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BOUNDARY LAYERS IN PRESSURE-DRIVEN FLOW
IN SMECTIC A LIQUID CRYSTALS∗

I. W. STEWART† , M. VYNNYCKY‡, S. MCKEE†, AND M. F. TOMÉ§

Abstract. This article examines the steady flow of a smectic A liquid crystal sample that is
initially aligned in a classical “bookshelf” geometry confined between parallel plates and is then
subjected to a lateral pressure gradient which is perpendicular to the initial local smectic layer
arrangement. The nonlinear dynamic equations are derived. These equations can be linearized and
solved exactly to reveal two characteristic length scales that can be identified in terms of the material
parameters and reflect the boundary layer behavior of the velocity and the director and smectic layer
normal orientations. The asymptotic properties of the nonlinear equations are then investigated to
find that these length scales apparently manifest themselves in various aspects of the solutions to
the nonlinear steady state equations, especially in the separation between the orientations of the
director and smectic layer normal. Non-Newtonian plug-like flow occurs and the solutions for the
director profile and smectic layer normal share features identified elsewhere in static liquid crystal
configurations. Comparisons with numerical solutions of the nonlinear equations are also made.
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1. Introduction. Nematic liquid crystals generally consist of elongated rod-like
molecules that have a preferred local average direction. A unit vector n, called the
director, is introduced to describe this average direction of the molecular alignment.
Smectic liquid crystals are more ordered than nematics and, for many materials,
the smectic phases occur at a temperature below that for which the same material
exhibits the nematic phase. The smectic A (SmA) liquid crystal phase occurs when the
molecules are arranged within parallel layers where the director is commonly aligned
perpendicular to the layers and parallel to the local unit layer normal, a, as shown
in Figure 1(a). Further details on the physics of liquid crystals can be found in the
books by Chandrasekhar [8] and de Gennes and Prost [12], while more mathematical
treatments can be found in the books by Stewart [31] and Virga [35].

The aforementioned depiction of SmA liquid crystals is a rather idealized version
of this phase and the model used below will allow for discrepancies between the
orientation of the director and the normal to the smectic layers, as shown schematically
in Figure 1(b). This is especially relevant in flow problems where the layer normal
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need not necessarily coincide everywhere with the director. A separation between
the director and layer normal was considered by Ribotta and Durand [27] and this,
together with the sources mentioned in the next section, motivated the nonlinear
dynamic continuum theory introduced by Stewart [33] that will be deployed in the
problem to be investigated in this article. We consider a sample of SmA liquid crystal
confined by fixed parallel planar plates separated at a distance d apart in a bookshelf-
type geometry, as shown in Figure 2(a). This figure depicts the anticipated steady
state smectic layer structure when a constant pressure gradient is applied in the x-
direction, as has been discussed by de Gennes [11] and de Gennes and Prost [12,
p. 431] for linearized model equations in the case when n and a are constrained to
coincide. Indeed, de Gennes sketches the flow field (see Figure 2(c) and Figure 2(a)
in [11]) and argues that the velocity, u, normal to the layers is given by

(1.1) u(z) = −λp
∂p

∂x

(

1− cosh(κz)

sinh(κL)

)

,

where λp is the permeation coefficient, 2L is the plate separation distance, and κ =
1/

√

ηλp, where κ is comparable to the smectic interlayer distance (in the range 20∼
80 Å) and η is the “one-constant” approximation of the viscosity. The purpose of
this paper is to clarify and quantify what exactly is happening in this pressure-driven
flow when n and a are anchored at the plates. It will transpire that not only does
the boundary layer anticipated by de Gennes [11] exist, but another, considerably
smaller one affecting n and a also exists; furthermore, it will be shown that these
phenomena are particularly sensitive to changes in the magnitudes of the material
parameters. Such effects have been reported by experimentalists [5, 6] but it has not
previously been possible to capture their qualitative features via previous restricted
linear model equations in which n and a always coincide. We shall demonstrate how
this can be achieved and we shall provide a comprehensive asymptotic analysis of the
nonlinear equations; these will be verified and made more precise through numerical
computation.

The paper is organized as follows. Section 2 summarizes the dynamic theory, pro-
vides a mathematical description of the pressure-driven flow problem, and derives the
governing nonlinear dynamic equations. These nonlinear equations are first linearized
in section 3 in order to gain a preliminary insight into the steady state problem.
It turns out that these equations can be solved exactly for all material parameters;
moreover, two physically relevant length scales, given in (3.22) below, can be identi-
fied precisely in terms of the material parameters. These length scales will be shown
to be directly related to the magnitudes of two physically important boundary layer
“distances,” which are in turn connected to the relative reorientations of n and a and
the classical boundary layer “displacement thickness” in relation to the velocity pro-
file. A plug-like flow profile occurs in the solution for the velocity. The results derived
from the linearized equations allow appropriate rescaled quantities to be introduced
and these enable the boundary layers to be estimated when asymptotic and numeri-
cal solutions to the nonlinear equations are sought in sections 4 and 5; comparisons
between these results will be made and four distinct regions will be identified. The
article closes in section 6 with a discussion.

2. Dynamic theory and description of the problem. The SmA dynamic
theory of Stewart [33], which allows n and a to separate, will be summarized in
section 2.1 before we go on to discuss, in section 2.2, the geometrical set-up and
the particular model equations for a pressure-driven flow of SmA confined between



FLOW IN SmA 1819

Fig. 1. (a) A schematic diagram of locally arranged planar layers of SmA liquid crystal. In
an undistorted configuration in the bulk, away from any boundary influences, the layers prefer to be
equidistant and the local layer normal a coincides with the director n. (b) The layer and director
alignments may be perturbed from their preferred undistorted orientations, in which case a and n

need no longer coincide. The orientation angles θ and δ, for n and a, respectively, are measured
relative to the direction of the undistorted layer normal.

two fixed parallel plates. It will be shown that there are three governing dynamic
equations, given below by (2.29), (2.35), and (2.37), and it will be solutions to these
equations that will be investigated subject to a symmetry requirement and suitable
boundary conditions.

2.1. Dynamic theory. The dynamic theory for SmA liquid crystals formulated
by Stewart [33] will be summarized briefly here. Cartesian tensor notation and the
summation convention will be used so that any suffix that is repeated precisely twice
in an expression is summed from 1 to 3. Partial differentiation with respect to the
variable xj is denoted by a subscript j preceded by a comma. Following the notation
introduced in Figure 1, the smectic layer normal a is given by

(2.1) ai =
Φ,i

|∇Φ| , aiai = 1 ,

where the smectic layers are modeled by the layer function Φ. The usual Oseen [24]
constraint, ∇×a = 0, a condition that is widely accepted for modeling the equilibrium
structures of layered smectic phases in the absence of dislocations, will not be imposed
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because small distortions to lamellar-like layer structures of SmA generally violate this
condition.

The director n must satisfy the constraint

(2.2) nini = 1 ,

and the incompressibility condition is given by

(2.3) vi,i = 0 ,

where v is the velocity. The rate of strain tensor A and vorticity tensor W are defined
in the usual way by

(2.4) Aij =
1

2
(vi,j + vj,i), Wij =

1

2
(vi,j − vj,i),

and, following the standard notation for nematics, the co-rotational time flux N of
the director n is defined by

(2.5) N = ṅ−Wn .

A superposed dot represents the usual material time derivative given by

(2.6)
D

Dt
=

∂

∂t
+ vi

∂

∂xi
.

The general equations that arise from the balance law for linear momentum, in the
absence of external body forces and generalized external body forces, are

(2.7) ρv̇i = −p̃,i + g̃jnj,i + |∇Φ|aiJj,j + t̃ij,j ,

where ρ is the density, p̃ = p + wA, where p is the pressure and wA is the energy
density, and J is a “phase flux” term defined by

(2.8) Ji = − ∂wA

∂ Φ,i
+

1

|∇Φ|

[

(

∂wA

∂ap,k

)

,k

− ∂wA

∂ap

]

(δpi − apai) .

Note that J is a natural nonlinear extension to the versions discussed in [1, 2,
16, 11, 12]: when it is suitably linearized for small changes in the layer and director
orientations, then it reduces to the explicit expressions found in [1, 2] when n and
a are allowed to separate. It further reduces to the classical results in [12, 16] when
n ≡ a. The constitutive equations for the viscous stress t̃ij and g̃i are, respectively,

t̃ij = α1(nkAkpnp)ninj + α2Ninj + α3niNj + α4Aij

+α5(njAipnp + niAjpnp) + (α2 + α3)niAjpnp

+ τ1(akAkpap)aiaj + τ2(aiAjpap + ajAipap)

+ κ1(aiNj + ajNi + niAjpap − njAipap)

+ κ2(nkAkpap)(niaj + ainj)

+ κ3[(nkAkpnp)aiaj + (akAkpap)ninj ]

+ κ4[2(nkAkpap)ninj + (nkAkpnp)(ainj + niaj)]

+ κ5[2(nkAkpap)aiaj + (akAkpap)(niaj + ainj)]

+ κ6(njAipap + niAjpap + aiAjpnp + ajAipnp)(2.9)
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and

(2.10) g̃i = −γ1Ni − γ2Aipnp − 2κ1Aipap ,

where

(2.11) γ1 = α3 − α2 and γ2 = α2 + α3 .

The above coefficients α1 to α5, τ1, τ2 and κ1 to κ6 are dynamic viscosity coefficients.
The viscosities α1 to α5 are nematic-like, while the three viscosities α4, τ1, and τ2
are analogous to the classical incompressible SmA viscosities [16, equation (3.33)]; κ1

to κ6 are “coupling” viscosities that are related to the combined effects of nematic
and SmA behavior. We remark here that a more extensive theory for SmC [22] has
similar contributions.

The balance of angular momentum in the absence of generalized external body
forces leads to the equations

(2.12)

(

∂wA

∂ni,j

)

,j

− ∂wA

∂ni
+ g̃i = µni ,

where µ is a Lagrange multiplier that arises from the constraint (2.2) and can usu-
ally be eliminated or evaluated by taking the scalar product of (2.12) with n. The
permeation equation is

(2.13) Φ̇ = −λpJi,i ,

where λp ≥ 0 is the permeation coefficient. This links the layer flux through a
stationary medium to the relevant thermodynamic force [12, 28]. Permeation in locally
planar smectics can be thought of as a weak flow of material through the smectic layers
in the direction of the local layer normal [20]. This idea was first introduced in the
context of liquid crystals by Helfrich [18]. Equations (2.2), (2.3), (2.7), (2.12), and
(2.13) provide nine equations in the nine unknowns Φ, ni, vi, p, and µ ; the smectic
layer normal a is, of course, determined by (2.1) from the solution for Φ.

One elementary candidate for an energy density is that used by Stewart [33], which
has been based upon the one evidently first introduced by Ribotta and Durand [27]
and other variants deployed in references [1, 2, 29, 33, 32, 30, 34, 13, 37, 38]. It is
given by [33]

(2.14) wA = 1

2
Kn

1 (∇·n)2+ 1

2
Ka

1 (∇·a)2+ 1

2
B0( |∇Φ|+ n · a− 2)2+ 1

2
B1

{

1− (n·a)2
}

.

This energy density is invariant under the simultaneous changes in sign n → −n
and a → −a, which is equivalent to invariance under the simultaneous changes n →
−n and ∇Φ → −∇Φ . The first term on the right-hand side of (2.14) represents
the usual elastic splay deformation of the director n, while the second term is a
measure of the bending of the smectic layers; both Kn

1 and Ka
1 are positive elastic

constants (measured in newtons). The third term represents smectic layer compression
and originates from the classical descriptions of SmA liquid crystals [12, 16, 2]; B0

is the positive layer compression constant. The fourth expression accounts for the
strength of the coupling between n and a with the positive constant B1 having the
same dimensions as B0 (energy per unit volume): in an equilibrium state this energy
contribution is clearly minimized when n and a are parallel. This term can equally
be written as 1

2
B1(n × a)2 since n and a are unit vectors, which is the form used
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in [1, 2, 29]. Although B1 has been investigated theoretically, measurements for it are
scarce in the literature. Nevertheless, Ribotta and Durand [27] have estimated that
B1 � B0. The coupling constant B1 can alter the critical threshold for the onset of
the classical Helfrich–Hurault effect (smectic layer undulations induced by a magnetic
or electric field). This has been investigated by Stewart and Stewart [30], where it
was shown that for small magnitudes of B1 the critical field strength for the onset of
this effect is lower than that for the classical case, which is recovered as this coupling
constant increases: this is indicative of an increased coupling between n and a. The
above model does not exclude the possibility that n and a may coincide at particular
locations or regions.

The nonlinear steady state equations for pressure-driven channel flow will be
derived in the next section. When this system of coupled equations is linearized, it
turns out that it can be solved explicitly via the theory of linear ordinary differential
equations: the most influential material parameters appear to be λp, K

n
1 , and B1,

reflecting the importance of permeation, director distortions, and coupling of the
layer orientation to the director; although B0 appears in the nonlinear equations, this
constant does not appear in the linear equations for a steady state pressure-driven
flow. This is a direct consequence of the fact that the coefficient multiplying B0 is not
leading order. The linearized problem is solved in section 3. The solutions from the
linear equations will be discussed in relation to known results in the literature. They
can also be used for making appropriate comparisons with the asymptotic results and
the numerically derived solutions to the nonlinear equations that are investigated in
section 4.

2.2. Geometrical set-up and governing equations. Figure 2(a) represents
a schematic diagram of a sample of SmA, bounded by planar boundary plates placed a
distance d apart at z = ±d/2, once a steady state has been reached under the influence
of a pressure-driven flow in the x-direction. The orientations of n and a are described
by the angles θ(z) and δ(z), respectively, measured relative to the horizontal x-axis,
as shown in Figure 2(b). A non-Newtonian plug-like flow profile is anticipated, based
on the earlier work by de Gennes [11], and this is pictured in the notional flow profile
shown relative to the local smectic layer arrangement in Figure 2(c). The standard
no-slip boundary conditions apply and the SmA layers and the director are assumed
to be strongly anchored to the plates, in accordance with the boundary and symmetry
conditions. It is therefore supposed that the velocity v is of the form

(2.15) v = (u(z), v(z), 0) ,

where the possibility of a transverse flow component in the y-direction is included
(a common phenomenon in nematic liquid crystals [31, 10]). The no-slip boundary
conditions are

(2.16) u(±d/2) = v(±d/2) = 0 .

Strong anchoring of the director and the smectic layers leads to the boundary condi-
tions

(2.17) θ(±d/2) = ±θ0, δ(±d/2) = ±δ0 ,

where we have, for the moment, supposed symmetrical alignments at the boundaries
with positive values for θ0 and δ0. The anticipated symmetry of the steady state
profile shows that there is an expected change in the concavity of δ at z = 0 : as z
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Fig. 2. (a) A schematic illustration of the anticipated alignment of the SmA layers in a steady
state situation when there is a pressure-driven flow in the x-direction. The liquid crystal is placed
between two parallel fixed boundary plates located at z = ±d/2 and the sample is assumed to be uni-
formly aligned in the y-direction. Boundary layers are expected to occur which will have a consequent
effect upon the orientation of the SmA layers near the boundaries. (b) The local orientation angles
of n and a in relation to the local smectic layer profile are described by θ(z) and δ(z), respectively,
measured relative to the horizontal x-axis. (c) A diagram of the anticipated plug-like permeation
flow normal to the smectic layers mentioned by de Gennes [11]. The velocity profile is expected to
be relatively flat except near the boundary walls.
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increases through zero, its second derivative should change from negative to positive
with δ′′(0) = 0 in the center of the sample, where a prime denotes differentiation with
respect to z. We are then led to impose the interior symmetry condition

(2.18) δ′′(0) = 0.

Although this requirement may seem unusual, it proves critical since it enables the
solution of the coupled equations derived below. It is also appropriate, and not unex-
pected, that the third derivative of δ will appear naturally in the permeation equation
(see (3.2)); as highlighted by de Gennes and Prost [12, p. 411], it is the presence of a
third-order derivative that is responsible for the highly anisotropic behavior of such a
system.

The director can be set as

(2.19) n = (cos θ, 0, sin θ).

Following the technique outlined by Walker [36], we can set the layer function Φ to be

(2.20) Φ(x, z) = x+

∫ z

−d

2

tan(δ(r)) dr,

from which it is seen that |∇Φ| = sec δ, provided −π/2 < δ < π/2. Furthermore,
from the definition in (2.1), it follows that

(2.21) a = (cos δ, 0, sin δ),

and, consequently, we have

(2.22) n · a = cos(θ − δ).

Straightforward calculations reveal that N and g̃, defined in (2.5) and (2.10), are
given by

(2.23) N = 1

2
(u′ sin θ, v′ sin θ,−u′ cos θ)

and

g̃ = 1

2
γ1(u

′ sin θ, v′ sin θ,−u′ cos θ)− 1

2
γ2(u

′ sin θ, v′ sin θ, u′ cos θ)

− κ1(u
′ sin δ, v′ sin δ, u′ cos δ) .(2.24)

It proves convenient to first examine the equations that arise from the balance
of angular momentum given in (2.12). Calculations using the above expressions show
that they are

M(θ, δ) cos δ + g̃1 = µ cos θ,(2.25)

v′ [ (γ1 − γ2) sin θ − κ1 sin δ ] = 0,(2.26)

M(θ, δ) sin δ +Kn
1

d2

dz2
sin θ + g̃3 = µ sin θ,(2.27)

where, for notational convenience, the function M has been introduced as

(2.28) M(θ, δ) = B1 cos(θ − δ)−B0[ sec δ + cos(θ − δ)− 2 ] .
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Equation (2.26) cannot be satisfied for arbitrary nonzero boundary conditions im-
posed on θ and δ unless v′ ≡ 0. Hence v(z) must generally be a constant and this
constant must be zero by the no-slip boundary conditions. There will therefore be no
transverse flow in this problem and the velocity reduces to v = (u(z), 0, 0, ). Equation
(2.26) is then satisfied automatically. The Lagrange multiplier can be eliminated from
the remaining two equations by multiplying (2.25) by sin θ and (2.27) by cos θ and
subtracting the resulting expressions. This final step allows the angular momentum
equations to reduce to the single equation given by

(2.29)

M(θ, δ) sin(θ − δ)−Kn
1 cos θ

d2

dz2
sin θ +

du

dz

[

α3 cos
2θ − α2 sin

2θ + κ1 cos(θ − δ)
]

= 0,

where use has been made of the relations in (2.11).
The divergence of J appears in the linear momentum and permeation equations:

however, the evaluation of this divergence will only involve the derivative of the third
component of J because of the assumed dependency on z and therefore only J3 needs
to be calculated explicitly. We have, from (2.8), that

J3 = cos2δ

[

Ka
1 cos δ

d2

dz2
sin δ +M(θ, δ) sin(θ − δ)

]

−B0 sin δ[ sec δ + cos(θ − δ)− 2 ] .

(2.30)

Direct calculations reveal that ρv̇ = 0 and therefore the linear momentum equations
(2.7) become, in an obvious notation,

p,x = J3,3 + t̃13,3 ,(2.31)

p,y = 0 ,(2.32)

p,z = −(wA),3 + g̃jnj,3 + J3,3 tan δ + t̃33,3 .(2.33)

The right-hand side of (2.33) is a function of z only and so we may abbreviate it
as G(z). Under the assumption that a constant pressure gradient, a < 0, is applied
(so that the pressure induced flow is in the positive x-direction), we can identify the
pressure from these equations as

(2.34) p(x, z) = ax+

∫ z

− d

2

G(s) ds+ p0,

where p0 is an arbitrary constant pressure. It is evident that this form for the pressure
satisfies (2.32) and (2.33) and so these particular equations can be eliminated from
the discussion. Insertion of p(x, z) into (2.31) leads to

(2.35) a = J3,3 + t̃13,3 ,

which is the single equation that remains from the linear momentum equations. The
only component of the viscous stress that needs to be evaluated explicitly is therefore
t̃13. Inserting v, n, and a into (2.4), (2.23), and (2.9) gives

t̃13 = 1

2
u′ (α4 + α5 − α2 + τ2) +

1

4
u′

[

α1 sin
2(2θ) + τ1 sin

2(2δ)
]

+ u′
[

κ1 cos(θ + δ) + κ6 cos(θ − δ) + (α2 + α3) cos
2θ

]

+ 1

2
u′

[

κ2 sin
2(θ + δ) + κ3 sin(2θ) sin(2δ)

]

+ u′ sin(θ + δ) [κ4 sin(2θ) + κ5 sin(2δ) ] .(2.36)
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The results from (2.30) and (2.36) can be inserted into (2.35) when required for
calculations.

It can be verified that the material derivative of Φ, defined in (2.20), with respect
to the velocity v = (u, 0, 0) is Φ̇ = u and so the permeation equation (2.13) becomes

(2.37) u+ λpJ3,3 = 0.

The three governing equations for this pressure-driven flow are given by (2.29),
(2.35), and (2.37), subject to the boundary conditions (2.16), and (2.17) and the
requirement (2.18). Before going on to solve these nonlinear equations, it is worth
examining the linearized equations in order to identify any potential key material
parameters to the problem that may be indicative of characteristic behavior on various
length scales or ranges of parameters. The linear equations will be solved analytically
to obtain exact solutions. This procedure will be carried out in the next section
as a preliminary study prior to obtaining asymptotic and numerical solutions to the
nonlinear equations that will be discussed in sections 4 and 5.

3. Linearized equations. Equations (2.29), (2.35), and (2.37) can be linearized
under the assumption that the solutions u, θ, δ and their derivatives are small. This
leads to the three equations

B1(θ − δ)−Kn
1 θ

′′ + u′(α3 + κ1) = 0,(3.1)

Ka
1 δ

′′′ +B1(θ
′ − δ′) + ηu′′ − a = 0,(3.2)

u+ λp [K
a
1 δ

′′′ +B1(θ
′ − δ′) ] = 0,(3.3)

where, as an abbreviation, we have defined the viscosity coefficient η by

(3.4) 2η = α2 + α4 + α5 + τ2 + 2 (α3 + κ1 + κ6) .

The viscosity coefficients on the right-hand side of (3.4) tend to zero as the transition
to an isotropic fluid takes place, except for the coefficient α4: the reason for this is
analogous to that for the case of smectic C liquid crystals [31, section 6.3.2]. Therefore
in the isotropic limit, when n and a are absent, only the usual viscosity for a New-
tonian fluid remains, namely, η = α4/2. This observation will be useful for making
comparisons between the results that follow and the well-known results for isotropic
fluids.

To simplify the presentation, the approximation Kn
1 = Ka

1 will be used since
these elastic constants can be considered as being of the same order of magnitude (cf.
Auernhammer et al. [2]): the exact solutions can still be found when this approxima-
tion is not made but the results become unwieldy and tend to obscure the key roles
of various material parameters. Notice also that, using (3.3), (3.2) can be rewritten
as

(3.5) ηu′′ − uλ−1
p − a = 0 .

The linear system of equations consisting of (3.1), (3.3), and (3.5) can then be written
as a matrix system of the form

(3.6)
dx

dz
= Ax+ b ,

where the column vectors x(z) and b are

(3.7) x = (θ, θ′, δ, δ′, δ′′, u, u′)T, b = (0, 0, 0, 0, 0, 0, a/η)T,
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and A is the 7×7 constant coefficient matrix given by

A =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

0 1 0 0 0 0 0
B1/K

a
1 0 −B1/K

a
1 0 0 0 (α3 + κ1)/K

a
1

0 0 0 1 0 0 0
0 0 0 0 1 0 0
0 −B1/K

a
1 0 B1/K

a
1 0 −1/Ka

1λp 0
0 0 0 0 0 0 1
0 0 0 0 0 1/ηλp 0

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

.

(3.8)

The system (3.6) can be solved exactly. The eigenvalues of A are ±λ1, ±λ2, and zero,
this latter eigenvalue having algebraic multiplicity three, where

(3.9) λ1 =
1

√

ηλp

, λ2 =

√

2B1

Ka
1

.

The general solution of such a system with a repeated eigenvalue can be determined
by constructing a suitable fundamental matrix R(z) [40, p. 582]. The general solution
is then

(3.10) x(z) = R(z) c+ R(z)

∫ z

R−1(s)b ds ,

where c = (c1, c2, . . . , c7)
T is a constant column vector. The seven components of

this constant vector can be determined from the six boundary conditions contained
in (2.16) and (2.17) and the requirement (2.18) (recall that v(z) ≡ 0). Explic-
itly, we find that R(z) = Q(z)diag(eλ1z , e−λ1z, 1, eλ2z, e−λ2z , 1, 1), where Q(z) is the
matrix

(3.11) Q(z) =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

β1 β1 1 −1 −1 1

2
z2 + z + 1 + 2λ−2

2 z + 1
λ1β1 −λ1β1 0 −λ2 λ2 z + 1 1
1 1 1 1 1 1

2
z2 + z + 1 z + 1

λ1 −λ1 0 λ2 −λ2 z + 1 1
λ2
1 λ2

1 0 λ2
2 λ2

2 1 0
−λ2

1β2 λ2
1β2 0 0 0 0 0

−λ3
1β2 −λ3

1β2 0 0 0 0 0

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

,

and the constants β1 and β2 are defined by

β1 =
[B1ηλp(α3 + κ1 − η)−Ka

1 (α3 + κ1) ]

η [Ka
1 +B1λp(α3 + κ1 − η) ]

,(3.12)

β2 =
(Ka

1 )
2(λ2

1 − λ2
2)

ηλ3
1 [K

a
1 +B1λp(α3 + κ1 − η) ]

.(3.13)

Applying the conditions (2.16), (2.17), and (2.18) to the solution (3.10) shows that

(3.14) c2 = −c1, c3 = −c7, c5 = −c4, c6 = 0
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with

c1 = −a sech(λ1d/2)

2λ4
1ηβ2

,(3.15)

c4 =
cosech(λ2d/2)

16B1Ka
1ηλp(λ2

2 − λ2
1)

{

[ 4B1(δ0 − θ0) + ad ]

× (2B1ηλp −Ka
1 )− 4aB1λ

3

2
p η

1

2 (α3 + η + κ1) tanh(λ1d/2)
}

,(3.16)

c7 =
1

d
(δ0 + θ0)−

ad2

48Ka
1

(3.17)

+
aλp

Ka
1dλ1

(η − α3 − κ1)(tanh(λ1d/2)− λ1d/2) .

These constants allow the solutions for θ, δ, and u, extracted from the solution x(z),
to be written as

θ(z) = 2β1c1 sinh(λ1z)− 2c4 sinh(λ2z) + f(z) +
az

2B1

,(3.18)

δ(z) = 2c1 sinh(λ1z) + 2c4 sinh(λ2z) + f(z) ,(3.19)

u(z) = aλp

[

cosh(λ1z)

cosh(λ1d/2)
− 1

]

,(3.20)

where f(z) is the cubic polynomial

(3.21) f(z) = c7z +
az

12B1Ka
1

{

B1

[

6λp(η − α3 − κ1) + z2
]

− 3Ka
1

}

.

It can be verified directly that these solutions satisfy (3.1) to (3.3) and the boundary
conditions (2.16) and (2.17), in addition to fulfilling the requirement (2.18). It is also
evident that there are two length scales that are crucial to the behavior of the above
solutions, namely,

(3.22) L1 = 1/λ1 and L2 = 1/λ2 .

The length L1 coincides with the form of the length scale discussed in [11, 9, 3]
and [12, p. 418] and is expected to be of the order of a molecular length (or smectic
interlayer distance) when the liquid crystal is in the SmA phase far away from the
nematic transition temperature. In this context, we also refer the reader to the related
experiments and elementary modeling of permeative flow in SmA by Walton, Stewart,
and Towler [39]. The length scale L2 is novel and enters through the presence of the
coupling constant B1. For the typical values listed in Table 1, L1 ∼ 2.4 nm and
L2 ∼ 0.25 nm and so L1 is expected to be an order of magnitude larger than L2. This
discrepancy could potentially lead to the observation of two distinct boundary layer
phenomena. The exact solution for u stated above coincides with that given in [11]
and [12, p. 430] for a set of linearized flow equations.

As the SmA phase approaches the nematic (or isotropic) phase, the permeation
coefficient λp is expected to diverge [12], in the sense that λp → ∞; in particular, the
viscosity coefficients will also vanish as the isotropic phase is approached except for
the Newtonian viscosity α4, in which case 2η = α4. The equations for θ and δ are
irrelevant in the isotropic phase when the characteristic properties of liquid crystals
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Table 1

Typical material parameters discussed in the text.

Parameter Typical value

d 10−5 m
Kn

1 5×10−12 N
Ka

1 5×10−12 N
B0 8.95×107 Nm−2

B1 4×107 Nm−2

λp 10−16 m2 Pa−1 s−1

α1 −0.0060 Pa s
α2 −0.0812 Pa s
α3 −0.0036 Pa s

α4, τ1, τ2 0.0652 Pa s
α5 0.0640 Pa s

κ1, κ2,. . . , κ6 0.0020 Pa s
−a 500 Pam−1

will be absent, but the solution for u will remain valid in the isotropic limit. It is
straightforward to see that taking the appropriate limit as λp → ∞ in (3.20) leads to

(3.23) u(z) =
a

2η

(

z2 − d2

4

)

,

which is the standard parabolic profile for Poiseuille flow. This particular limiting
case has also arisen in an application of linear dynamic theory for SmA when it is
assumed that n and a coincide [12, p. 432].

Illustrative examples of the above exact solutions can now be presented for the
typical parameter values stated in Table 1 (cf. [12, 31, 34]). Not all of these selected
parameters appear in the linearized equations; nevertheless, they will be required
for the asymptotic analysis and the numerical calculation of solutions to the non-
linear equations in the next two sections. A common value for the sample depth
has been set at d = 10µm; experimental set-ups of bookshelf aligned samples of
SmA commonly have depths that can be varied between 30µm and 200µm [6] and
smectic C samples can have depths from 8µm upward [19]. The elastic constants
Kn

1 and Ka
1 and the viscosities α1 to α5 are based on representative values for the

nematic liquid crystal 5CB [31]. The viscosities τ1, τ2 are estimates; κ1 to κ6 are
expected to be lower in magnitude than the other viscosity coefficients as the SmA
phase approaches the nematic phase. The value for B0 is typical for the smectic
layer compression constant [31]. The coupling constant B1 is in accord with the
estimates by Ribotta and Durand [27] (B1 � B0) for SmA and the value for the
permeation constant λp is that estimated by Kléman and Lavrentovich [20, p. 328]
(previous measurements for λp by Chan and Webb [7] for lamellar bilayers were sub-
stantially smaller that this: the value chosen in Table 1 agrees with the experimental
evidence reported by Krüger [21], as discussed in [20]). The value for the applied
pressure gradient is of the approximate magnitude used experimentally for nematics
in [25, 26] when −a = −p,x ∼ ∆p/L, where ∆p can be of the order 20 Pa and L of the
order 35mm.

The solutions for θ and δ are displayed in Figure 3, where their boundary val-
ues have been fixed at θ0 = 0.2 rad and δ0 = 0.15 rad. Figure 3(a) shows that θ
and δ virtually coincide except within regions very close to the boundaries and that
their profiles are almost linear across the central bulk of the sample. Although not
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Fig. 3. Plots of the exact solutions for θ and δ provided by (3.18) and (3.19) using the material
parameter values stated in Table 1 when θ0 = 0.2 rad and δ0 = 0.15 rad. (a) Solutions over the full
sample depth −d/2 ≤ z ≤ d/2. The profile is virtually linear away from the boundaries, as explained
in the text. (b) The occurrence of a boundary layer is evident near the boundary at z = d/2,
with a similar effect at z = −d/2, by symmetry. The boundary layer is roughly of the order of
L2 =

√

Ka

1 /2B1 ∼ 0.25nm.

represented here, the polynomial f(z) is almost indistinguishable from the orientation
angles across the center of the sample and therefore f(z) is a good approximation to
θ and δ far from the sample boundaries. Figure 3(b) shows the boundary layer near
z = d/2. As expected from the above analysis, this boundary layer is approximately
of the order of L2 =

√

Ka
1/2B1. These results, from the linearized equations, do

not exhibit some aspects of the boundary layer behavior that have been reported
elsewhere for nonlinear static equations of SmA [32, 36, 13, 14]; the length scale for
the boundary layer effect closest to the boundary in the statics of SmA is known [32]
to be similarly controlled by a term that is also proportional to 1/

√
B1 (albeit in a

different context that does not involve flow). For example, there is a greater interplay
between θ and δ near the boundaries which results in novel “competing” preferences
in the relative orientations of these angles that are driven by nonlinear contributions
to the governing equations (which can also include weak anchoring of the director)
and are necessarily absent from the above linear analysis. Such effects were observed
to occur over two different length scales in statics: one is clearly similar in form to L2,
but the other cannot be related to L1 since this length scale, which involves viscosity
and permeation, can arise only when flow is present.

Figure 4(a) shows the symmetrical profile of the solution for the velocity u, which
is clearly reminiscent of non-Newtonian plug flow. There is a boundary layer effect
at each boundary and an example is shown in Figure 4(b) at the z = d/2 boundary.
The width of the boundary layer, δ∗, may be provided by a standard measure of
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Fig. 4. Plots of the solution for u given by (3.20), using the material parameters from Table 1.
(a) The velocity profile for u across the sample −d/2 ≤ z ≤ d/2. (b) The boundary layer near
z = d/2; a similar effect occurs at z = −d/2, by symmetry. The boundary layer can be estimated
via (3.24) and, in this example, is of the order of L1 =

√
ηλ ∼ 2.4nm.

“displacement thickness” for fluids near boundaries, defined for semi-infinite samples
in [4, p. 311]; such a definition is known to generally underestimate the actual bound-
ary layer depth but it does nevertheless provide a rigorous and consistent method of
measurement. We find that in this case we may introduce an analogous finite sample
depth version as

(3.24) δ∗ =

∫ 0

−d

2

(

1− u(z)

u(0)

)

dz =
1

4λ1

cosech2(λ1d/4) (2 sinh(λ1d/2)− λ1d) ,

where the usual upper limit of infinity in the integral version for semi-infinite samples
has been replaced by zero, where the maximum value of the velocity, u(0), occurs
in a finite sample. It turns out that δ∗ ∼ 2.4 nm, which, in this particular example,
happens to coincide with L1 =

√

ηλp .

The role of L2 as a dominant length scale for boundary effects is now evident
in the solutions for the orientation angles θ and δ, whereas L1 appears to control
the displacement thickness in the velocity profile of u. Two length scales will also
be expected to arise naturally when the nonlinear equations are investigated in the
context of boundary layer phenomena.

4. Asymptotic solutions to the nonlinear equations. In this section we will
examine asymptotic solutions to the governing nonlinear dynamic equations (2.29),
(2.35), and (2.37) subject to the boundary conditions (2.16) and (2.17) and the interior
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symmetry requirement (2.18). We begin by noticing that (2.35) may be replaced by
the equation

(4.1)
dt̃13
dz

= a+
u

λp

by substituting for the derivative of J3 via (2.37). First, we observe that (2.29), (2.37),
and (4.1) are invariant under the transformations

(4.2) u (z) = u (−z) , θ (z) = −θ (−z) , δ (z) = −δ (−z) .

Together with the boundary conditions in (2.16), (2.17) and the interior condition
(2.18), this might suggest that we can replace the problem formulated for −d/2 ≤
z ≤ d/2 with one formulated on 0 ≤ z ≤ d/2 having the boundary conditions

du

dz
= 0, θ = 0, δ = 0,

d2δ

dz2
= 0, at z = 0,(4.3)

u = 0, θ = θ0, δ = δ0, at z = d/2.(4.4)

Nevertheless, we will not do this here; see the appendix for a discussion on this matter.

4.1. Nondimensionalization. We choose to rescale by setting

(4.5) z ∼ d, u ∼ [u] ,

where [u] = −λpa (> 0), so that (2.29), (2.37), and (4.1) become, respectively,

{

cos (θ − δ)− B0

B1

[sec δ + cos (θ − δ)− 2]

}

sin (θ − δ)− Kn
1

B1d2
cos θ

d2

dz2
sin θ

+
[u]

B1d

du

dz

[

α3 cos
2 θ − α2 sin

2 θ + κ1 cos (θ + δ)
]

= 0,(4.6)

B1λp

[u] d

d

dz

(

cos2 δ

[

Ka
1

B1d2
cos δ

d2

dz2
sin δ +

(

cos (θ − δ)

− B0

B1

[sec δ + cos (θ − δ)− 2]

)

sin (θ − δ)

]

− B0

B1

sin δ [sec δ + cos (θ − δ)− 2]

)

+ u = 0,(4.7)

[u]α4

d2
d

dz

(

du

dz

{

1

2

(

1 +
α5

α4

− α2

α4

+
τ2
α4

)

+
1

4

[

α1

α4

sin2(2θ) +
τ1
α4

sin2(2δ)

]

+
κ1

α4

cos (θ + δ) +
κ6

α4

cos (θ − δ) +

(

α2

α4

+
α3

α4

)

cos2 θ

+
1

2

[

κ2

α4

sin2 (θ + δ) +
κ3

α4

sin(2θ) sin(2δ)

]

+ sin (θ + δ)

[

κ4

α4

sin(2θ) +
κ5

α4

sin(2δ)

]})

= a+
[u]

λp
u.(4.8)

These three equations form the basis for the analysis in this section.
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Set

B =
B0

B1

, ᾱ1 =
α1

α4

, ᾱ2 =
α2

α4

, ᾱ3 =
α3

α4

, ᾱ5 =
α5

α4

, τ̄1 =
τ1
α4

, τ̄2 =
τ2
α4

,

κ̄1 =
κ1

α4

, κ̄2 =
κ2

α4

, κ̄3 =
κ3

α4

, κ̄4 =
κ4

α4

, κ̄5 =
κ5

α4

, κ̄6 =
κ6

α4

,(4.9)

where all these are O (1) constants. The parameter B is a measure of the relative
influence of the coupling constant B1 and compression constant B0; it is known from
the analysis of static configurations that a small variation in this control parameter
has a high influence on θ and δ within a boundary layer [32]. Equations (4.6) to (4.8)
become, respectively,

{cos (θ − δ)−B [sec δ + cos (θ − δ)− 2]} sin (θ − δ)

− Kn
1

B1d2
cos θ

d2

dz2
sin θ − λpaα4

B1d

du

dz

[

ᾱ3 cos
2 θ − ᾱ2 sin

2 θ + κ̄1 cos (θ + δ)
]

= 0,
(4.10)

d

dz

(

cos2 δ

[

Ka
1

B1d2
cos δ

d2

dz2
sin δ + (cos (θ − δ)−B [sec δ + cos (θ − δ)− 2]) sin (θ − δ)

]

−B sin δ [sec δ + cos (θ − δ)− 2]

)

−
(

ad

B1

)

u = 0,

(4.11)

−λpα4

d2
d

dz

(

du

dz

{

1

2
(1 + ᾱ5 − ᾱ2 + τ̄2) +

1

4

[

ᾱ1 sin
2(2θ) + τ̄1 sin

2(2δ)
]

+ κ̄1 cos (θ + δ) + κ̄6 cos (θ − δ) + (ᾱ2 + ᾱ3) cos
2 θ

+
1

2

[

κ̄2 sin
2 (θ+δ)+κ̄3 sin(2θ) sin(2δ)

]

+ sin (θ+δ) [κ̄4 sin(2θ)+κ̄5 sin(2δ)]

})

= 1− u.(4.12)

From Table 1, we have

(4.13)
λpα4

d2
∼ 10−9,

Kn
1

B1d2
∼ 10−9,

Ka
1

B1d2
∼ 10−9,

ad

B1

∼ 10−10,

which suggests that (4.10) to (4.12) will have boundary layers at z = ±1/2 of thickness

(4.14) (Kn
1 /B1)

1/2
/d, (Ka

1 /B1)
1/2

/d, (λpα4)
1/2

/d,

respectively, i.e., of order ∼10−9/2.

4.2. The static case. Consider first the case with u = 0. Denote

(4.15) εa =
Ka

1

B1d2
, εn =

Kn
1

B1d2
.

Since εa ∼ 10−9, εn ∼ 10−9, we choose to set

(4.16) εa = ε, εn = βε,

where β is an O(1) constant; in fact, from the values in Table 1, β = 1. To begin, we
first examine the two equations

(4.17) {cos (θ − δ)−B [sec δ + cos (θ − δ)− 2]} sin (θ − δ)− βε cos θ
d2

dz2
sin θ = 0
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and

d

dz

(

cos2 δ

[

ε cos δ
d2

dz2
sin δ + (cos (θ − δ)−B [sec δ + cos (θ − δ)− 2]) sin (θ − δ)

]

−B sin δ [sec δ + cos (θ − δ)− 2]

)

= 0;

(4.18)

the second of these implies that

cos2 δ

[

ε cos δ
d2

dz2
sin δ + (cos (θ − δ)−B [sec δ + cos (θ − δ)− 2]) sin (θ − δ)

]

−B sin δ [sec δ + cos (θ − δ)− 2] = C,

(4.19)

where C is a constant that needs to be determined. In the bulk, (4.17) reduces to

(4.20) {cos (θ − δ)−B [sec δ + cos (θ − δ)− 2]} sin (θ − δ) = 0,

which implies that either

(4.21) cos (θ − δ)−B [sec δ + cos (θ − δ)− 2] = 0 or sin (θ − δ) = 0.

Since the full numerical results indicate that θ ≈ δ, we consider the second possibility.
Equation (4.19) then implies that

(4.22) −B sin δ [sec δ − 1] = C.

The numerics also indicate that δ ≪ 1, which would then imply that C ≪ 1. There
is, however, a slight problem: the “small” term

cos2 δ

[

ε cos δ
d2

dz2
(sin δ) + (cos (θ − δ)−B [sec δ + cos (θ − δ)− 2]) sin (θ − δ)

]

(4.23)

was neglected in (4.19), but all that was left were terms which are themselves “small”;
in order to keep track of the size of what is being retained or neglected, formal
asymptotic expansions for δ and θ are therefore required.

A consistent formulation turns out to be possible if we have θ ∼ ε1/2; thus, we
set

(4.24) θ = ε1/2 (Θ0 + εΘ1 + · · · ) , δ = ε1/2 (∆0 + ε∆1 + · · · ) .

At leading order, ε1/2, (4.17) gives

(4.25) Θ0 = ∆0,

and, using (4.25), at ε3/2

(4.26) Θ1 −∆1 − β
d2Θ0

dz2
= 0.

At leading order, ε3/2, (4.19) gives, on using (4.25),

(4.27)
d2∆0

dz2
+Θ1 −∆1 −

1

2
B∆3

0 = C̄,
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where we have now set C = C̄ε3/2, where C̄ ∼ O (1), since the constant C must be of
order ε3/2. Combining (4.25) to (4.27), we have

(4.28) (1 + β)
d2Θ0

dz2
− 1

2
BΘ3

0 = C̄.

We will need boundary layers near z = ±1/2. Considering first the boundary
layer at z = 1/2, we set z = 1/2− ε1/2Z; (4.17) and (4.18) reduce to just

(4.29) {cos (θ − δ)−B [sec δ + cos (θ − δ)− 2]} sin (θ − δ)− β cos θ
d2

dZ2
(sin θ) = 0,

cos2 δ

[

cos δ
d2

dZ2
(sin δ) + (cos (θ − δ)−B [sec δ + cos (θ − δ)− 2]) sin (θ − δ)

]

−B sin δ [sec δ + cos (θ − δ)− 2] = C,

(4.30)

respectively. In this layer, θ, δ are O (1), but we need to consider how to match them
to the bulk flow, i.e., as Z → ∞. Since θ, δ ∼ ε1/2 in the bulk, we might be tempted
just to set

(4.31) θ, δ → 0 as Z → ∞;

however, we should first consider the behavior of Θ0,∆0 as z → 1/2.
Returning to (4.28), consider the possibility that

(4.32) (1 + β)
d2Θ0

dz2
∼ 1

2
BΘ3

0 when
1

2
− z ≪ 1.

This would imply that

(4.33) Θ0 ∼
A

1/2− z
,

where A satisfies

(4.34) A
(

4 (1 + β) −BA2
)

= 0 ;

the appropriate root for A, which is consistent with the boundary conditions for θ
and δ in (2.17), is then

(4.35) A =

(

4 (1 + β)

B

)1/2

.

Notice also that the form obtained in (4.33) is consistent with the leading-order bal-
ance that was assumed in going from (4.28) to (4.32). Next, for the purposes of
matching the bulk to the boundary layer flow, we write the bulk solution in terms of
the boundary layer variables; thus, at leading order, we have

(4.36) θ = ε1/2Θ0 =
A

Z
.

Hence, we obtain an improvement on (4.31): we now have θ, δ ∼ A/Z as Z → ∞.
Furthermore, in view of this behavior, we observe that (4.30), considered in the



1836 I. STEWART, M. VYNNYCKY, S. McKEE, AND M. TOMÉ

limit as Z → ∞, implies that C = 0. In turn, this implies that C̄ = 0; more-
over, the fact that d2δ/dz2 = 0 at z = 0 implies that d2Θ0/dz

2 = 0 at z = 0,
and hence that Θ0 (0) = 0. With this result, we have shown that, at this order,
the solution in θ is antisymmetric, in the manner discussed at the beginning of
section 4.

At this stage, the leading-order problem is still not entirely solved, since we have
yet to determine the bulk solution completely. Integrating (4.28), we have

(4.37)
1

2
(1 + β)

(

dΘ0

dz

)2

− 1

8
BΘ4

0 = D

subject to

(4.38) Θ0 (0) = 0

with D a constant to be determined; in addition, (4.33) must be satisfied. It is evident
that this must be solved numerically, although solving it as an initial-value problem
by starting at z = 0 will fail, because the singular behavior at z = 1/2 will not be
resolved; instead, it is necessary to start at z = 1/2 and integrate back to z = 0, with
D being iterated for, so as to ensure that (4.38) is satisfied. Setting z = 1/2− ζ, we
have

(4.39)
1

2
(1 + β)

(

dΘ0

dζ

)2

− 1

8
BΘ4

0 = D

with

(4.40) Θ0 (1/2) = 0 and Θ0 ∼ A

ζ
as ζ → 0.

Next, set Θ0 = F/ζ so that

(4.41)
1

2
(1 + β)

(

ζ
dF

dζ
− F

)2

− 1

8
BF 4 = Dζ4.

Then

(4.42) ζ
dF

dζ
= F ±

(

BF 4 + 8Dζ4

4 (1 + β)

)1/2

with

(4.43) F (0) = A and F (1/2) = 0.

It is clear that we should take the negative sign in (4.42) in order to ensure that the
first requirement in (4.43) is satisfied. The function F is then solved numerically and,
after iterating for D, is displayed in Figure 5(a); the constant D was found to be
D ≈ 680. The profile of Θ0 versus z is shown in Figure 5(b).
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Fig. 5. (a) The dependence of F upon ζ. (b) Θ0 as a function of z (static case).

All that remains is to solve the boundary layer equations; to summarize (after all
the simplifications) these satisfy

(4.44) {cos (θ − δ)−B [sec δ + cos (θ − δ)− 2]} sin (θ − δ)− β cos θ
d2

dZ2
(sin θ) = 0,

cos2 δ

[

cos δ
d2

dZ2
(sin δ) + (cos (θ − δ)−B [sec δ + cos (θ − δ)− 2]) sin (θ − δ)

]

−B sin δ [sec δ + cos (θ − δ)− 2] = 0,

(4.45)

since C ≡ 0 has been established, subject to

(4.46) θ = θ0, δ = δ0, at Z = 0 with θ, δ ∼ A

Z
as Z → ∞.

The numerical solutions (computed with COMSOL Multiphysics) for δ and θ are
shown in Figure 6; the boundary values have been selected as θ0 = π/6 and δ0 = π/16,
these being close to physically realistic data. Figure 6(a) shows the slow algebraic
decay of θ and δ, which is why such a large value of Z∞, the location of the outer
edge of the computational domain, is required. Figure 6(b) shows θ and δ closer to
Z = 0; the characteristic hump in δ is visible.

4.3. The dynamic case. We now consider what happens when u �= 0. Setting

(4.47) γ = −ad/B1, ν =
λpα4

d2
,
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Fig. 6. The dependence of θ and δ upon Z (static case). (a) The domain 0 ≤ Z ≤ 500. (b)
A restriction of the result in (a) to the domain 0 ≤ Z ≤ 30, which emphasizes the boundary layer
effects.

where γ, ν ≪ 1, we have

{cos (θ − δ)−B [sec δ + cos (θ − δ)− 2]} sin (θ − δ)

−βε cos θ
d2

dz2
sin θ + γν

du

dz

[

ᾱ3 cos
2 θ − ᾱ2 sin

2 θ + κ̄1 cos (θ + δ)
]

= 0,
(4.48)

d

dz

(

cos2 δ

[

ε cos δ
d2

dz2
sin δ + (cos (θ − δ)−B [sec δ + cos (θ − δ)− 2]) sin (θ − δ)

]

−B sin δ [sec δ + cos (θ − δ)− 2]

)

= −γu,

(4.49)

−ν
d

dz

(

du

dz

{

1

2
(1 + ᾱ5 − ᾱ2 + τ̄2) +

1

4

[

ᾱ1 sin
2(2θ) + τ̄1 sin

2(2δ)
]

+ κ̄1 cos (θ + δ) + κ̄6 cos (θ − δ) + (ᾱ2 + ᾱ3) cos
2 θ

+
1

2

[

κ̄2 sin
2 (θ+δ)+κ̄3 sin(2θ) sin(2δ)

]

+sin (θ+δ) [κ̄4 sin(2θ)+κ̄5 sin(2δ)]

})

= 1− u.

(4.50)

In order to proceed with an asymptotic analysis, it transpires that it will be
useful to split the analysis over four regimes, labeled I to IV in a natural ordering, as
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indicated schematically in Figure 9 later. It proves expedient, for calculations in the
following subsections, to consider region III first, followed sequentially by regions IV,
II, and I.

4.3.1. In the bulk (bulk region III). Consider the leading-order balance of
terms for (4.48) to (4.50) in the bulk. Equation (4.50) implies that u ≈ 1. Noting
that ε, γ, ν are more or less the same order of magnitude, i.e., 10−9 − 10−10, the
leading-order balance for (4.48) gives the same result as did (4.17), i.e., θ ≈ δ. The
major difference between the static and dynamic cases arises in (4.49). Suppose that
δ ∼ O ([δ]), where [δ] is to be determined, although clearly [δ] ≪ 1. Equation (4.49)
has terms with magnitudes

(4.51) ε [δ] , [δ]
3
, γ .

Consider, in turn, the possible leading-order balances in (4.49):
1. The balance used for the static case, [δ] ∼ ε1/2, is no longer valid here, since

ε3/2 ≪ γ.
2. We cannot have ε[δ] ∼ γ since γ/ε ∼ O(1), whereas we must have [δ] ≪ 1.
3. The only remaining possibility is [δ]3 ∼ γ, which implies [δ] ∼ γ1/3. This is

feasible since ε ≪ γ2/3.
By setting

(4.52) θ = γ1/3
(

Θ0 + γ1/3Θ1 + · · ·
)

, δ = γ1/3
(

∆0 + γ1/3∆1 + · · ·
)

,

(4.48) gives, at leading order, O(γ1/3) and Θ0 − ∆0 = 0. Equation (4.49) gives, at
leading order, O(γ), noting that εγ1/3 ≪ γ,

(4.53)
d

dz

(

1

2
BΘ3

0

)

= 1,

whence

(4.54) Θ0 = ∆0 =

(

2z +A∗
+

B

)1/3

,

where A∗
+ is a constant to be determined. For z < 0, there is something similar,

namely,

(4.55) Θ0 = ∆0 =

(

2z +A∗
−

B

)1/3

.

4.3.2. Boundary layer at z = 0 (bulk region IV). However, it is evident
that ∆0 will not satisfy the boundary condition at ∆′′

0 (0) = 0, and so we need a
boundary layer there. Suppose it is of thickness [z]. We set

(4.56) z = [z]Z, Θ0 = [Θ0] Θ̄0, ∆0 = [∆0] ∆̄0,

where [z] , [Θ0], and [∆0] are scales to be determined, although we expect

(4.57) [z] , [Θ0] , [∆0] ≪ 1.

Assume for the moment that the leading-order balance in (4.48) leads to

(4.58) {cos (θ − δ)−B [sec δ + cos (θ − δ)− 2]} sin (θ − δ) = 0 ,
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which implies that [Θ0] = [∆0] and

(4.59) Θ̄0 = ∆̄0.

Furthermore, from (4.49),

(4.60)
1

[z]

d

dZ

(

−εγ1/3 [∆0]

[z]
2

d2∆̄0

dZ2
+

γ [∆0]
3

2
B∆̄3

0

)

= γ .

Thus, to retain all terms in (4.60), we need

(4.61)
εγ1/3 [∆0]

[z]
2

= γ [z] = γ [∆0]
3
,

and hence

(4.62) [z] = ε3/8γ−1/4, [∆0] ∼ ε1/8γ−1/12

(and consequently θ, δ ∼ γ1/3[∆0] = γ1/3[Θ0], i.e., θ, δ ∼ ǫ1/8γ1/4). We are therefore
left with

(4.63)
d

dZ

(

−d2∆̄0

dZ2
+

1

2
B∆̄3

0

)

= 1,

and so

(4.64) −d2∆̄0

dZ2
+

1

2
B∆̄3

0 = Z +A,

where A is a constant to be determined. For correct matching as Z → ±∞, we need

A∗
± = 0. To see this we first observe from (4.64) that ∆̄0 ∼ (2Z/B)

1/3
when Z ≫ 1.

However,

(4.65) ∆0 = [∆0]∆̄0 = [∆0]

(

2[z]z

B

)1/3

=

(

2Z

B

)1/3

,

and so we deduce that A∗
± = 0.

Equation (4.64) now remains, subject to the requirements

(4.66)
d2∆̄0

dZ2
= 0 at Z = 0 , and ∆̄0 ∼

(

2Z

B

)1/3

as Z → ±∞ ,

which can be solved numerically. Figure 7(a) shows ∆̄0 versus Z for A = −1, 0, 1
and Figure 7(b) shows ∆̄′′

0 (0) versus A; clearly, the requirement that ∆̄′′
0 (0) = 0

necessitates that A = 0.
However, we should check that the assumption that led to (4.54) was correct. For

this, we require that

(4.67) γ1/3 [Θ0] ≫
εγ1/3 [Θ0]

[z]
2

,

which reduces, on using (4.59) and (4.62), to γ−1/2 ≫ ε1/4, which is easily satisfied.
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Fig. 7. (a) The dependence of ∆̄0 upon Z for A = −1, 0, and 1. (b) The dependence of ∆̄′′
0 (0)

upon A.

4.3.3. Transition layer (secondary boundary layer II). Again, we will need
boundary layers near z = ±1/2. First, we will need θ, δ ∼ γ1/3, so as to be able to
match to the bulk. Set z = 1

2
− [z]ζ. The orders of magnitude of the relevant terms

in (4.49) are

(4.68)
εγ1/3

[z]
3

,
γ2/3

[z]
,

γ

[z]
, γ .

This time, not all terms can be accommodated, since [z] ≪ 1, so the leading-order
balance must be between the first and the third term; thus,

(4.69)
εγ1/3

[z]3
∼ γ

[z]
=⇒ [z] = ε1/2γ−1/3.

Setting

(4.70) z =
1

2
− ε1/2γ−1/3ζ, δ = γ1/3∆, θ = γ1/3Θ,

(4.48) and (4.49) give, at leading order,

∆ = Θ,(4.71)

d

dζ

(

d2∆

dζ2
− 1

2
B∆3

)

= 0,(4.72)
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respectively, with

(4.73) ∆ →
(

1

B

)1/3

as ζ → ∞.

Note that as ζ → ∞,∆ must tend to ∆0 in the bulk (given by (4.58)) as z → 1

2
.

Note incidentally that the first term and last terms on the left-hand side of (4.48)
are of order γ1/3 and γ2/3ε−1/2ν, respectively. However, since ε and ν are of the same
order of magnitude in this problem, we use the fact that ε3/2 ≪ γ to conclude that
γ1/3 ≫ γ4/3ε−1/2ν, which then leads to (4.71). Also, observe that the terms that
have been retained in (4.72) from the original equation (4.49) are of order γ4/3ε−1/2,
whereas the term on the right-hand side of (4.49) is of order γ. Again, we use ε3/2 ≪ γ
to see that γ4/3ε−1/2 ≫ γ.

Equations (4.72) and (4.73) then lead to

(4.74)
d2∆

dζ2
− 1

2
B∆3 = −1

2
.

Observe the similarity between (4.74) and (4.32) in the “static” case; in particular,
we can note that, for ζ ≪ 1, ∆ ∼ A/ζ with A(2− 1

2
BA2) = 0. Selecting the positive

root then implies that

(4.75) ∆ ∼
(

4

B

)1/2
1

ζ
.

Now, we have, on multiplying (4.74) by d∆/dζ, integrating, and using (4.73),

(4.76)
1

2

(

d∆

dζ

)2

− 1

8
B∆4 = −1

2
∆+

3

8

(

1

B

)1/3

.

To solve (4.76) numerically, set ∆ = G/ζ so that

(4.77) ζ
dG

dζ
= G−

√

1

4
BG4 − ζ3G+

3

4

(

1

B

)1/3

ζ4,

again selecting the positive root, subject to G (0) = (4/B)
1/2

. Solving for G numeri-
cally, we obtain the profile for ∆ as shown in Figure 8, which also shows the function

G. Observe also that since ν ≪
(

ε1/2γ−1/3
)2
, (4.50) simply reduces to u = 1 in this

layer, as in the two bulk regions.

4.3.4. Boundary layer at z = 1

2
(primary boundary layer I). However,

∆ (and Θ) as determined above still cannot satisfy the boundary conditions at z =
1/2. For this, we need a sublayer where θ, δ ∼ O (1) and 1

2
− z ∼ ε1/2; setting

z = 1/2− ε1/2Z, (4.48) and (4.49) reduce, at leading order, to just

(4.78) {cos (θ − δ)−B [sec δ + cos (θ − δ)− 2]} sin (θ − δ)− β cos θ
d2

dZ2
sin θ = 0,
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Fig. 8. The dependence of ∆ and G on ζ.

cos2 δ

[

cos δ
d2

dZ2
sin δ + (cos (θ − δ)−B [sec δ + cos (θ − δ)− 2]) sin (θ − δ)

]

−B sin δ [sec δ + cos (θ − δ)− 2] = C∗,

(4.79)

where C∗ is a constant to be determined. In a similar fashion to the analysis of the
static case (cf. (4.17) to (4.35)) we note that

(4.80) θ, δ ∼
(

4

B

)1/2
1

Z

and therefore observe that (4.79), considered in the limit as Z → ∞, implies C∗ = 0.
Now, on matching to the layer outside this one, i.e., where 1

2
− z ∼ ε1/2γ−1/3, we

must have θ, δ → 0 as Z → ∞. Note that these equations are almost exactly the
same as those for the boundary layer in the “static” case; the only difference is the
constant of proportionality, A, for θ, δ as Z → ∞:

(4.81) A =

{

(4 (1 + β) /B)
1/2

“static, ”

(4/B)
1/2

“dynamic.”

Thus for the sublayer 1

2
− z ∼ ε1/2 we require to solve numerically (4.78) and (4.79)

(with C∗ = 0) subject to the boundary conditions

(4.82) θ = θ0, δ = δ0 at Z = 0 with θ, δ → 0 as Z → ∞.

Note also that the problem for u in this layer, i.e.,

−ν

ε

d

dZ

(

du

dZ

{

1

2
(1 + ᾱ5 − ᾱ2 + τ̄2) +

1

4

[

ᾱ1 sin
2(2θ) + τ̄1 sin

2(2δ)
]

(4.83)

+ κ̄1 cos (θ + δ) + κ̄6 cos (θ − δ) + (ᾱ2 + ᾱ3) cos
2 θ

+
1

2

[

κ̄2 sin
2 (θ + δ) + κ̄3 sin(2θ) sin(2δ)

]

+ sin (θ + δ) [κ̄4 sin(2θ) + κ̄5 sin(2δ)]

})

= 1− u
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subject to

(4.84) u = 0 at Z = 0 with u → 1 as Z → ∞ ,

can be solved numerically after we have solved for θ and δ.

4.4. Summary. The asymptotic results from the previous subsections can be
summarized as follows. The static problem is characterized by

• a boundary layer where

1/2− z ∼ ε1/2, θ, δ ∼ 1;

• a bulk region where

z ≪ 1

2
− ε1/2, θ, δ ∼ ε1/2.

The dynamic problem has four key regions of behavior characterized by
• a primary boundary layer (I) where

1

2
− z ∼ ε1/2, θ, δ ∼ 1;

• a secondary boundary layer and transitional region (II) with

1

2
− z ∼ ε1/2γ−1/3,

1

2
− z ≫ ε1/2, θ, δ ∼ γ1/3;

• a bulk region (III) where

z ≫ ε3/8γ−1/4,
1

2
− z ≫ ε1/2γ−1/3, θ, δ ∼ γ1/3;

• a bulk region (IV) where

z ∼ ε3/8γ−1/4, θ, δ ∼ ε1/8γ1/4.

The identification of the behavior of the orientation angles in these four key regions
for the dynamic problem is displayed schematically in Figure 9.

5. Comparison with numerical solutions. Figure 10 shows comparisons be-
tween the asymptotic results and the numerically derived results for the nonlinear
dynamic problem for the fixed parameter values of κ = 1 and B = 1, the other pa-
rameters being set to the values indicated in Table 1. For clarity of exposition, the
results have been displayed on log-log plots. The left column of plots displays the
asymptotically derived results from the previous section for the orientation angles θ
and δ and the velocity profile u over the four key layer regions, as indicated. The
right column shows the numerically derived solutions to the fully nonlinear dynamic
problem. It can be clearly seen that the approximated asymptotic results accurately
reflect the behavior of the numerical solutions.

Numerically derived solutions for θ and δ are given in Figure 11. Examples are
shown for four sets of values of the key parameter values κ and B, as indicated
in the figure. There are clearly significant nonlinear effects in the solutions near the
boundary as κ and B vary. The orientation angles close to the boundary, z∼1/2, over
region (I), appear to be particularly sensitive to changes in the values of these control
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Fig. 9. A schematic description of the four key regions (separated by dotted vertical lines) that
identify the main boundary layer phenomena of the dynamic problem discussed in the text.

parameters. Similar results were found in the static case in [32]. As an example, we
have taken the situation in Figure 11(d) and compared these results for the dynamic
problem with those previously derived in Figure 10(d) in [32] for the analogous static
problem; in both cases κ = 0.1 and B = 0.1. The comparisons for θ and δ are shown
in Figures 12(a) and (b), respectively. Notice that, for emphasis, the vertical axes on
these plots are on a log scale in order to highlight the differences between the dynamic
and static solutions to this problem. It is clear that flow has a more dramatic effect
on the orientation angles close to the central bulk of the sample, corresponding to
regions (III) and (IV) in Figure 9, rather than the regions close to the boundaries.

Usually, we would expect agreement between asymptotic and numerical results to
improve as the numerical value of an asymptotic parameter tends to its limiting value.
For the dynamic case, however, we have a problem. The analysis was for the situation
as γ → 0; however, if γ becomes too small

(

γ ∼ ε3/2
)

, we will simply recover the static

case. Thus, we should only expect agreement if ε3/2 ≪ γ ≪ 1. With ε ∼ 10−9 and
γ ∼ 10−10, this condition is satisfied; however, decreasing γ (by decreasing -a) may
lead to a result that we were not expecting. Paradoxically, in order to obtain good
agreement between asymptotic and numerical results to see the trend it is necessary
to choose a = −50000,−5000,−500, rather than −500,−50,−5.

6. Discussion. This article has investigated a classical bookshelf arrangement
of SmA liquid crystal confined between parallel boundary plates and subjected to
a pressure gradient, as outlined in section 2 and shown schematically in Figure 2.
The nonlinear dynamic equations for the steady state version of this problem were
also derived in section 2. These complex coupled equations were then linearized in
section 3 in order to gain insight into potentially significant behavior or boundary layer
effects. The linear solutions were solved exactly and these explicit solutions allowed
the identification of the two length scales L1 and L2 stated in (3.22). The length scale
L1, which is related to the boundary layer width identified around regions (I) and
(II) in section 4, has also been identified via the classical dynamic theory for SmA
liquid crystals [12]. However, the more recent dynamic theory for SmA developed
in [33] allows a more sophisticated model of boundary layer effects and led to the
identification of a novel second length scale, L2, which is expected to be of an order
of magnitude smaller than L1, estimated from solutions to the linear equations.
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Fig. 10. The figures on the left are derived from the asymptotic results discussed in the text for
the four key layer regions identified in Figure 9, whereas those on the right are from direct numerical
computations, all taken as functions of 1

2
− z and for the fixed parameter values κ = 1 and B = 1.

(a) and (b) show θ, (c) and (d) show δ, and (e) and (f) show u.

Motivated by the identification of at least two possible length scales for differing
boundary layer phenomena that arose from the solutions to the linearized problem, an
investigation of the nonlinear equations was carried out in section 4 that was guided by
these preliminary results. Four regions, including a primary and a secondary boundary
layer, were identified by means of asymptotic analysis and have been summarized
qualitatively in Figure 9. These regions were confirmed by numerical solutions to the
nonlinear equations for the SmA orientation angles θ and δ and flow component u;
comparisons between the asymptotic and numerical results were shown in Figure 10
for fixed values of the material control parameters κ and B. The behavior of θ, δ,
and u as κ and B were allowed to vary was shown in Figure 11; these solutions were
derived numerically from the full nonlinear equations. The behavior was shown to
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Fig. 11. Numerically derived solutions to the dynamic problem for θ and δ as functions of 1
2
−z

with λp = 10−16. (a) κ = 1, B = 1; (b) κ = 10, B = 1; (c) κ = 1, B = 0.1; (d) κ = 0.1, B = 0.1.

be particularly sensitive to changes in the parameters κ and B around the boundary
layer regions (I) and (II), as is evident in the figure. The qualitative features of the
graphs in Figure 11 are very similar to those displayed for the static version of this
dynamic problem that have been discussed previously [32]. A comparison between
the dynamic and static versions of the orientation angles for this problem was made
in Figure 12. The effect of flow was more evident near the center of the sample
around the regions (III) and (IV) that were identified by an asymptotic analysis and
confirmed numerically.

Elston [17] used an experimental set-up to examine the static solutions of a
bookshelf-type problem for SmA, analogous to the set-up discussed in this article.
He found that the smectic layer reorientation for samples of the liquid crystal SCE12
with a surface pretilt of θ0 = π/6 (as used in the calculations for Figure 6 and Figures
9 to 12 above) occurred over a boundary layer with a width of around 0.5µm close
to the boundary. For the rescaled length introduced here via (4.5) with d = 10−5m,
0.5µm corresponds to a dimensionless length scale of 5× 10−2, which clearly matches
the length scale that reaches from the boundary to region (III) in Figures 9 to 12. This
length scale over which the smectic layers reorient (via δ) to an idealized bookshelf
alignment therefore approximately corresponds to a physical width of the same order
of magnitude as that observed experimentally by Elston; this result also agrees with
the results reported by Bonvent et al. [5]. The results presented in this article advance
the insight of the earlier work by de Gennes [11] and, more importantly, quantify his
results in the wider context of nonlinear boundary layer phenomena.

Other geometrical set-ups for similar steady state problems can be constructed
and the boundary layer phenomena investigated. Preliminary studies of cylindrical
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Fig. 12. A comparison of the results for θ and δ for the steady state dynamic problem in
Figure 11(d) with the results for the static problem derived in [32, Figure 10(d)].

Couette flow and Poiseuille flow of SmA have been made by Walker and Stewart [37,
38] and these, together with the results in this article, can provide impetus for future
investigations of boundary layer phenomena. Of particular interest would be a future
study based on a recently revised version of the SmA bulk energy that has been
constructed by De Vita and Stewart [15], which is of direct relevance to the modeling
of lipid bilayers, based on the work of May [23]. To quadratic order in gradients, and
under certain restricted symmetries, this revised energy coincides with that presented
here in (2.14); however, it allows for more complex nonlinear effects to be considered
as well as different symmetry conditions which may be of interest in the modeling of
biological lamellar systems.

Appendix A. Consider (4.17) and (4.18) when ε ≫ 1. We require to solve

d2

dz2
sin θ = 0,(A.1)

d

dz

(

cos3 δ
d2

dz2
sin δ

)

= 0(A.2)

subject to

(A.3) δ = ±δ0, θ = ±θ0 at z = ±1/2,
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(A.4)
d2δ

dz2
= 0 at z = 0.

For θ, we have just

(A.5) sin θ = 2z sin θ0 .

For δ, we have

(A.6) cos3 δ
d2

dz2
(sin δ) = C,

where C is a constant to be determined. Also,

(A.7) cos3 δ

[

− sin δ

(

dδ

dz

)2

+ cos δ
d2δ

dz2

]

= C,

which will imply

(A.8) − cos3 δ (0) sin δ (0) [δ′ (0)]
2
= C.

Clearly, if δ(z) = −δ(−z), then we will simply arrive at C = 0 and sin δ = 2z sin δ0
and the question is, are there any other solutions? If there is another solution, then
it cannot be antisymmetric and we must have C �= 0, as well as δ(0) �= 0. Setting
Y = sin δ, we obtain

(A.9) Y ′′ =
C

(1− Y 2)
3/2

subject to

Y (±1/2) = ± sin δ0,(A.10)

Y ′′ + Y Y ′2/
(

1− Y 2
)

= 0 at z = 0.(A.11)

Equation (A.9) can be integrated once, after multiplying by Y ′, to give

(A.12)
1

2
Y ′2 =

CY

(1− Y 2)
1/2

+D,

or, alternatively,

(A.13)
1

2
cos2 δ

(

dδ

dz

)2

= C tan δ +D,

where D is a further constant of integration. However, there seems to be little more
that can be done analytically, but it is straightforward to solve (A.9) numerically,
subject to (A.10), for different values of C to see what is happening. Figure 13(a)
shows δ as a function of z for C = −1, 0, 1 and Figure 13(b) shows δ′′(0) as a function
of C; clearly, the requirement that δ′′(0) = 0 necessitates C = 0.
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Fig. 13. (a) The dependence of δ on z for C = −1, 0, 1. (b) The dependence of δ′′(0) on C.
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