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Abstract 

 A rod or beam is one of the most widely used members in engineering construction. Such members 

must be properly designed to resist the applied loads. When subjected to anti-plane (longitudinal) shear 

and torsional loading, homogeneous, isotropic, and elastic materials are governed by the Laplace equation 

in two dimensions under the assumptions of classical continuum mechanics, and are considerably easier 

to solve than their three-dimensional counterparts. However, when using the finite element method in 

conjunction with linear elastic fracture mechanics, crack initiation and its growth still pose computational 

challenges, even under such simple loading conditions. This difficulty is mainly due to the mathematical 

structure of its governing equations, which are based on the local classical continuum theory. However, 

the nonlocal peridynamic theory is free of these challenges because its governing equations do not contain 

any spatial derivatives of the displacement components, and thus, are valid everywhere in the material. 

This study presents the peridynamic equation of motion for anti-plane shear and torsional deformations, 

as well as the peridynamic material parameters. After establishing the validity of this equation, solutions 

for specific components that are weakened by deep edge cracks and internal cracks are presented. 
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1. Introduction  

 Prediction of structural failure loads due to crack initiation and propagation is still a challenging area 

of solid mechanics. Many different techniques are proposed and widely used within the scope of classical 

continuum mechanics. The traditional approaches to predict failure usually employ concepts from linear 

elastic fracture mechanics (LEFM). The major drawback of LEFM is the requirement of a pre-existing 

initial crack in the structure. Hence, it is not capable of predicting crack initiation. Furthermore, the 

mathematical formulation results in unphysical (singular) stress values at the crack tips. To overcome 

these problems, cohesive zone models (CZM) and extended finite element methods (XFEM) are widely 

accepted as an alternative and implemented in the commercially available finite element analysis 

programs.  

 Although relatively new, peridynamics (PD), introduced by Silling [1] by reformulating the classical 

continuum mechanics equations, is very suitable for failure analysis of structures because it allows cracks 

to grow naturally without resorting to external crack growth laws. PD is based on integro-differential 

equations as opposed to the partial differential equations of classical continuum mechanics. An extensive 

literature survey on peridynamics is given by Madenci and Oterkus [2]. A comparison study between 

peridynamics, CZM, and XFEM techniques by Agwai et al. [3] highlights the capability of the PD theory. 

They showed that the crack speeds obtained from all three approaches are of the same order; however, the 

fracture paths obtained through the PD theory are much closer to the experimental results than those of 

the other two techniques. 

 The numerical simulation of three-dimensional structures can be computationally costly. Although all 

structures are three dimensional in nature, they can be idealized under certain assumptions. Under such 

idealization, a rod or a beam subjected to anti-plane (longitudinal) shear and torsional loading can be 

analyzed in two dimensions. However, the PD equation of motion and the PD material parameter must 

reflect these idealizations. As shown in Figure 1, this study presents the derivation of the PD equation of 

motion for anti-plane shear and torsional deformations of beams with arbitrary cross sections. After 
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establishing its validity by comparing against benchmark solutions, a study of components that are 

weakened by deep edge cracks and internal cracks is presented. 

 

 
 

(a)   (b) 

 

Figure 1. A beam under (a) anti-plane shear and (b) torsion. 

 

2. Kinematics for anti-plane shear and torsional deformation  

 Due to the nature of loading and the geometry of the components, the deformation of the cross section 

on the -z plane is dependent only on the -x  and -y coordinates. Also, the cross section of the component 

remains uniform. At any instant of time, every point in the material denotes the location of a material 

particle, and these infinitely many material points (particles) constitute the continuum. In the undeformed 

state of the body, each material point is identified by its coordinates, ( )kx  with ( 1,2,..., )k   , and is 

associated with an incremental volume, ( )kV , and a mass density of ( )( ).k x  Each material point can be 

subjected to prescribed body loads, displacement, or velocity, resulting in motion and deformation.  

 According to the PD theory introduced by Silling [1], the motion of a body is analyzed by considering 

the interaction of a material point, ( )kx , with the other, possibly infinitely many, material points, ( ) ,jx
 

with ( 1,2,.., )j   , in the body. Therefore, an infinite number of interactions may exist between the 

material point at location ( )kx  and other material points. However, the influence of the material points 
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interacting with ( )kx  is assumed to vanish beyond a local region (horizon), denoted by 
( )k

Hx
, shown in 

Figure 2. Similarly, the material point ( )jx  interacts with the other material points in its own family, 
( )j

Hx

. The range of the material point ( )kx  is defined by ,  referred to as the “horizon.” Also, the material 

points within a distance   of ( )kx  are called the family of ( )kx , 
( )k

H
x

. The interaction of material points is 

prescribed through the micropotentials that depend on the deformation and constitutive properties of the 

material.  

 As shown in Figure 2, material point ( )kx  interacts with its family of material points, 
( )

,
k

H
x

 and is 

influenced by the collective deformation of all these material points. Similarly, the material point ( )jx  is 

influenced by deformation of the material points, 
( )

,
j

H
x

 in its own family.  

 

 

 

Figure 2. Peridynamic material points and their interaction with each other. 
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With respect to a Cartesian coordinate system, the material point 
( ) ( ) ( ) ( ){ , , }T

k k k kx y zx  experiences 

displacement, 
( ) ( ) ( ) ( ){ , , }T

k k k ku v wu , and its location is described by the position vector ( ) ( ) ( )k k k y x u  in 

the deformed state, as shown in Figure 3. The body load vector at material point ( )kx  is represented by 

( ) ( ){0,0, }T

k z kbb , respectively. The motion of a material point conforms to the Lagrangian description. In 

the deformed configuration, the material points ( )kx  and ( )jx  experience displacements ( )ku  and ( )ju , 

respectively. Their initial relative position vector ( ) ( )( )j kx x  prior to deformation becomes ( ) ( )( )j ky y  

after deformation.  

 Under anti-plane and torsional loadings, the initial position of material points ( )jx  and ( )kx  for 

( ) ( )j kz z z   can be defined as 
( ) ( ) ( ){ , , }T

j j jx y zx  and 
( ) ( ) ( ){ , , }T

k k kx y zx . Their initial relative position 

can then be expressed as 

 
( ) ( ) ( ) ( ) ( ) ( )( ) {( ),( ),0}T T

j k j k j kx x y y   x x  (1) 

For anti-plane shear deformation, these material points experience the displacements:

( ) ( ) ( ) ( ){0,0, }  and   {0,0, }T T

j z j k z ku u u u . Their relative position in the deformed state becomes 

  ( ) ( ) ( ) ( ) ( ) ( )j k j k z j z k zu u    y y x x e  (2) 

For torsional deformation, these material points experience the displacements:

( ) ( ) ( ) ( ){ , , }T

j j j z jzy zx u  u  and ( ) ( ) ( ) ( ){ , , }T

k k k z kzy zx u  u , in which   represents the angle of twist. 

Their relative position can be expressed as 

  ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )( )j k j k j k z j z k zu u      y y x x x x e  (3) 

in which {0,0, }T z  , and the product term ( ) ( )( )j k x x  represents the rotation of ( ) ( )( )j kx x  

around the -z axis, resulting in no deformation. 
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As shown in Figure 3, the relative out-of-plane displacement (elevation) of material points ( )jx  and ( )kx  

is defined as  

 ( )( ) ( ) ( )k j z j z ke u u   (4) 

Also, the slope of this elevation (change in angle) between material points ( )kx  and ( )jx  is defined as  

 ( )( ) ( ) ( )

( )( )

( )( ) ( )( )

k j z j z k

k j

k j k j

e u u
r

 


   (5) 

where ( )( ) ( ) ( )| |k j j k  x x  represents the distance between these material points. 

 

 

  (a)  (b) 

 

Figure 3. Kinematics of peridynamic material points on the cross section: (a) anti-plane shear 

deformation and (b) torsional deformation. 
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3. Ordinary state-based peridynamics 

 Due to the interaction between material points ( )kx  and ( )jx , a scalar-valued micropotential,   k j
w , 

develops; it depends on the material properties, as well as the elevation, ( )( )k je , between point ( )kx  and all 

other material points in its family. Note that      j k k j
w w  because   j k

w  depends on the state of 

material points within the family of material point ( )jx . These micropotentials can be expressed as 

  ( )( ) ( )( ) (1 )( ) (2 )( )
, ,k kk j k j k k

e ew w  (6a) 

and 

  ( )( ) ( )( ) (1 )( ) (2 )( )
, ,j jj k j k j j

e ew w   (6b) 

in which ( )( ) ( ) ( )j k z j z ke u u   represents elevation between material points ( )kx  and ( )jx . The change in 

elevation, 
( )( )km k

e , is measured between point ( )kx  and the m-th material point that interacts with point 

( )kx . Similarly, 
( )( )jm j

e is measured between point ( )jx  and the m-th material point that interacts with point 

( )jx , as shown in Figure 2. The strain energy density, ( )kW , of material point ( )kx  can be expressed as a 

summation of all the micropotentials, ( )( )k jw , arising from the interaction of material point ( )kx  and the 

other material points, ( )jx , within its horizon in the form 

    ( ) ( )( ) ( )( ) ( )(1 )( ) (2 )( ) (1 )( ) (2 )( )
1

1 1
, , , ,

2 2
k k j jk k j j k jk k j j

j

W e e e e V




    w w  (7) 

in which ( )( ) 0k j w  for k j .  

 The PD equation of motion at material point ( )kx  can be derived by applying the principle of virtual 

work, i.e. 

 
1

0

( ) 0
t

t
T U dt    (8) 

where T  and U  represent the total kinetic and potential energies in the body. This principle is satisfied 

by solving for the Euler-Lagrange equation  
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( ) ( )

0
z k z k

d L L

dt u u

  
    

 (9) 

where the Lagrangian L  is defined as L T U  . 

 The total kinetic and potential energies in the body can be obtained by summation of kinetic and 

potential energies of all material points, respectively,  

 ( ) ( ) ( ) ( )

1

1

2
i z i z i i

i

T u u V




  (10a) 

and 

  ( ) ( ) ( ) ( ) ( )

1 1

i i z i z i i

i i

U W V b u V
 

 

    (10b) 

Substituting for the strain energy density, ( )iW , of material point ( )ix  from Eq. (7), the potential energy 

can be rewritten as 

      ( )( ) ( )( ) ( ) ( ) ( ) ( )(1 )( ) (2 )( ) (1 )( ) (2 )( )
1 1

1 1
, , , ,

2 2
i i j ji j j i j z i z i ii i j j

i j

U e e e e V b u V
 

 

       
  w w  (11) 

The Lagrangian can be written in an expanded form by showing only the terms associated with the 

material point ( )kx  as 

 
   

   

( ) ( ) ( ) ( )

( )( ) ( )( ) ( ) ( )(1 )( ) (2 )( ) (1 )( ) (2 )( )
1

( )( ) ( )( ) ( ) ( )(1 )( ) (2 )( ) (1 )( ) (2 )( )
1

1
...

2

1 1
    , , , ,

2 2

1 1
    , , , ,

2 2

k k j j

i i k k

k z k z k k

k j j k j kk k j j
j

i k k i i ki i k k
i

L u u V

e e e e V V

e e e e V V









  

    

    

 w w

w w

 ( ) ( ) ( )     ... z k z k kb u V






 (12a) 

or  
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  
  

 

( ) ( ) ( ) ( )

( )( ) ( ) ( )(1 )( ) (2 )( )
1

( )( ) ( ) ( )(1 )( ) (2 )( )
1

( ) ( ) ( )

1

2

1
      , ,

2

1
      , ,

2

         .

k k

j j

k z k z k k

k j j kk k
j

j k j kj j
j

z k z k k

L u u V

e e V V

e e V V

b u V











  











w

w

 (12b) 

Substituting from Eq. (12b) into Eq. (9) results in the Euler-Lagrange equation of the material point ( )kx  

as 

 
 

 

 
 

( ) ( )( )( )

( ) ( ) ( ) ( )

1 1 ( )( ) ( )

( ) ( )( )( )

( ) ( ) ( )

1 1 ( )( ) ( )

1

2

1
                  0

2

z j z kk j

k z k k i

j i z kz j z k

z k z jj k

i z k k

j i z kz k z j

u u
u V V

uu u

u u
V b V

uu u


 

 

 

 

   
 

    
  
  

     

 

 

w

w

 (13a) 

or 

 
 

 

( )( )

( ) ( ) ( )

1 1 ( ) ( )

( )( )

( ) ( )

1 1 ( ) ( )

1

2

1
0

2

k j

k z k i

j i z j z k

j k

i z k

j i z k z j

u V
u u

V b
u u


 

 

 

 

 
 
   
 
   
   

 

 

w

w
 (13b) 

in which it is assumed that the interactions not involving material point ( )kx  do not have any effect on 

material point ( )kx . Based on the dimensional analysis of this equation, it is apparent that the quantity

1 ( ) ( )( ) ( ) ( )/ ( )i i k i z j z kV u u
   w  represents the force density in the -z direction that material point ( )jx  

exerts on material point ( )kx  and 1 ( ) ( )( ) ( ) ( )/ ( )i i i k z k z jV u u
   w  represents the force density in the -z

direction that material point ( )kx  exerts on material point, ( )jx . With this interpretation, Eq. (13b) can be 

rewritten as  

    
( )( )

( )( ) ( )( ) ( ) ( ) ( )

1( ) ( ) ( )

1 1
, ,

2

k i

z k j j k j k i

ij z j z k

t e t V
V u u






 

 
x x

w
 (14a) 

and 



10 

 

    
( )( )

( )( ) ( )( ) ( ) ( ) ( )

1( ) ( ) ( )

1 1
, ,

2

i k

z j k k j k j i

ij z k z j

t e t V
V u u





 
 

   
x x

w
 (14b) 

in which ( )jV  represents the volume of material point ( )jx . The material point ( )jx  exerts the force 

density ( )( )z k jt  on material point ( )kx .  

 By utilizing the state concept described by Silling et al. [4] and Silling and Lehoucq [5], the force 

densities ( )( )z k jt  and ( )( )z j kt  can be stored in force scalar states that belong to material points ( )kx  and 

( ) ,jx respectively, as 

    ( ) ( )( ) ( ) ( )( ),       and      ,z zk z k j j z j kt t t t t t

   
       
   
   

x x  (15) 

The force densities ( )( )z k jt  and ( )( )z j kt  stored in scalar states ( )( , )z kt tx  and ( )( , )z jt tx  can be extracted 

again by operating the force states on the corresponding initial relative position vectors, ( ) ( )( )j kx x  and 

( ) ( )( )k jx x , as 

    ( )( ) ( ) ( ) ( ) ( )( ) ( ) ( ) ( ),    and   ,z zz k j k j k z j k j k jt t t t t t   x x x x x x  (16) 

By using Eqs. (14a) and (14b), the Euler-Lagrange equation of the material point ( )kx  can be recast as 

    ( ) ( ) ( )( ) ( )( ) ( ) ( ) ( )( ) ( )( ) ( ) ( ) ( ) ( )

1

, , , ,k z k z k j j k j k z j k k j k j j z k

j

u t e t t e t V b




       x x x x  (17) 

Because the area of each material point ( )jV  is infinitesimally small, for the limiting case of ( ) 0jV  , the 

infinite summation can be expressed as a Riemann integral while considering only the material points 

within the horizon. Therefore, Eq. (17) can be rewritten in integral equation form as 

    ( ) ( ) ( ) ( ), , , ,z z z z z z z z
H

u t u u t t u u t dV b              xx x x x  (18) 

in which ( )zu  and ( )zu  represent the transverse displacement at material points x  and x , respectively.  
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3.1. Peridynamic force density 

 The force densities at material points ( )kx  and ( )jx  can be defined in the form 

  ( )( ) ( )( ) ( ) ( ) ( )( )

1
, ,

2
z k j j k j k k jt e t A x x   (19a) 

and 

  ( )( ) ( )( ) ( ) ( ) ( )( )

1
, ,

2
z j k k j k j k jt e t B  x x   (19b) 

where ( )( )k jA  and ( )( )k jB  are auxiliary parameters that are dependent on engineering material constants, 

the deformation field, and the horizon.  

 In light of the definition (14) of the expressions for force density in terms of micropotentials, the 

force density vectors can be related to the strain energy density function , ( )kW , at material point ( )kx  as  

    
( )

( )( ) ( ) ( ) ( ) ( )

( ) ( ) ( )

1
, ,

k

z k j z j z k j k

j z j z k

W
t u u t

V u u


  

 
x x  (20a) 

and 

    
( )

( )( ) ( ) ( ) ( ) ( )

( ) ( ) ( )

1
, ,

j

z j k z k z j k j

k z k z j

W
t u u t

V u u


  

 
x x  (20b) 

However, the determination of the auxiliary parameters, ( )( )k jA  and ( )( )k jB , requires an explicit form of 

the strain energy density function.  

 

3.2. Peridynamic material parameters 

 For an isotropic and elastic material experiencing anti-plane and torsional deformation, the classical 

expression for the strain energy density, ( )kW , at material point ( )kx  can be written as  

 2 2

( ) ( ) ( )

1

2
k k xz k yzW        (21) 
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in which   is the shear modulus of the material, and ( )k xz  and ( )k yz  are the transverse shear strain 

components at material point ( )kx . 

 Analogous to Eq. (21), the PD representation of the strain energy density, ( )kW , at material point ( )kx  

can be expressed as  

 2 2

( ) ( ) ( )k k xz k yzW a r r     (22) 

in which a  is the ordinary state-based PD material parameter for strain energy and ( )k xzr  and ( )k yzr  are 

defined in the form  

 ( ) ( )( ) ( )( ) ( )( ) ( )

1

cos
N

k xz k j j k k j j

j

r b w e V


   (23a) 

and 

 ( ) ( )( ) ( )( ) ( )( ) ( )

1

sin
N

k yz k j j k k j j

j

r b w e V


   (23b) 

in which 
( )( ) ( ) ( ) ( )( )cos ( ) /k j j k k jx x    and 

( )( ) ( ) ( ) ( )( )sin ( ) /k j j k k jy y   , N  represents the number of 

material points within the family of ( )kx , and b  is an unknown PD parameter. The non-dimensional 

influence function, which can be taken in the form of ( )( ) ( )( )/k j k jw   , provides a means to control the 

influence of material points away from the current material point at ( )kx . The infinitesimal volume of the 

material point, ( )jx , is denoted by 
( ) ( )( ) ( )( ) ( )( )j k j k j k jV      , where 

( )( )k j  and 
( )( )k j  represent the 

incremental distance and angle between material points ( )kx  and ( )jx  and  is the length of the 

component. 

 As the horizon approaches zero, the out-of-plane displacement at material point ( )jx  can be expressed 

by using a Taylor series expansion as  

 

2 2

( ) ( ) ( )( ) ( )( ) ( )( ) ( )( ) ( )( ) ( )(( )

2 2 2

( )( ) ( )( )

), ( ), ( ),

( ), ( ),( )( ) ( )( ) ( )( )

cos sin cos

            

1

2

1

2
      cos sin sin

z j z k z k j k j z k j k j z k j k j

z k j k

k x k y k xx

k xy k yj k j z k jy k j

u u u u u

u u

     

    

  


 (24) 
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Substituting from Eq. (24) into Eq. (23) along with the infinitesimal volume and influence function, 

performing algebraic manipulations, and converting the summations to integrations lead to 

 
3

( ) ( ),
2

k xz z k xr b u


  (25a) 

and 

 
3

( ) ( ),
2

k yz z k yr b u


  (25b) 

Defining 
32 / ( )b   reduces ( )k xzr  and ( )k yzr  to the classical transverse shear strains ( )k xz  and ( ) ;k yz  

thus, equating the peridynamic and classical strain energy density, ( )kW , at material point ( )kx  results in  

 2 2 2 2

( ) ( ) ( ) ( ) ( )

1

2
k k xz k yz k xz k yzW a r r              (26) 

It yields the ordinary state-based peridynamic material parameter for strain energy as  

 
1

2
a   (27) 

which is not dependent on the horizon, unlike the parameter b . 

 

 

3.3.  Force density-displacement relation 

 Substituting for ( )kW  in Eq. (20) and differentiating, the force density, ( )( )z k jt , can be obtained as  

   ( ) ( ) ( ) ( )

( )( ) ( ) ( ) ( ) ( ) ( )( ) ( ) ( )( ) ( )

( )( ) ( )( )

, ,
j k j k

z k j z j z k j k k j k xz k j k yz

k j k j

x x y y
t u u t w r w r

 
  

    
  

x x  (28a) 

        ( ) ( ) ( ) ( )

( )( ) ( ) ( ) ( ) ( ) ( )( ) ( ) ( )( ) ( )

( )( ) ( )( )

, ,
k j k j

z j k z k z j k j j k j xz j k j yz

k j k j

x x y y
t u u t w r w r

 
  

    
  

x x  (28b) 

Comparison of Eqs. (28) and (19) leads to the determination of ( )( )k jA  and ( )( )k jB  as  

 
( ) ( ) ( ) ( )

( )( ) ( )( ) ( ) ( )( ) ( )

( )( ) ( )( )

2
j k j k

k j k j k xz k j k yz

k j k j

x x y y
A w r w r

 
  

  
  

  (29a) 
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( ) ( ) ( ) ( )

( )( ) ( )( ) ( ) ( )( ) ( )2 2

( )( ) ( )( )

2
j k j k

j k j k j xz j k j yz

k j k j

x x y y
B w r w r

 
  

  
  

  (29b) 

After substituting for the force densities, the final form of the equation of motion becomes  

    ( ) ( ) ( ) ( )

( ) ( ) ( )( ) ( ) ( ) ( ) ( ) ( ) ( )

1 ( )( ) ( )( )

j k j k

k z k k j k xz j xz k yz j yz j z k

j k j k j

x x y y
u w r r r r V b 

 





  
     

  
  (30a) 

with  

 ( ) ( )( ) ( )( ) ( )( ) ( )3
1

2
cos

N

k xz k j j k k j j

j

r w e V
 

   (30b) 

 ( ) ( )( ) ( )( ) ( )( ) ( )3
1

2
sin

N

k yz k j j k k j j

j

r w e V
 

   (30c) 

 

 

4. Bond-based peridynamics 

 In the case of pairwise interaction only between material points ( )ix  and ( )jx , the micropotential, 

  i j
w , is a function of ( )( )i je . Thus, the total potential energy can be obtained by the summation of the 

micropotentials ( )( ) ( )( )( )i j i jew  arising from deformation only between two material points within the same 

family 

      ( )( ) ( )( ) ( )( ) ( )( ) ( ) ( ) ( ) ( )

1 1

1 1

2 2
i j i j j i j i j z i z i i

i j

U e e V b u V
 

 

 
     

 
  w w  (31) 

For a pairwise interaction, the Euler-Lagrange equation results in 

 
 

 

 
 

( ) ( )( )( )

( ) ( ) ( )

1 ( )( ) ( )

( ) ( )( )( )

( ) ( )

1 ( )( ) ( )

1

2

1
                  0

2

z j z kk j

k z k k

j z kz j z k

z k jj k

z k k

j z kz k z j

u u
u V

uu u

u w
b V

uu u










   
 

    
  
  

     





w

w

 (32) 

This equation can be rewritten as 
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 ( ) ( ) ( )( ) ( )( ) ( ) ( )

1

1
0

2
k z k z k j z j k j z k

j

u f f V b




        (33) 

in which ( )( )z k jf  and ( )( )z j kf  are defined as 

    
( )( ) ( )( )

( )( ) ( )( )

( ) ( ) ( ) ( )

   and   
k j j k

z k j z j k

z j z k z k z j

f f
u u u u

 
 
   

w w
  (34a,b) 

They represent the PD interaction forces between the material points ( )kx  and ( )jx  arising from the 

deformation (elevation). For a linear material behavior, they can be defined in the form  

 ( )( ) ( )( ) ( )( ) ( )( )     and          z k j k j z j k j kf cr f cr   (35a,b) 

or 

 ( )( ) ( )( ) ( )( ) ( )( )     and          z k j k j z j k k jf cr f cr    (36a,b) 

With these definitions, the equation of motion, Eq. (33), becomes 

 ( ) ( )( ) ( ) ( )

1

z k k j j z k

j

u c r V b




   (37a) 

or 

 
( ) ( )

( ) ( ) ( )

1 ( )( )

z j z k

z k j z k

j k j

u u
u c V b








   (37b) 

in which c  is the PD material parameter (bond constant) associated with the anti-plane and torsional 

deformations.  

 As the horizon approaches zero, Eq. (37) must recover its classical counterpart, given as 

  , ,z z xx z yyu u u    (38) 

Representing the out-of-plane displacement at material point ( )jx  by using a Taylor series expansion as in 

Eq. (24), substituting it into Eq. (37) along with the infinitesimal volume, and performing algebraic 

manipulations after converting the summations to integrations lead to 

  
3

( ) ( ), ( ),
6

z k z k xx z k yyu c u u
     (39) 
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Comparison of the bond-based PD equation of motion with its classical counterpart leads to the 

determination of the PD bond constant, c , as  

 
3

6
c


 

  (40) 

which is dependent on the horizon. The final form of the bond-based PD equation of motion becomes 

 
( ) ( )

( ) ( )3
1 ( )( )

6 z j z k

z j j

j k j

u u
u V


  






   (41) 

Alternatively, in light of Eq. (34) and (35), the bond constant can also be determined by considering the 

explicit expression for the micropotentials in the form  

 

 2 2

( )( ) ( )( ) ( )( ) ( )( ) ( )( ) ( )( )

1 1
   and   

2 2
k j k j k j j k k j j kc r c r  w w  (42a,b) 

Therefore, the strain energy density at material point ( )kx  can be obtained from Eq. (7) as 

 2

( ) ( )( ) ( )( ) ( )

1

1 1

2 2
k k j k j j

j

W c r V




   (43) 

Substituting for the slope and infinitesimal volume and converting the summation to integration lead to 

  
2

2

( ) ( ) ( )

0 0

1 1

2 2
k z j z kW c u u d d

 

     (44) 

The peridynamic bond constant, c , can be determined by equating the strain energies from classical 

continuum mechanics and peridynamics for a specified simple deformation such as ( , ) ( )w x y x y  . For 

the material point of interest located at ( ) ( )( 0, 0)k kx y  , the elevation is ( )( ) ( )k je x y    and 

2 2

( )( )k j x y      . Thus, the peridynamic strain energy density can be obtained as 

  
2 2 3

2 2

( ) ( ) ( )

0 0 0 0

1 1 1 1

2 2 2 2 6
k z j z k

c
W c u u d d c d d

                (45) 

The corresponding strain energy density based on classical continuum mechanics can be written as  
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    2 2

, ,

1 1

2 2
xz xz yz yz z x z yW u u           (46) 

Equating the strain energies from peridynamics and the classical continuum mechanics leads to the 

determination of the PD material parameter, 
36 /c    , which is the same as in Eq. (40). 

 

5. Correction of PD material parameters 

 The PD material parameters b  and c  are determined for material points with a horizon completely 

embedded in the material. The values of these parameters depend on the domain of integration defined by 

the horizon. Therefore, their values require correction if the material point is close to free surfaces or 

material interfaces (Figure 4). Since the presence of free surfaces is problem dependent, it is impractical 

to resolve this issue analytically.  

 

 

Figure 4. Surface effects in the domain of interest. 

 

5.1. Surface correction 

 The bond-based and ordinary state-based PD parameters are corrected by comparing the PD and 

classical expressions for the strain energy density and shear strain components for two different simple 
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loading conditions. The correction for the parameter c  is achieved by comparing the strain energy 

densities, and for the parameter, b  by comparing the shear strain components. 

 The first loading case is a simple linear displacement distribution in the -x direction given by  

 zu x  (47) 

The second loading case is a simple linear displacement distribution in the -y direction given by  

 zu y  (48) 

Due to these loading conditions, the corresponding PD strain energy density and shear strain can be 

obtained from Eqs. (43) and (23) as 

  22

( ) ( ) ( ) ( )

1 ( )( )

1 1 1

2 2

N
PD

k x j k j

j k j

W c x x V


   and  22

( ) ( ) ( ) ( )

1 ( )( )

1 1 1

2 2

N
PD

k y j k j

j k j

W c y y V


    (49) 

and 

 ( ) (( ) ( )( ) (

1

) ( ) ) ( )( cos)j k

N

k xz k j k j j

j

xr w xb V


  , ( ) (( ) ( )( ) (

1

) ( ) ) ( )( sin)j k

N

k yz k j k j j

j

yr w Vyb 


    (50) 

with N  representing the number of material points inside the horizon of 
( )kx . For these loading 

conditions, the classical strain energy of a material point ( )

CCM

kW  and shear strain components are  

 2

( )

1

2

CCM

k xW   and 2

( )

1

2

CCM

k yW    (51) 

and 

 
( )k xz   and 

( )k yz    (52) 

The correction factors for these loading conditions at material point 
( )kx  can be determined as 

 
( )

( )

( )

CCM

k x

x k PD

k x

W
g

W
  and 

( )

( )

( )

k xz

k xz

k xz

g
r


   (53) 

and 

 
( )

( )

( )

CCM

k y

y k PD

k y

W
g

W
  and 

( )

( )

( )

k yz

k yz

k yz

g
r


   (54) 
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With these correction factors, the final form of the ordinary state-based PD equation become 

   ( ) ( ) ( ) ( )

( ) ( ) ( )( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

1 ( )( ) ( )( )

( )             

j k j k

k z k k j k xz k xz j xz j xz k yz k yz j yz j yz j

j k j k j

z k

x x y y
u w r g r g r g r g V

b

 
 





  
    

  



 (55) 

in which 

 ( ) ( )( ) ( )( ) ( ) ( )( ) ( )

1

cos
N

k xz k j j k k xz k j j

j

r b w e g V


  , ( ) ( )( ) ( )( ) ( ) ( )( ) ( )

1

sin
N

k yz k j j k k yz k j j

j

r b w e g V


    (56) 

For the bond-based parameter, the correction factors can be obtained by taking their mean value as 

 
( ) ( )

( )( )
2

x k x j

k j x

g g
g


  and 

( ) ( )

( )( )
2

y k y j

k j y

g g
g


  (57) 

which may represent the principal axis of an ellipsoid. The correction factor between arbitrary material 

points ( )kx  and ( )jx  can be calculated by 

    
1 2

2 2

( )( ) ( )( ) ( )( )k j x k j x y k j yG n g n g


    
 (58) 

where xn  and yn  are direction cosines of ( ) ( ) ( ) ( )( )/ | |j k j k  n x x x x . The final form of the bond-based 

PD equation including the correction factor for material point ( )kx becomes 

 
( ) ( )

( ) ( )( ) ( )3
1 ( )( )

6 z j z k

z k k j j

j k j

u u
u G V


  






   (59) 

 

5.2. Dissimilar material interface 

 The correction at the interface is achieved by using equivalent PD material parameters [6]. As shown 

in Figure 5, the material point ( )ix  may interact with material points ( )jx  and ( )mx . Material points ( )ix  

and ( )jx  are embedded in material 1, and ( )mx  is embedded in material 2. The PD material parameter 

between points ( )ix  and ( )jx  is   i j
a , and it differs from   i m

a  between material points ( )ix  and ( )mx . 
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Because the material points ( )ix  and ( )mx  are embedded in two different materials, their material 

parameter,   i m
a , can be expressed in terms of an equivalent material constant as  

   
1 2

1 2

1 2

i m
a

a a





  (60) 

 

in which 1

 

represents the segment of the distance between material points ( )ix  and ( )mx  in material 1 

whose material parameter is 1a , and 2

 

represents the segment in material 2 whose material parameter is 

2a . 

 

Figure 5. Interaction of material points across the interface. 

 

6. Boundary conditions 

 Unlike the local theory, the PD boundary conditions are imposed through a non-zero volume of 

fictitious boundary layers. This necessity arises because the PD field equations do not contain any spatial 

derivatives; therefore, constraint conditions are, in general, not necessary for the solution of an integro-

differential equation of motion. However, such conditions can be imposed by prescribing constraints on 

the displacement or transverse shear stress components in a fictitious boundary layer. 

  

6.1. Displacement constraints 
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 This type of boundary condition can be achieved through a fictitious region, fR . Therefore, a 

fictitious boundary layer with depth   is introduced along the boundary of the actual material region, R , 

as shown in Figure 6. Based on numerical experiments, Macek and Silling [7] suggest that the extent of 

the fictitious boundary layer be equal to the horizon,  , in order to ensure that the imposed prescribed 

constraints are accurately reflected in the real domain.  

 The prescribed boundary value, * **( , , )zu x y t , is imposed through a layer of the fictitious region, fR , 

along the boundary of the material surface, S , as 

 * **( , , ) 2 ( , , ) ( , , )z f f z zu x y t t u x y t t u x y t     (61a) 

with 

      * *, ,  , ,  ,f f fx y x y x y  S R R  (61b) 

in which ( , )x y  represents the position of a material point in R , and 
* *( , )x y  represents the location of a 

point on the boundary surface, S . The location of the image material point in fR
 
is denoted by ( , )f fx y . 

The implementation of the prescribed boundary value of the displacement is depicted in Figure 6. In the 

case of 
* * *( , , ) 0zu x y t  , this condition becomes 

 ( , , ) ( , , )z f f zu x y t t u x y t    (62) 
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  (a)   (b) 

Figure 6 Imposing displacement constraints on the boundary: ( a) non-zero constraint 
* * *( , , )z zu x y t u  

and (b) zero constraint 
* * *( , , ) 0z zu x y t u  .

 
     

 

6.2. Conditions on transverse shear stress components 

 Similar to the displacement boundary conditions, the transverse shear stress conditions are imposed 

through a fictitious region, fR . In the case of anti-plane shear deformation, applied transverse shear 

stress on the boundary, * *( , , )z x y t    with ,x y   , is imposed as (Figure 7,left) 

    * ** *, , ,z
z

u
x y t x y   


    

 (63a) 

or 

 

  * *,zu
x y 

 





 (63b) 
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which can be enforced as 

 
1

( , ) ( ) ( , )z f f f zu x y u x y  


    (63c) 

For a zero transverse shear stress condition, i.e., * *( , , ) 0z x y t  , this expression reduces to  

  * *, ( , )z zu x y u x y  (64) 

In the case of torsional deformation, zero shear stress boundary conditions are imposed as 

      * ** *
0, , , 0z

xz

u
x y t x y y y

x
        

 (65a) 

and 

      * ** *
0, , , 0z

yz

u
x y t x y x x

y
  

 
     

 (65b) 

or 

    * *

0

1
,zu

x y y y
x





 


 (66a) 

and 

    * *

0

1
,zu

x y x x
y





 


 (66b) 

which can be imposed as 

    0

1
, ( ) ( , )z f f f zu x y y y x x u x y


     (67a) 

and 

    0

1
, ( ) ( , )z f f f zu x y x x y y u x y


     (67b) 

 

in which   represents the applied angle of twist and 0 0( , )x y  denote the coordinates of the reference 

point. 
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(a) (b) 

Figure 7.  Material points and their image in the fictitious region for imposing: (a) non-zero flux and (b) 

zero flux. 

 

7. Failure prediction 

 Damage is introduced through elimination of interactions (micropotentials) among the material 

points. It is assumed that when the change in angle (transverse shear strain), ( )( )k jr , between two material 

points, k and j , exceeds its critical value, cr , the onset of damage occurs. Damage is reflected in the 

equations of motion by removing the force density vectors between the material points in an irreversible 

manner. Therefore, the force density vectors ( )( )z k jt  and ( )( )z j kt  in the case of the ordinary state-based 

form of the equations of motion and ( )( )z k jf  and ( )( )z j kf  in the case of the bond-based form can be 

modified through a history-dependent scalar-valued function ( ) ( )( , - )j kH t x x  [8] as 

  ( )( ) ( ) ( ) ( )( ), -z k j j k z k jt H t x x t  and  ( )( ) ( ) ( ) ( )( ), -z j k k j z j kt H t x x t  (68) 

and 
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  ( )( ) ( ) ( ) ( )( ), -z k j j k z k jf H t x x f  and  ( )( ) ( ) ( ) ( )( ), -z j k k j z j kf H t x x f  (69) 

in which a history-dependent scalar-valued function H  is defined as 

   ( )( ) ( ) ( )

( ) ( )

1 if   ( , - )   for all 0
, -

0 otherwise

k j j k c

j k

r t x x r t t
H t x x

   
 


 (70) 

 The critical value, cr , can be determined by equating the amount of energy required to remove all of 

the micropotentials across a unit crack surface to the critical energy release rate, IIIcG , for the mode III 

type of loading of linear elastic fracture mechanics (LEFM). In order to create a new crack surface, A , all 

of the micropotentials (interactions) between the material points 
( )k

x  and 
( )j

x  whose line of action 

crosses this new surface must be terminated, as sketched in Figure 8. The material points 
( )k

x  and 
( )j

x  

are located above and below the new crack surface, respectively.  

 

 

Figure 8. Interaction of the material points 
( )k

x  and 
( )j

x  above and below the crack surface. 

 

 Hence, the strain energy required to remove the interaction between two material points 
( )k

x and 

( )j
x  can be expressed as  
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( )( ) ( )( )

( )( ) ( ) ( )

1

2 2

c c

k j j kc

k j k j
W V V

   

   




w w
 (71)  

Furthermore, the total strain energy required to remove all of the interactions across the newly created 

crack surface A  can be obtained as  

 
( )( ) ( ) ( ) ( )( ) ( ) ( )

1 1 1 1

1 1 1 1

2 2 2 2

K J K J
c c c

k j k j j k j k
k j k j

W V V V V

   

       

   

    w w  (72) 

for which the line of interaction defined by 
( )( ) ( ) ( )

| |
k j k j

     x x  and the crack surface intersect, and K  

and J  indicate the number of material points above and below the crack surface within the families of 

( )k
x  and 

( )j
x , respectively. If this line of interaction and crack surface intersect at the crack tip, only 

half of the critical micropotential is considered in the summation.  

 Considering only the pairwise interactions between 
( )k

x  and 
( )j

x  crossing the crack surface, the 

micropotentials for linear elastic deformation are given by Eq. (42) as 

 2

( )( ) ( )( ) ( )( )

1

2k j k j k j
c r     w  and 2

( )( ) ( )( ) ( )( )

1

2j k j k j k
c r     w  (73) 

Their critical values can be expressed as 

 2

( )( ) ( )( )

1

2

cr

ck j k j
c r   w  and 2

( )( ) ( )( )

1

2

cr

cj k j k
c r   w  (74) 

Thus, the total strain energy required to remove all of the interactions across the newly created crack 

surface A  becomes 

 2

( )( ) ( ) ( )
1 1

1

2

K J
c

c j k k j
k j

W cr V V
 

   

 

   (75) 

 The amount of energy required to remove all of the interactions (micropotentials) across the unit 

crack surface equals the critical strain energy release rate, thus leading to  

 

2

( )( ) ( ) ( )
1 1

1

2

K J

cc j k k j
k j

IIIc

cr V V
W

G
A A


 

   

  


  (76) 

As given by Madenci and Oterkus [2], the summation in Eq. (76) can be evaluated as 
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4( )( ) ( ) ( )

1 1

2

K J

j k k j
k j

V V
h

A




 

   

  


 (77) 

Thus, the critical shear angle can be obtained as  

 
2

3

IIIc
c

G
r




  (78) 

 The local damage at a point is defined as the weighted ratio of the number of eliminated interactions 

to the total number of initial interactions of a material point with its family members [8] 

  
 ( ) ( ) ( )

1

( )

( )

1

, -

, 1

N

j k j

j

k N

j

j

H t x x V

x t

V

 



 



 (75) 

If the local damage value has a value equal to or larger than 0.5, it can be interpreted as the creation of 

new crack surfaces. 

 

 

8. Numerical results 

 The solution to the PD field equations requires time and spatial integrations while considering 

constraints and/or loading conditions, as well as initial conditions. The spatial integration is performed by 

using a Gaussian integration (meshless) scheme because of its simplicity, and time integration by using 

backward and forward difference explicit integration schemes. The domain is divided into a uniform grid, 

with integration or collocation (material) points associated with specific volumes. Associated with a 

particular material point, the numerical implementation of spatial integration involves the summation of 

the volumes of material points within its horizon. However, the volume of each material point may not be 

embedded in the horizon in its entirety, i.e., the material points located near the surface of the horizon 

may have truncated volumes. As a result, the volume integration over the horizon may be incorrect if the 

entire volume of each material point is included in the numerical implementation. Therefore, a volume 

correction factor is necessary to correct for the extra volume, as explained by Madenci and Oterkus [2]. 
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The steady-state solution to the PD field equation can be achieved by different techniques; however, in 

this study an adaptive dynamic relaxation method (ADR) is employed (described in detail by Madenci 

and Oterkus [2]). 

 The capability of the PD theory is demonstrated by considering (1) a square bar under anti-plane 

shear loading, (2) a bimaterial rectangular bar under anti-plane shear loading, (3) a square bar with a 

crack under anti-plane shear loading, (4) a rectangular bar under torsion, and (5) a rectangular bar with a 

pre-existing crack under torsion. If an analytical solution is not available, a comparison is performed 

against finite element analysis (FEA) by using ANSYS, a commercially available program, in order to 

establish the validity of the predictions. During the construction of the solutions to all these problems, 

uniform spacing, x y   , between the material points is employed, and the horizon is specified as 

3.015 x   . Also, the steady-state solutions are achieved by using ADR with a time integration interval 

of 1t s  . 

 

8.1. Square bar under anti-plane shear loading 

 As illustrated in Figure 9, a square bar with 1in.L W   is clamped along its left and right surfaces 

while subjected to a uniform transverse shear stress of 12000 psiS   on its top surface. The bottom 

surface is free of loading. These boundary conditions are imposed as 

 
 / 2, 0zu x L y    (76a) 

 

 , / 2 0zu
x y W

y
    


 (76b) 

 

 , / 2zu
x y W S

y
   


 (76c) 

The shear modulus is specified as 
612 10 psi   . The cross section is discretized with a uniform grid 

spacing of 0.01 in.x y    , resulting in 100 material points in each of  the -x  and the -y directions. 

The bond-based and ordinary state-based PD displacement predictions and their comparison with the FEA 
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results are shown in Figure 10. The PD theory successfully captures the anti-plane shear deformation, and 

this comparison confirms the validity of the implementation for displacement- and stress-type boundary 

conditions. 

 

Figure 9. Square bar under anti-plane shear loading. 

 

 

 

 

 

(a) 
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(b) 

 

(c) 

Figure 10. Displacement variation across the bar: (a) ordinary state-based PD solution, (b) bond-based 

PD solution, and (c) FEA solution.  

 

 

 

 

8.2. Bimaterial rectangular bar under anti-plane shear loading 

 As shown in Figure 11, a bimaterial rectangular bar with 0.2 in.L   and 1 in.W   is clamped along 

its bottom surface and subjected to a uniform transverse shear stress of 12000 psiS   on its top surface. 

The bottom surface is free of any loading. These boundary conditions are imposed as 

 
 , / 2 0zu x y W    (77a)
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 / 2, 0zu
x L y

x
    


 (77b)

 
 

 , / 2zu
x y W S

y
   


 (77c) 

The shear moduli of the materials are specified as 
6

1 12 10 psi  
 
and 

6

2 6 10 psi   .The cross section 

is discretized with a uniform grid spacing of 0.01 in.x y    , resulting in 20 and 100 material points in 

the -x  and in the -y directions, respectively.  

 Along the vertical axis, the bond-based and ordinary state-based PD displacement variations and their 

comparison with the FEA results are shown in Figure 12. The results demonstrate the validity of the PD 

modeling of interface conditions. The predictions are in excellent agreement and capture the effect of 

dissimilar materials. 

 

 

Figure 11. Square bar under anti-plane shear loading. 
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Figure 12. Displacement variation along the vertical axis. 

 

 

 

8.3 Square bar with a crack under anti-plane shear loading 

 As illustrated in Figure 13, a square bar of 1 in.L W   with a pre-existing central crack of length 

0.2 in.a   is subjected to a uniform transverse shear stress of 12000 psiS   on its top and bottom 

surfaces. It is free of any loading and constraints on its other surfaces. These boundary conditions are 

imposed as 

  / 2, 0zu
x L y

x
    


 (78a) 

 

 , / 2zu
x y W S

y
   


 (78b) 

 

 , / 2zu
x y W S

y
     


 (78c) 
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The shear modulus is specified as 
612 10 psi   . The critical stretch value is specified as 0.0035.crr   

The cross section is discretized with a uniform grid spacing of 0.01 in.x y    , resulting in 100 

material points in both the -x  and in the -y directions. As expected, a self-similar crack growth, shown in 

Figure 14 (left), is observed. Also, the crack surfaces exhibit a tearing type of deformation, as shown in 

Figure 14(right). 

 

 

Figure 13. Square bar with a crack under anti-plane shear loading. 
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 (a)  (b) 

Figure 14. Square bar with a crack under anti-plane shear loading: (a) crack growth path (damage 

distribution) and (b) crack opening mode. 

 

 

8.4. Rectangular bar under torsion 

 As illustrated in Figure 15, a rectangular bar with 1 in.L   and 2 in.W   is subjected to a unit angle 

of twist, 1 in./in.   All surfaces of the bar are free of loading. These boundary conditions are  

 

     0/ 2, / 2, 0z
xz

u
x L y x L y y y

x
              

(79) 

and 

 

     0, / 2 , / 2 0z
yz

u
x y W x y W x x

y
  

 
           

(80) 

They can be rewritten as  

 

   0/ 2,z
y yu

x L y
x





  


 

(81) 

and 

 

   0, / 2z
x xu

x y W
y





   


 

(82)
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in which 0x  and 0y  represent the coordinates of the reference point on the boundary and are specified as 

(0,0). The cross section is discretized with a uniform grid spacing of 0.02 in.x y    , resulting in 50 

and 100 material points in the -x  and in the -y directions, respectively.  

 The bond-based and ordinary state-based PD warpage predictions and their comparison with the FEA 

results are shown in Figure 16. Comparisons of the stress predictions are shown in Figures 17 and 18. As 

shown in these figures, the agreement is remarkable, and the traction-free boundary conditions are 

enforced through fictitious regions. The PD results capture the expected warping behavior. 

 

 

Figure 15. Rectangular bar under torsion. 
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 (a)  (b) (c) 

Figure 16.  Displacement variation: (a) bond-based solution, (b) ordinary state-based solution, and (c) 

exact solution. 

 

 

 (a)  (b) (c) 

Figure 17.  Shear stress, xz , variation: (a) bond-based solution, (b) ordinary state-based solution, and (c) 

exact solution. 
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 (a)  (b) (c) 

Figure 18.  Shear stress, yz , variation: (a) bond-based solution, (b) ordinary state-based solution, and (c) 

exact solution.
 

 

 

 

 

 

 

8.5. Rectangular bar with a pre-existing crack under torsion 

 The rectangular bar has a pre-existing edge crack length of a , as shown in Figure 19. The crack 

length is varied from 0 to b , as investigated by Armero [9]. The external boundary conditions and 

loading are the same as those of the previous problem. The traction-free conditions on the crack surfaces 

are also imposed explicitly as  

 

     0, 0 , 0 0z
yz

u
x y x y x x

y
  

 
           

(83) 

or 

 

   0, 0z
x xu

x y
y





   


 

(84)
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The cross section is discretized with a uniform grid spacing of 0.005 in.x y    , resulting in 200 and 

400 material points in the -x  and in the -y directions, respectively.  

 The bond-based and ordinary state-based PD predictions for the shear stress norm for varying crack 

lengths are shown in Figures 20 and 21, respectively. These predictions are in remarkable agreement with 

the results of Armero [9], who employs finite elements with embedded discontinuities. Figure 22 presents 

the stress vectors near the crack. As expected, the results show that the stress vectors are aligned with the 

crack ( 0)yz  . Also, the crack opening displacement is shown in Figure 23. The PD analysis predicts a 

cusp-like crack opening displacement near the crack tip. It is similar to that obtained by Silling [2000].  

 

 

Figure 19. Rectangular bar with a pre-existing crack under torsion. 
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 / 0a b    / 0.125a b     / 0.25a b     / 0.375a b    

 

  

 / 0.5a b    / 0.625a b     / 0.75a b     / 1.0a b    

Figure 20. Bond-based PD predictions for stress norm 2 2

xz yz    . 

 

 

  / 0a b    / 0.125a b     / 0.25a b     / 0.375a b    
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 / 0.5a b    / 0.625a b     / 0.75a b     / 1.0a b   

Figure 21. Ordinary state-based PD predictions for stress norm 2 2

xz yz    . 

 

 

 

Figure 22. Ordinary state-based PD predictions for stress vector ,xz yz   Ĳ  close to the crack surface 

for / 0.75a b  .   
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Figure 23. Crack tip opening profile at the crack surface for / 0.5a b  . 

 

9. Final remarks 

 The classical equilibrium equations for anti-plane shear and torsional deformations present only one 

engineering constant; i.e., shear modulus. Therefore, bond-based peridynamics does not suffer from the 

loss of an independent engineering constant as in the case of in-plane deformation with a constraint on the 

Poisson’s ratio being 1/3. If the degree of nonlocality is insignificant, then both the ordinary state-based 

and bond-based peridynamics lead to the same predictions. However, if the degree of interaction among 

the material points needs to be specified, then the ordinary state-based peridynamics may be better suited, 

such as in the case of a porous medium with fluid pressure. This study describes the determination of the 

PD material parameters for both formulations, as well as their correction near the free surfaces and 

interface of dissimilar materials. Inherent with the nonlocal formulations, the imposition of the boundary 

conditions requires volume constraints. This study also describes the implementation of the essential and 

natural boundary conditions. The validity of the equations of motion for both ordinary state-based and 

bond-based peridynamics, the surface correction procedure, and implementation of the boundary 

conditions are established by considering benchmark problems with complex geometry and boundary 
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conditions. Comparison of the PD predictions with the FEA results proves the fidelity of the 

peridynamics, which offers its distinct advantage for predicting damage paths. 
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