated based on 

the linear extrapolation of the values in the real domain and the specified value of the boundary 

condition. Similarly, the traction boundary conditions can be enforced by approximating the value 

of the traction in the fictitious region, so that the variation of the traction in both the real domain 

and the fictitious layer recovers the applied traction on the boundary surface. However, in the case 

of zero traction, it is not necessary to employ a fictitious layer. Hence, it can be satisfied in a natural 

way without enforcing any specific constraints. 

 

6.1.  Displacement constraints 

 

 In the case of a two-dimensional analysis, the displacement constraints concern the imposition 

of a prescribed value of the displacement components, *U  and *V , on the boundary. This type of 

boundary condition can be achieved through a fictitious region, fR . Therefore, a fictitious 

boundary layer with depth  is introduced along the boundary of the actual material region, R , 

as shown in Fig. 3.  

 The prescribed boundary value of the displacements *U  and *V  in the -x  and -y directions 

can be imposed through a layer of the fictitious region, fR , along the boundary of the material 

surface, S , as 

 

 
* * *( , , ) 2 ( , , ) ( , , )f f fx y t t U x y t t x y t   u u  , (33a) 

 
* * *( , , ) 2 ( , , ) ( , , )f f fx y t t V x y t t x y t   v v  , (33b) 

 

which represent the clamped boundary conditions for the prescribed values of * * 0U V   (Fig. 

3b).  

 If only the displacement constraint *U  is applied (i.e., no displacement constraint in the other 

direction), the boundary conditions can be imposed as 

 

 
* * *( , , ) 2 ( , , ) ( , , )f f fx y t t U x y t t x y t   u u  , (34a) 

 ( , , ) ( , , )f f fx y t t x y t v v  , (34b) 

 

which represents the roller support boundary conditions for the prescribed value, * 0U  , (Fig. 4).  
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(a)                                                        (b) 

 

Fig. 3. Imposing boundary condition on displacement components: (a) constant displacement 

components 
* * *( , , )x y t Uu  and 

* * *( , , )x y t Vv ; (b) zero displacement components 
* * *( , , ) 0x y t U u  and 

* * *( , , ) 0x y t V v . 

 

 
  (a) (b) 

 

Fig. 4. Imposing boundary condition on displacement components: (a) fixed in the normal 

direction * 0U  ; (b) free to move in the tangent direction . 

 

 

6.2. Traction boundary conditions  

 

 Similar to the essential boundary conditions, the traction boundary conditions can be imposed 

through a fictitious region, fR . On the boundary with a unit normal xn e , the applied stresses, 
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0  and 0 , normal and tangent to the boundary can be enforced by assigning the following 

displacement values in the fictitious region: 

 

 
   

21 ( , , ) ( , , )
( , , ) ( , , )

o

f f f f

x y t x y t
x y t t x x x y t

E y y

 


 

 

  
     

  

v v
u u , (35a) 

 
   2 1 ( , , ) ( , , )

( , , ) ( , , )o

f f f f

x y t x y t
x y t t x x x y t

E y y

   

 

 
      

u u
v v , (35b) 

 

in which ( , )x y  are the coordinates of a material point in the real boundary layer, R . As shown in 

Fig. 5a, the locations of material points above and below this point are denoted by ( , )x y
 and 

( , )x y
, respectively. 

 On the boundary with a unit normal yn e , the applied stresses, 0  and 0 , normal and 

tangent to the boundary can be enforced in the fictitious region as 

 

 
   2 1 ( , , ) ( , , )

( , , ) ( , , )o

f f f f

x y t x y t
x y t t y y x y t

E x x

   

 

 
      

v v
u u , (36a) 

 
   

21 ( , , ) ( , , )
( , , ) ( , , )

o

f f f f

x y t x y t
x y t t y y x y t

E x x

 


 

 

  
     

  

u u
v v . (36b) 

 

As shown in Fig. 5b, the locations of the material points on the left and on the right of this point 

are denoted by ( , )x y
 and ( , )x y

, respectively. Note this procedure is only applicable if the 

boundary region is elastic. If both normal and tangential stress components are zero along the 

boundary, a fictitious region is not necessary as they are satisfied in a natural way. The robustness 

of this approach is demonstrated in Appendix C. Alternative to this approach is the representation 

of the applied traction in the form of a body force, and invoking it into the equation of motion as 

described by Madenci and Oterkus (2014). 

 

7. Failure prediction 

 

 A failure process is included in the analysis by monitoring the interaction between two 

material points, x  and x . Their interaction can be terminated based on a particular criteria; thus, 

leading to the removal of their peridynamic force from the equations of motion by introducing the 

function  ,t x x  as 
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  (a) (b) 

 

Fig. 5. Fictitious region along the boundary with a unit normal xn e  (a) and yn e  (b).  

 

 

             , , , , , , ,
H

t t t t dH t              x u x x x t u u x x t u u x x b x , (37) 

 

where 

 

  
1 if interaction exists,

,
0 if no interaction.

t
  


x x  (38) 

 

 For the case of elastic deformation, Silling (2000) introduced a criteria based on the critical 

stretch value.  According to his criteria, the interaction between two material points, ( )kx  and ( )jx

, is terminated once the stretch between them, ( )( )k js , reaches its critical value, cs . Thus, the 

peridynamic force density between these material points vanishes and the critical stretch can be 

related to critical energy release rate, cG , of the material (Silling and Askari, 2005; Madenci and 

Oterkus, 2014) as  

 

 

4

2

     three dimensions,
3 5

3
4 3

    two dimensions.
6 16

( 2 )
9

c

c

c

G

s

G

  

   
 


                  

    
  

 (39) 

 

 



17 

 

 For the case of plastic deformation, the force density between two material points, ( )kx  and 

( )jx , exhibits a nonlinear behavior, as shown in Fig. 6. The area under this curve represents the 

elastic-plastic micropotential, ( )( )k jw , reflecting the degree of plastic deformation. It can be 

determined as 

 

 

 ( )

( )( ) ( )( ) ( )( )

0

k js

k j k j j k k jt ds  x xw . (40) 

 

 
 

Fig. 6. Constitutive relation between material points . 

 

 In order to create a new crack surface, A , all of the micropotentials between the material 

points 
( )k

x  and 
( )j

x  whose line of action crosses this new surface must be terminated (Fig. 7). 

The material points 
( )k

x  and 
( )j

x  are located above and below the new crack surface, 

respectively. The number of material points within the family of 
( )k

x  below the crack surface and 

intersecting with the crack is denoted by K  . Similarly, J   represents the number of material 

points above the crack surface within the family of 
( )j

x  and intersecting with the crack.  
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Fig. 7. Interaction across a crack surface between material points 
( )k

x  and 
( )j

x . 

 

 The strain energy required to remove the interaction between two material points, 
( )k

x  and 

( )j
x , can be expressed as  

 

 
( )( ) ( )( )

( )( ) ( ) ( )

1

2 2

k j j k

k j k j
W V V

   

   




w w
. (41) 

 

Furthermore, the total strain energy required to remove all of the interactions across the crack 

surface A  can be obtained as  

 

 
( )( ) ( ) ( ) ( )( ) ( ) ( )

1 1 1 1

1 1 1 1

2 2 2 2

K J K J

k j k j j k j k
k j k j

W V V V V

   

       

   

    w w , (42) 

 

for which the line of interaction defined by 
( ) ( )

| |
k j x x  and the crack surface intersect, and K  

indicates the number of material points above and J  the number below the crack surface within 

the families of 
( )k

x  and 
( )j

x , respectively. If this line of interaction and crack surface intersect at 

the crack tip, only half of the critical micropotential is considered in the summation. This 

expression can be simplified as  

 

  ( )( ) ( )( ) ( ) ( )
1 1

1 1

2 2

K J

k j j k k j
k j

W V V

 

     

 

  w w . (43) 

 

Substituting for micropotentials given by Eq. (40) in Eq. (43) results in the strain energy required 

to eliminate all of the interactions across the unit crack surface, A h x  , with x  representing 

the spacing between the material points and h  the thickness.  
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 The total work, W , required to eliminate all interactions across this new surface can be related 

to the value J-integral, J  (nonlinear energy release rate) (Rice, 1968; Begley and Landes, 1972) 

as  

 

  ( )( ) ( )( )
1 1

1 1

2 2

K J

k j j k
k j

J J

 

   

 

  J ,  (44a) 

 

where  

 

 
 

 

( )( ) ( )( ) ( ) ( )

( )( ) ( )( ) ( ) ( )

1
,

1
.

k j k j k j

j k j k k j

J V V
x h

V V
x h

     

     







w

J w

 (44b) 

 

For a horizon size of 3 x   , the number of material points above and below the crack surfaces 

is 9K J   . The total number of interactions crossing the crack surface is 2 22 , and 2 10  

of these interactions intersect the crack at the tip, as shown in Fig. 8. The number of interactions 

creating a unit crack surface can be calculated as (2 22) (2 10) / 2 34cN      . The measured 

critical value, cJ , of the material defines the amount of energy required to remove all interactions, 

leading to 

 

  ( )( ) ( )( )
1 1

1 1

2 2

K J
c c

c k j j k
k j

J J

 

   

 

  J . (45) 

 

Peridynamics enables the simulation of damage propagation by progressively removing the 

interactions between materials points. In order to reflect this feature, the critical energy release 

rate, cJ , of a material point is distributed equally to each interaction at that material point (Hu et 

al., 2014). Note that the explicit determination of the critical stretch, cs , is not required in the 

numerical implementation of the peridynamic analysis. Under the assumption that 

( )( ) ( )( )

c c

k j j k
J    J , the failure criteria for each interaction can be expressed as  

 

 
( )( )

( )( )

1
k j

c

k j

J

J
 , (46) 

 

with 

 

 
( )( )

c c

k j
c

J
J

N
   . (47) 

A similar energy based failure criteria was used by Foster et al. (2011) as part of the non-ordinary 

state-based peridynamic analysis of a crack growth in a material that exhibits viscoplastic 

behavior. 
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As derived by Silling and Lehoucq (2010) and Hu et al. (2012), the PD J integral value around the 

crack tip can also be calculated as  

 

    1

( ) ( )\R(a)

1
( ) ; .

2
peri

R R a a

J W x a n dS hdA dA
x x 

             
  

u u
x t t , (48) 

 

where W  is the strain energy density, 1n is the outward unit normal, and dS  is the length increment 

around the contour,  . The integration path around the crack tip is defined by R . The region 

inside the integration path is ( )R a , and the region outside the integration path is ( ) \ ( )a R a , as 

shown in Fig. 9. 

 

 

Fig. 8. Interactions of material points above the crack surface interacting with the material points 

below the crack surface.  
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Fig. 9. Areas for peridynamic J-integral.  

 

 

 In discretized form, the J-integral can be expressed as 

 

   ( ) ( )

( ) ( ) ( )( ) ( )( ) ( ) ( )

1 1 1

1
.

2

left rightcontour
n nn

j k

peri i i x k j j k k j

i j k

J W n x hA A
x x  

  
        
 

u u
t t , (49) 

 

 

 

 

   

   

1 1 2 1 1 2 1 1 2

1

2 1 2 2 1 2 2 1 2

1

, , ,

2

, , ,

2

u x x u x x x u x x x

x x

x u x x u x x x u x x x

x x

      
                   
      

u
. (50) 

 

 Local damage, which defines the ratio of eliminated interactions to the total number of 

interactions associated with a material point within its horizon, can be calculated as (Silling and 

Askari, 2005) 

 

  
 ,

, 1 H

H

t dV

t
dV




 
  







x x

x x . (51) 

 

Local damage has a value between 0 and 1. No damage at that material point is denoted by 0 
, while 1   denotes that all the interactions are eliminated with the related material point. 

Moreover, 0.5   denotes that half of the interactions are eliminated with the related material 

point. 
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8.  Numerical analysis 

 

 The solution to the PD equation of motion requires spatial integration, which is performed by 

using a Gaussian integration (meshless) scheme. The domain is divided into a uniform grid, with 

material (integration or collocation) points associated with specific volumes. The time integration 

is achieved through an explicit scheme, in conjunction with the adaptive dynamic relaxation 

method described by Kilic and Madenci (2010).  The solution to the equation of motion while 

satisfying the flow rule requires an iterative technique. Therefore, the external load is applied in 

an incremental manner and the following steps are performed in order to achieve convergence. 

 

(1) At the [n+1] loading step, the stretch value is decomposed as 

 

 
[ 1] [ 1] [ 1]

( )( ) ( )( ) ( )( )

n e n p n

k j k j k js s s    , (52a) 

 

 or 

 

  [ 1] [ ] [ 1]

( )( ) ( )( ) ( )( )

n n n

k j k j k js s s    , (52b) 

 

 where  

 

  [ 1] [ 1] [ 1]

( )( ) ( )( ) ( )( )

n e n p n

k j k j k js s s      , (52c) 

 

 in which 
[ ]

( )( )

n

k js and 
[ 1]

( )( )

n

k js 
 are known; however, 

[ 1]

( )( )

e n

k js   and 
[ 1]

( )( )

p n

k js   are unknown. 

 

(2) Since  e[ 1] [ 1] p[ ] p[ 1]

( )( ) ( )( ) ( )( ) ( )( )

n n n n

k j k j k j k js s s s     , an initial guess is assumed as elastic with zero  plastic 

stretch increment, leading to 

 

  [ 1] [ 1] p[ ]

( )( )( ) ( )( ) ( )( )

e n n n

k j trial k j k js s s    with 
[ 1]

( )( ) 0p n

k js    (53) 

 

(3) The corresponding force density for each interaction is calculated as  

 

      [ 1] [ 1] [ 1]

( )( )( ) ( )( ) ( ) ( )( )( ) ( )( )( )

( ) ( )

2
2n e n e n

k j trial k j k k j trial k j trial

j k

d
t a a s b s 

       
x x

. (54) 

 

(4) The corresponding yield function from Eq. (19) and effective stress from Eq. (29) for each 

material point are calculated as  

 

    2 22
[ 1] [ 1] [ 1] [ ]

( )( ) ( )( )( ) ( ) ( ) ( ) ( )( ) ( )

1 ( ) ( )

( )
N

n e n e n p n

k trial k j trial j k j k trial k

j j k

F b s V a G s
   



   
 x x

x x
. (55a) 

 

and 
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    2 2 2
[ 1] [ 1] [ 1]

eff( )( ) ( )( )( ) ( ) ( ) ( ) ( )( )

1 ( ) ( )

6
N

n e n e n

k trial k j trial j k j k trial

j j k

b s V a
    




   

  
 x x

x x
. (55b) 

 

 (4a) If 
[ 1]

( )( ) 0n

k trialF   , the trial elastic stretch is correct; thus, 
[ 1] [ 1]

( )( ) ( )( )( )

e n e n

k j k j trials s  . 

 

 (4b) If 
[ 1]

( )( ) 0n

k trialF   , the trial elastic stretch is not correct; thus, 
[ 1]

( )( ) 0p n

k js    whose value is yet 

to be determined.  

 

Note that the magnitude of plastic stretch increment is dictated by ( )kC  as given by Eq. (28).  

Therefore, the elastic stretch increment is corrected as 

 

  e[ 1] [ 1] p[ ] p[ 1]

( )( ) ( )( ) ( )( ) ( )( )

n n n n

k j k j k j k js s s s     . (56a) 

 

or 

 

 
e[ 1] [ 1] p[ 1]

( )( ) ( )( )( ) ( )( )

n e n n

k j k j trial k js s s    . (56b) 

 

In accordance with Eq. (28), the yield function can be recast as 

 

    2 22
[ 1] e[ 1] [ 1] [n 1]

( ) ( )( ) ( ) ( ) ( ) ( ) ( )

1 ( ) ( )

( )
N

n n e n p

k k j j k j k k

j j k

F b s V a G s
    



   
 x x

x x
. (57a) 

or 

 

 

 

 

2 2
[ 1] [ 1] p[ 1]

( ) ( )( )( ) ( )( ) ( ) ( ) ( )

1 ( ) ( )

2

[ 1] p[ 1] [n] [n 1]

( )( )( ) ( )( ) ( )( ) ( ) ( ) ( )

1

           ( )

N
n e n n

k k j trial k j j k j

j j k

N
e n n p p

k j trial k j j k j k k

j

F b s s V

a d s s V G s s





  



  



  


 
     

 





x x
x x

. (57b) 

 

in which 
[ 1]

( )( )

p n

k js   and 
[n 1]

( )

p

ks   can be expressed as  

 

 
[ 1]

( )( ) ( ) ( )( )

p n

k j k k js C B  . (57c) 

 

and  

 

 
[n 1]

( ) ( ) 0 ( )

p

k k ks C A D  . (57d) 

 

with 
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    [ 1] [ 1]

( )( ) ( )( )( ) ( ) ( ) ( ) ( )( )( ) ( )( )

1
1

2

n e n

k j k j trial j k k k j trial k j

ad
B t a s

b b a









 
 

      
 

x x . (57e) 

 

and 

  2

( ) ( )( ) ( ) ( ) ( )

1

N

k k j j k j

j

D b B V


  x x . (57f) 

 

Therefore, the expression for yield function, 
[ 1]

( )

n

kF 
 can be rewritten as  

 

  [ 1] [ 1] [ 1] [n]

( ) ( ) ( ) ( )( )( ) ( ); ,n n e n p

k k k k j trial kF F C s s   . (58) 

 

in which ( )kC  is the only unknown.  Determination of ( )kC  which renders 
[ 1]

( ) 0n

kF    yields the 

magnitude of incremental plastic stretch, 
[ 1]

( )( )

p n

k js  .  The search for this ( )kC  is achieved iteratively 

through Newton Raphson method as 

 

 
 

( ) ( )

[ 1] [ 1] [n]

( ) ( ) ( )( )( ) ( )

( ) ( ) [ 1]

( )

( )

; ,

old
k k

n old e n p

k k k j trial knew old

k k n

k

k C C

F C s s
C C

dF

dC

 





  . (59) 

 

(5) The magnitude of the plastic stretch increment, ( )kC  is determined once convergence is 

achieved, and the plastic stretch increment is calculated by using Eq. (28) as 

 

  
( )( )

[ 1]

( )( ) ( ) ( ) ( ) ( ) ( )( )

1
1

2 k j

p n

k j k j k k k j

ad
s C t a

b b a










  

           
x x . (60) 

 

(6) The plastic and elastic stretch components can be determined as  

 

 
p[ 1] p[ ] p[ 1]

( )( ) ( )( ) ( )( )

n n n

k j k j k js s s   . (61a) 

 

and 

 
e[ 1] [ 1] p[ 1]

( )( ) ( )( ) ( )( )

n n n

k j k j k js s s    . (61b) 

 

(7) Go to step (1). 

 

 

9. Numerical results 

 

 An isotropic plate with and without defects in the form of a crack or a hole is considered in 

the generation of the numerical results. The square plate has an edge length of 1mL  . It has 
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Young’s modulus and Poisson’s ratio of 9113 10 PaE    and 0.342  , respectively. For a linear 

isotropic hardening behavior, its yield stress and tangent modulus are specified as 
810.17 10 Pay    and 

91.38 10 PatK   , respectively. Also, its mass density is specified as

34428kg/m  . 

 

9.1. A plate under loading and unloading 

 

 In order to demonstrate the validity of the present approach, the plate is subjected two loading 

paths. The first loading path involves only continuously increasing load beyond the yield stress. 

The second loading path involves loading, unloading, and loading again. The plate is on roller-

type supports along the left end, i.e., * 0U  , and is subjected to a displacement gradient of 

/i x   u  along the right end. During the first loading path, the applied displacement gradient 

increases linearly up to / 0.141i x    u , as shown in Fig. 10a. The applied displacement 

gradient for the second loading path, with 2 0.068i   , 1 0.0625i   , and 0.141i   is described 

in Fig. 10b. These boundary conditions are enforced as  

 

 

* * *( , , ) 2 ( 0, , ) ( , , )

( , , ) ( , , )

f f f

f f f

x y t t U x y t t x y t

x y t t x y t

    

 

u u

v v
 with ( 0) f f xx  R , (62a) 

 

 
 ( , , ) ( , , )

( , , ) ( , , )

f f f i f

f f f

x y t t x x x y t

x y t t x y t

   

 

u u

v v
 with ( ) f f x Lx  R . (62b) 

 

The plate thickness is specified as 0.01mh  . It is discretized with a uniform grid of 100 100  

material (integration) points.  

 

 
(a) (b) 

Fig. 10. Applied displacement gradients along the right edge of plate: (a) load path 1; (b) load 

path 2. 

 

 As shown in Fig. 11, the PD predictions captures linear isotropic hardening for increasing load 

after the initial yielding.  The PD prediction also captures the elastic unloading with a slope equal 
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to the Young’s modulus.  During reloading plastic deformation continues to occur once the stress 

reaches the stress level where the unloading starts earlier as shown in Fig. 12  

 

 
Fig 11. Variation of effective stress, ( )e k , as the total stretch increases at the center of the plate: 

loading only.  

 

 

 
Fig 12. Variation of effective stress, ( )e k , as the total stretch increases at the center of the plate: 

loading, unloading, and loading.  

 

9.2. Plate with a hole or a crack under tension 

 

 The plate has either a central hole or a crack. The hole diameter and the crack length are 

specified as 0.3 mD  . The plate is loaded symmetrically by applying displacement along the left 
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and right ends. The applied displacement is increased linearly up to 0.005i u , then decreased 

linearly to 0i u . These boundary conditions are enforced as  

 

 ( , , ) 2 ( , , )f f f ix y t t x y t  u u u  with ( 0) f f xx  R  , (63a) 

 

and 

 

( , , ) 2 ( , , )f f f ix y t t x y t  u u u  with ( ) f f x Lx  R  . (63b) 

 

The plate geometry is discretized with a uniform 400 400  integration points. The thickness of 

the plate is specified as 0.0025 mh  .  

 As expected, plastic deformation initiates in the regions of high stress concentrations. The size 

of the plastically deformed region expands as the loading increases. The variations of effective 

stress and equivalent plastic stretch for the case of the plate with a hole are presented in Figs. 13-

15. During loading, the size of the plastically deformed region becomes larger as observed in Figs. 

13 and 14. However, the plastically deformed region remains unchanged during unloading as 

shown in Fig.15.  The equivalent stretch distribution remains as a residual stretch.  Upon 

unloading, the deformed geometry of the plate shown in Fig. 16 clearly captures the permanent 

change in the hole boundary. 

 

 

  
  (a)  (b) 

 

Fig. 13. Variations of (a) equivalent stretch and (b) effective stress in a plate with a hole due to 

loading of 0.004i u .  
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  (a)  (b) 

 

Fig. 14. Variations of (a) equivalent stretch and (b) effective stress in a plate with a hole due to 

loading of 0.005i u .  

 

 
  (a)  (b) 

 

Fig. 15. Variations of (a) equivalent stretch and (b) effective stress in a plate with a hole due to 

loading of 0.005i u  and unloading to 0.004i u . 
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Fig. 16. PD predictions for change in hole shape due to applied loading conditions: Loading to (a) 

0.001i u ; (b) 0.002i u ; (c) 0.003i u ; (d) 0.004i u ; (e) 0.005i u ; First loading to 

0.005i u  and then unloading to (f) 0.004i u ; (g) 0.003i u ; (h) 0.002i u ; (i) 0.001i u  

(displacements are magnified by 20 for the deformed configurations) 

 

 The variations of effective stress and equivalent plastic stretch for the case of the plate with a 

crack are presented in Figs. 17-19. The shape of the plastically deformed region has the same 

expected characteristic shape. As the loading increases, the size of the plastically deformed region 

increases. Upon unloading, the deformed geometry of the crack boundary shown in Fig. 20 clearly 

experiences permanent deformation. Also, the PD J-integral values are calculated according to Hu 

et al. [2012], and J-values are presented for increasing load in Fig. 21.   

 

 
  (a)  (b) 

Fig. 17. Variations of (a) equivalent stretch and (b) effective stress in a plate with a crack due to 

loading of 0.004i u .  
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  (a)  (b) 

 

Fig. 18. Variations of (a) equivalent stretch and (b) effective stress in a plate with a crack due to 

loading of 0.005i u .  

 

 
(a) (b) 

Fig. 19. Variations of (a) equivalent stretch and (b) effective stress in a plate with a crack due to 

loading of 0.005i u  and unloading to 0.004i u . 
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Fig. 20. PD predictions for change in crack shape due to applied loading conditions: Loading to 

(a) 0.001i u ; (b) 0.002i u ; (c) 0.003i u ; (d) 0.004i u ; (e) 0.005i u ; First loading to 

0.005i u  and then unloading to (f) 0.004i u ; (g) 0.003i u ; (h) 0.002i u ; (i) 0.001i u  

(displacements are magnified by 20 for the deformed configurations) 

 

 
  

Fig. 21. Peridynamic J-integral values for increasing applied displacement 
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According to the criteria given by Eq. (46), the crack is also allowed to propagate as the applied 

displacement is increased linearly up to 0.004i u . The critical J-value for the material is specified 

as 73.4 10 N/mcJ   , i.e., 
6

( )( ) 1 10 N/mc

k jJ   . Figure 22 shows the effective stress variations as 

the crack grows due to the increase in applied displacement. As expected, PD predictions yield a 

self-similar crack growth pattern. Also, the petal-shape plastic region moves with the crack tip as 

the crack propagates.  

 

 
  (a) (b) (c) (d) 

 

Fig. 22 . Effective stress variation as the crack grows under applied displacement with respect to 

the deformed configuration (magnified by 20): (a) 0.0025i u ; (b) 0.003i u ; (c) 0.0035i u ; 

(d) 0.004i u  . 

 

 

10. Concluding remarks 

 

 This study presents the ordinary state-based peridynamic constitutive relations for plastic 

deformation based on von Mises yield criteria with isotropic hardening. Also, it presents a failure 

criteria based on the elastic-plastic micropotential of each interaction. The critical stretch critical 

energy release rate for each interaction is implicitly determined, and can vary depending on the 

degree of plastic deformation. The critical value to remove the interaction is related to the -cJ

value of the material. The validity of peridynamic predictions is established by considering 

benchmark solutions concerning a plate under tension, a plate with a hole and a crack under 

tension. 
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Appendix A 

 

 The correction of the material parameters is achieved by numerically integrating both 

dilatation and strain energy density at each material point inside the body for simple loading 

conditions and comparing them to their counterparts obtained from classical continuum 

mechanics. The correction factor can be calculated by considering simple loading conditions as 

suggested by Madenci and Oterkus (2014).  

 

 
 

Fig. A.1. Peridynamic plate subjected to uniaxial stretch in the -x direction.  

 

 For a two-dimensional analysis, the simple loading conditions are achieved by applying 

uniaxial stretch in the -x  and -y directions of the coordinate system, i.e., 0,xx   0a     

(shown in Fig. A.1) and 0,yy  0a    , respectively, with , ,x y   . This is achieved 

through the constant displacement gradient, *
/u     , with ,x y  . The displacement field at 

material point x resulting from this loading can be expressed as  

 

  
*

1 0 0T xu
x

x

 
   

u x , (A.1) 

and 

 

  
*

2 0 0
yT

u
y

y

      
u x , (A.2) 

 

in which the subscripts (1, 2) denote the -x  and -y directions of uniaxial stretch, respectively. Due 

to this displacement field, the corresponding PD dilatation term, ( )( )PD

m k x  with ( 1,2)m  , at 

material point ( )kx  can be obtained from Eq. (3a) as 

 

 ( ) ( )( ) ( )( ) ( )

1

( )
N

PD

m k k j k j j

j

d s V 


 x , (A.3)
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in which N  represents the number of material points inside the horizon of material point ( )kx . The 

corresponding dilatation based on classical continuum mechanics, ( )( )CM

m k x , is uniform 

throughout the domain and is determined as 

 

 ( )( )CM

m k x  . (A.4) 

 

The dilatation correction term can be defined as 

 

 
( )

( )

( )
( )( ) ( )( ) ( )

1

( )
 .

( )

CM

m k

m k NPD

m k
k j k j j

j

D

d s V

 
 



 


x

x
 (A.5)

 
 

 Due to these applied displacement fields, the PD strain energy density at material point
 ( )kx  

can be obtained from Eq. (2a) as  

 

    22

( ) ( ) ( ) ( ) ( ) ( ) ( )

1 ( ) ( )

1
( ) ( )

N
PD PD

m k m k j k j k j

j j k

W a b V 


   
x x y - y x x

x x
 (A.6) 

 

 

with ( 1,2)m   and a a a   .  With the corrected dilatation, this expression can be rewritten as 

results in  

 

  2
2

( ) ( ) ( ) ( ) ( ) ( )

1 ( ) ( )

1
( )

N
PD

m k j k j k j

j j k

W a b V 


   
x y - y x x

x x
. (A.7) 

 

Hence, the correction term can be defined as 

 

 
 
 

2 2
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( ) ( )

( ) 2 2
( ) ( )

( ) ( ) ( ) ( ) ( )

1 ( ) ( )

1
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1( )
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m k

m k NPD

m k
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j j k

E a
W a
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W a

b V

 
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 
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


 
  



x

x
y - y x x

x x

.

 

(A.8)

 
 

These corrections are valid only in the principle directions. The surface correction for any direction 

can be obtained by assuming a variation in the form of an ellipse, as explained in Madenci and 

Oterkus (2014).  

 With these expressions, a vector of correction factors for the integral terms in dilatation and 

strain energy density at material point ( )kx  can be written as 

 

    ( ) ( ) 1( ) 2( )( )( ) ( )( )( ) , ,
T T

d k k kx d k y d kg g D D g x , (A.9a) 
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    ( ) ( ) 1( ) 2( )( )( ) ( )( )( ) , ,
T T

b k k kx b k y b kg g S S g x . (A.9b) 

 

These correction factors are only valid in the x- and y-directions. However, they can be used as the 

principal values of an ellipse, as shown in Fig. A.2, in order to approximate the surface correction 

factor in any direction. Arising from a general loading condition, the correction factor for 

interaction between material points  k
x  and ( )jx , shown in Fig. A.2, can be obtained in the 

direction of their unit relative position vector, ( ) ( ) ( ) ( )) , }( / | | { T

j k j k x yn n  x x x xn . 

 

 
 

Fig. A.2. The ellipse for the surface corrections. 

 

 A vector of correction factors for the integrals in the dilatation and strain energy density 

expressions at material point  jx  can be similarly written as 

 

    ( )( ) ( ) ( )( ) ( )( ) 1( ) 2( )( ) , ,
T T

d j j x d j y d j j jg g D Dg x ,  (A.10a) 

 

    ( )( ) ( ) 1( ) 2( )( )( ) ( )( )( ) , ,
T T

b j j j jx b j y b jg g S Sg x . (A.10b) 

 

These correction factors are, in general, different at material points  k
x  and ( )jx . Therefore, the 

correction factor for an interaction between material points  k
x  and ( )jx  can be obtained by their 

mean values as  

 

   ( )( ) ( )( )

( )( )( ) ( )( )( )( )( )( ) ,  ,
2

T k j

x k j y k jk j g g
 

 



g g

g   (A.11) 

 

with , ,d b   which can be used as the principal values of an ellipse, as shown in Fig. A.2.  

 The intersection of the ellipsoid and a relative position vector, ( ) ( ) ( ) ( )) |( / |j k j k  x x x xn , 

of material points ( )kx  and ( )jx  provides the correction factors as  
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   1/2
2 2

( )( )( ) ( )( )( )( )( )( ) x x k j y y k jk j n g n gG  



       . (A.12) 

 

After considering the surface effects, the discrete forms of the dilatation and the strain energy 

density can be corrected as 

 

 ( ) ( )( )( ) ( )( ) ( )( ) ( )

1

N

k d k j k j k j j

j

d G s V 


  , (A.13a)

 
 

  2
2

( ) ( ) ( )( )( ) ( ) ( ) ( ) ( ) ( )

1 ( ) ( )

1
 .

N

k k b k j j k j k j

j j k

W a b G V 


    
 y y x x

x x
 (A.13b) 

 

Although this method enables the correction to material parameters due to the presence of a surface 

or an interface, it is still a numerical approximation.  

 

 

Appendix B 

 

 The parameter 0A  in Eq. (30) is determined in such a way that ( )

p

ks  recovers the incremental 

plastic stretch due to uniaxial tension. In three-dimensional analysis, the incremental plastic strains 

are ( )

p

xx k     and ( ) ( ) / 2p p

yy k zz k        (arising from zero dilatation due to plastic 

deformation) and ( ) ( ) ( ) 0p p p

xy k xz k yz k      under incremental uniaxial tensile loading. The 

distortional part of strain energy density due to this incremental plastic stretch,  , can be 

computed by evaluating  

 

    2

( ) ( )( ) ( )( ) ( ) ( ) ( ) ( ) ( )

1

N
p

k k j k j j k j k j

j

W ds b w V



    y y x x . (B.1) 

 

 In reference to the Cartesian and spherical coordinates, the relative position vector in the 

undeformed and deformed states between material points can be expressed as  

 

 ( ) ( )j k x y z        x x e e eri + j + k = + + , (B.2a) 

 

with 

 

 sin cos ; sin sin ; cosx y z              (B.2b) 

 

and 

 

 ( ) ( )j k x y z rA A A A     y y e e eri + A j + A k + + . (B.3) 
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The relative displacement vector between these points is 

 

          ( ) ( ) ( ) ( )j k j k x x y y z zA A A        y y x x i + j + k , (B.4a) 

 

or 

 

          ( ) ( ) ( ) ( )j k j k rA A A           y y x x e e er + + . (B.4b) 

 

Due to the deformation arising from incremental strains, the coefficients of the corresponding 

relative position vector can be expressed as  

 

 

 1

1
2

1
2

x

x

y y

z

z

A

A

A

 
 

 

 
    
        
    

       
  

. (B.5) 

 

In accordance with Fig. B.1, the components of this vector can be expressed in spherical 

coordinates through the transformation given by 

 

 

         
         

   

sin cos sin sin cos

cos cos cos sin sin

sin cos 0

r x

y

z

A A

A A

A A





    
    

 

    
          
        

. (B.6) 

 

In particular, the radial component becomes  

 

    2 2 2 2 21 sin cos 1 sin sin 1 cos
2 2

rA
                    

  
. (B.7) 

 

This expression can be further simplified as  

 

 
2 23

1 sin cos
2 2

rA
         

. (B.8) 

 

For this incremental deformation, the distance between the material points ( )jx  and ( )kx in the 

deformed configuration is 

 

   2 2

( ) ( ) ( ) ( )

3
1 sin cos

2 2
j k j k

          
y y x x . (B.9) 
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Therefore, the incremental plastic strain energy, ( )

p

kW , due to incremental uniaxial plastic stretch, 

,  can be evaluated as 

 

      
22

2 2 2

( )

0 0 0

3
1 sin cos sin

2 2
kW b d d d

  
           


             

   , (B.10a) 

 

or 

 

  25

( )
5

kW b      . (B.10b) 

 

Requiring that the equivalent incremental plastic stretch, ( )

p

ks , recover the incremental plastic 

strain, ,  due to uniaxial tension leads to 

 

 
0 5

5
A

b 
 . (B.11) 

 
 

Fig. B.1. Spherical coordinates. 

 

 For two-dimensional analysis under uniaxial tension, the incremental plastic strains are 

( )

p

xx k     and ( )

p

yy k     (arising from zero dilatation due to plastic deformation) and 

( ) 0p

xy k   under incremental uniaxial tensile loading.  The corresponding relative position vector 

in the undeformed and deformed state between material points can be expressed as  

 

 ( ) ( ) ej k x y r     x x ei + j = + , (B.12a) 

 

with 

 

 cos ; sinx y       , (B.12b) 
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and  

 

 ( ) ( )j k x y rA A A   y y e eri + A j + . (B.13) 

 

The relative displacement vector between these points can be expressed as 

 

        ( ) ( ) ( ) ( )j k j k x x y yA A      y y x x i + j , (B.14a) 

or 

 

        ( ) ( ) ( ) ( )j k j k rA A       y y x x e er + . (B.14b) 

 

Due to the deformation arising from incremental strains, the coefficients of the corresponding 

relative position vector can be expressed as  

 

 
 
 
1

1

x x

y y

A

A

 
 

           
. (B.15) 

 

Using the coordinate transformation 

 

 
   
   

cos sin

sin cos

xr

y

AA

AA

 
 

   
        

. (B.16) 

 

The radial component becomes 

 

      2 21 cos 1 sinrA          . (B.17) 

 

Therefore, the incremental plastic strain energy, ( )

p

kW , due to incremental uniaxial plastic stretch, 

  can be evaluated as 

 

         
2

2
2 2

( )

0 0

1 cos 1 sinkW bh d d

 
          


         , (B.18a) 

 

or 

 

 2 4

( )

1

3
kW bh      . (B.18b) 

 

Requiring that the equivalent incremental plastic stretch, , ( )

p

ks , recover the incremental plastic 

strain, ,  due to uniaxial tension leads to 
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0 4

3
A

bh 
 . (B.19) 

 

For one-dimensional analysis under uniaxial tension, the incremental plastic strain is ( )

p

xx k   

. For this deformation, the deformed configuration of the distance between the material points ( )jx  

and ( )kx is  

 

  ( ) ( ) ( ) ( )1j k j k   y y x x . (B.20) 

 

Therefore, the incremental plastic strain energy, ( )

p

kW , due to incremental uniaxial plastic stretch, 

,  can be evaluated as 

 

    2 23

( )

0

2 ȟdȟkW A b Ab


         . (B.21) 

 

Requiring that the equivalent incremental plastic stretch, ( )

p

ks , recover the incremental plastic 

strain, ,  due to uniaxial tension leads to 

 

 0 3

1
A

Ab
 . (B.22) 

 

Appendix C 

 

 The validity of the approach for imposing different types of boundary conditions is 

demonstrated by considering the elastic deformation of a rectangular plate first subjected to 

nonzero displacement boundary constraints, and then to a combination of zero displacement 

constraints and traction boundary conditions. 

 

C.1. Displacement constraint conditions 

 

 As shown in Fig. C.1, a rectangular plate is subjected to displacement constraints of 
*( 0, , ) 0.0005 mx y t U   u  and 

*( , , ) 0.0005 mx L y t U  u . It is free of tractions. The 

plate has a length of 1 mL  , width of 0.5 mH  , and thickness of 0.01 mh  . Its Young’s 
modulus and Poisson’s ratio are specified as 9200 10 PaE    and 1/ 3  , respectively, with mass 

density 
37850kg/m  . The boundary conditions are enforced as  

 

 

* * *( , , ) 2 ( 0, , ) ( , , )

( , , ) ( , , )

f f f

f f f

x y t t U x y t t x y t

x y t t x y t

    

 

u u

v v
 with ( 0) f f xx  R , (C.1a) 
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* **( , , ) 2 ( , , ) ( , , )

( , , ) ( , , )

f f f

f f f

x y t t U x L y t t x y t

x y t t x y t

    

 

u u

v v
 with ( ) f f x Lx  R . (C.1b) 

 

The PD model is constructed by considering 100 and 50 material points in the -x  and -y directions, 

respectively. It results in a uniform spacing of 
21 10 m   between material points.  

 

Also, the horizon is specified as 3.015   . The PD displacement predictions are shown in Fig 

C.2.  As expected, the plate elongates uniformly in the axial direction and contracts in the 

longitudinal direction. 

  
(a) (b) 

 

Fig. C.1. Rectangular plate under uniform stretch: (a) geometry and loading; (b) PD model with 

fictitious regions.  

 

 
(a) (b) 

 

Fig. C.2 PD solutions for a) Horizontal displacement, and b) Vertical displacement 

 

 

C.2. Combined displacement constraint and traction conditions 

 The rectangular plate is subjected to a uniform normal stress of 
6

0 100 10  Pa    on the 

right side and is fixed on the left side, ( 0, , ) 0x y t u  and ( 0, , ) 0x y t v , as shown in Fig. 

C.3.  
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(a) (b) 

 

Fig. C.3. Fixed rectangular plate under tension: (a) geometry and loading; (b) PD model with 

fictitious regions. 

 

These boundary conditions along 0x   with ( 0) f f xx  R  are enforced as  

 

 
( , , ) ( , , ),

( , , ) ( , , ).

f f f

f f f

x y t t x y t

x y t t x y t

  

  

u u

v v
  (C.2) 

 

Along x L  with ( ) f f x Lx  R , the applied nonzero normal and zero shear stresses are enforced 

as 
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       

v v
u u

u u
v v

 (C.3) 

 

The PD predictions successfully capture the non-uniform variation of horizontal and vertical 

displacements near the fixed boundary and corners as shown in Fig.C.4.  These results confirm the 

validity of the implementation for enforcing displacement constraints as well as traction boundary 

conditions. 

 
a) (b) 

 

Fig. C.4 PD solutions for a) Horizontal displacement b) Vertical displacement 


