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Synchronizability of random rectangular graphs
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(Received 12 April 2015; accepted 28 July 2015; published online 11 August 2015)

Random rectangular graphs (RRGs) represent a generalization of the random geometric graphs in

which the nodes are embedded into hyperrectangles instead of on hypercubes. The

synchronizability of RRG model is studied. Both upper and lower bounds of the eigenratio of the

network Laplacian matrix are determined analytically. It is proven that as the rectangular network

is more elongated, the network becomes harder to synchronize. The synchronization processing

behavior of a RRG network of chaotic Lorenz system nodes is numerically investigated, showing

complete consistence with the theoretical results.VC 2015 AIP Publishing LLC.

[http://dx.doi.org/10.1063/1.4928333]

Many real-world complex spatial networks cannot be
accurately described by the traditional Erd€os–R�enyi ran-
dom graph model but may be well represented by the
random geometric graph (RGG) model, which is formu-
lated over a cubic region in space. Even so, for some com-
plex spatial networks, such as rectangle-shaped urban
street maps, infrastructure and transportation systems,
and various sensor networks, the cubic-shaped RGG
model becomes unreasonable and so has to be replaced
by the recently developed random rectangular graph
(RRG) model, in which the spatial domain of the net-
works is a rectangle that generalizes the square domain
of the RGG. The changes in the structure of the embed-
ding space dramatically affect the Laplacian spectra of
such RGGs, which significantly affect some dynamical
behavior of the underlying networks. In particular, it will
be shown here that the synchronization process and the
synchronizability of the networks are very much affected
by these changes. Therefore, relevant important network
topological and dynamical properties need to be carefully
investigated. Motivated by these facts and observations,
the present paper addresses the important issue of net-
work synchronizability for the RRGs, analytically deter-
mining both upper and lower bounds of their sync-index,
which is a key eigenratio of the network Laplacian matri-
ces. Finally, to visualize and also validate the theoretical
results, the synchronization processing behavior of a
RRG network of chaotic Lorenz system nodes is numeri-
cally investigated, showing complete consistence with the
mathematical analysis.

I. INTRODUCTION

The study of both topological and dynamical properties

of the networked skeletons of many real-world complex sys-

tems has motivated and stimulated tremendous interests and

efforts in pursuing network science today. This has triggered

wide-range applications in almost all scientific and techno-

logical fields. A fundamental principle in the study of com-

plex networks is the development and analysis of simplified

random models that capture the essence of both structural

and dynamical properties of the studied real-world networks.

The first of these models was described under a unified

framework of random graph theory established by Erd€us and

R�enyi in the late 1950s.10,19 It was followed by the more

recent developments of the small-world network model

introduced by Watts and Strogatz23 and the scale-free ran-

dom network model formulated by Barab�asi and Albert.3

However, many real-world networked systems are embedded

into geometrical spaces, but those simplified random models

do not capture the spatial constraints in which the networks

grow. These spatially embedded networks may represent

many different kinds of scenarios, ranging from urban street

networks, infrastructure and transportation systems, to bio-

logical networks such as the brain neuronal networks, and

vascular and cellular networks, just to mention a few. When

modeling such spatial networks, the most commonly used

random model is the RGG. In a RGG, each node is randomly

assigned geographic coordinates and then two nodes are con-

nected if the Euclidean distance between them is smaller

than or equal to a certain radial distance threshold.

The RGGs have found important applications in the

study of wireless sensor networks (WSNs), where the nodes

represent the sensors that are deployed onto a given geo-

graphical region and their communications define the con-

nectivity of the nodes. This is analogous to many other

communication systems ranging from mobile phones to

radios. The sensors may be deployed on a given geographic

area either by using a deterministic deployment in which ev-

ery sensor is located at a specified position, e.g., a grid

deployment, or by using a random deployment in which ev-

ery sensor is randomly located in the space. Although the

deterministic deployment appears to have certain advantages

compared to the random one, e.g., it may require fewer sen-

sors to achieve a designated degree of coverage and
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connectivity, in practice the random deployment is more

preferable. The preference is mainly based on the fact that

sensors are cheap and a large number of them can be easily

used and also because it is difficult to locate each sensor pre-

cisely at some location considering the real geographic con-

straints of the region in applications. Due to the increasing

number of sensors to be deployed in future applications, the

random strategy is gaining more importance. In this respect,

as Kenniche and Ravelomananana13 recently argued, “the

modeling with Random Geometric Graphs is the most appro-

priate” for the purposes of random sensor deployment.

However, it has been noticed that a large number of

real-world complex networks or their sub-networks possess

excellent dynamical properties such as high dynamic syn-

chronizability, good controllability, and fast information

transmission capability.2,15,17,19 Synchronization has been

studied for RGGs as a general process of importance in com-

munication networks.8,9,14 In particular, the communication

among the sensors in WSNs requires synchronization

between the transmitter and receiver.24 As just one more

example, synchronized brain waves can greatly enhance

human learning.20 Here, one problem of fundamental interest

for the analysis of synchronization in a RGG is the influence

of the geometric shape of the region, where the nodes are

located, on the synchronizability of the resulting network.

For the sake of simplicity, we consider here an example

based on the problem of wireless sensors deployment.

Similar motivational problems are easy to formulate in dif-

ferent contexts and scenarios. In a WSN, a large number of

cheap sensors are scattered randomly inside a target area,

which may be a city, a forest, or a given geographical region.

Such an area to be monitored is assumed to be a square

region of side length a. This is a reasonable approximation

for many geographical regions, such as the San Francisco

city, which is known as the “seven-by-seven-mile square,”

due to the mainland city’s squared shape of nearly 11 km by

11 km. However, other regions, like Manhattan that is

21.6 km long and 3.7 km wide, are far from being square-like

and they are very much of a rectangular shape. Here, we are

interested in investigating, both analytically and computa-

tionally, how this elongation of the squared region in which

the nodes of a RGG are deployed affects the synchronizabil-

ity of the network constructed on it.

We start by introducing the concept of RRG, which was

recently developed by Estrada and Sheerin,12 and continue

with the description of the synchronization model to be con-

sidered. Then, we state the main result of this work which

proves that for a RRG with a fixed number of nodes and a

given connection radius, it is not possible for the network to

achieve synchronization independently of the value of the

coupling strength when the rectangle is very elongated. We

finally support our analytic results with computational simu-

lations on some representative RRGs.

II. PRELIMINARIES

Some graph-theoretic concepts and notation are first

introduced.11

A graph G ¼ ðV;EÞ is defined by a set of n nodes (verti-

ces) V and a set of m edges (links) E ¼ fðu; vÞju; v 2 Vg
between the nodes. An edge is said to be incident to a node u

if there exists a node v 6¼ u such that either ðu; vÞ 2 E or

ðv; uÞ 2 E. The degree of a node, designated by ki, is the

number of edges incident to node i. The graph is said to be

undirected if the edges are formed by unordered pairs of

nodes. A path of length k in G is a set of nodes,

i1; i2;…; ik; ikþ1, such that for all 1 � l � k; ðil; ilþ1Þ 2 E,

there are no repeated nodes. The graph is connected if there is

a path connecting every pair of nodes. The shortest of all paths,

each of which connects two nodes in the graph, is the shortest

path distance between the corresponding nodes. The diameter,

diamðGÞ, of the graph is the maximum of all shortest path dis-

tances between pairs of nodes in the graph. A graph is said to

be simple if it has unweighted edges with no self-loops (edges

from a node to itself) and no multiple edges between any pair

of nodes. Throughout this work, we will always consider con-

nected undirected simple graphs, also called networks.

In a simple graph, the local clustering coefficient, usu-

ally known as the Watts-Strogatz clustering coefficient, of a

node i is defined as6,23 Ci ¼ 2ti
kiðki�1Þ, where ti is the number of

triangles involving the node i and ki is the degree of the node

i. Taking the mean of these values as i varies among the

nodes in G, one gets the average clustering coefficient of the

network: hCi ¼ 1
n

Pn
i¼1 Ci.

The Laplacian matrix of a network is defined as the

square symmetric matrix L with entries

Luv ¼
ki if u ¼ v

�1 if ðu; vÞ 2 E

0 otherwise

8u; v 2 V:

8

<

:

The Laplacian matrix can be written as L ¼ K � A, where

A ¼ ðauvÞ is the adjacency matrix of the graph and

K ¼ diagðki71Þ, where ki is the degree of node i, i.e.,

ki ¼
P

jaij. The Laplacian matrix is positive semi-definite

with eigenvalues denoted by 0 ¼ k1 � k2 � � � � � kn. If the

network is connected, the multiplicity of the zero eigenvalue

is equal to one, i.e., 0 ¼ k1 < k2 � � � � � kn, and the small-

est nontrivial eigenvalue k2 is known as the algebraic con-

nectivity of the network.

III. RANDOM RECTANGULAR GRAPHS

A RGG is defined as follows.7,19

First, n nodes are uniformly and independently distrib-

uted in the d-dimensional unit cube ½0; 1�d . Then, two nodes

are connected by an edge if their Euclidean distance is at

most r> 0, which is a given fixed number known as the

radius.

Now, define a unit hyperrectangle as the Cartesian product

½a1; b1� � ½a2; b2� � � � � � ½ad; bd�, where ai; bi 2 R; ai � bi,

and 1 � i � d. Hereafter, for notational simplicity without

loss of generality, we restrict our discussions to the 2-

dimensional case, which corresponds to a rectangle of unit

area, called the unit rectangle. Thus, the RRG is defined by

distributing uniformly and independently n nodes inside the

unit rectangle ½a; b� and then connecting two nodes with an
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edge if their Euclidean distance is at most r> 0.12 The rest

of the construction process remains the same as for the RGG.

This means that RRG ! RGG as ða=bÞ ! 1. In this sense,

the RRG is a generalization of the RGG.

Figure 1 illustrates a RGG and a RRG constructed with

the same number of nodes and edges.

The following are some of the most important structural

properties of RRGs, which have been previously studied

analytically.12

Theorem 1. (Average node degree):12 Let GRðn; a; b; rÞ
be a RRG with n nodes embedded in a rectangle of sides

with lengths a and b, and connection radius r. Then, the

expected average degree, denoted as E�k, is

E�k ¼ n� 1ð Þf
abð Þ2

; (1)

where

f ¼

0 � r � b pr2ab� 4

3
aþ bð Þr3 þ 1

2
r4;

b � r � a � 4

3
ar3 � r2b2 þ 1

6
b4 þ a

4

3
r2 þ 2

3
b2

� �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

r2 � b2
p

þ2r2ab arcsin
b

r

� �

;

a � r �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

a2 þ b2
p

�r2 a2 þ b2ð Þ þ 1

6
a4 þ b4ð Þ � 1

2
r4

þb
4

3
r2 þ 2

3
a2

� �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

r2 � a2
p

þ a
4

3
r2 þ 2

3
b2

� �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

r2 � b2
p

�2abr2 arccos
b

r

� �

� arcsin
a

r

� �

 !

:

8

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

:

(2)

Proposition 2. (Connectivity):12 Let GRðn; a; b; rÞ be a

RRG with n nodes embedded in a rectangle of sides with

lengths a and b, and connection radius r. If
ðn�1Þfi
ðabÞ2 ¼ log n

þ a, for a given a 2 R, then

lim
n!1

P½GRðn; a; rÞ is connected� ¼ exp ð�exp ð�aÞÞ: (3)

Proposition 3. (Degree distribution):12 Let GRðn; a; b; rÞ
be a connected RRG with n nodes embedded in a rectangle of

sides with lengths a and b, and connection radius r. If

n ! 1, the distribution of the node degrees tends to a

Poisson distribution of the form

p kð Þ ’
�k
k
exp ��kð Þ
k!

: (4)

In the following, the important unit rectangular case

with ab¼ 1 (so, b ¼ a�1) is discussed in more detail.

Proposition 4. (Average path length):12 Let GRðn; a; rÞ
be a connected RRG with n nodes embedded in a rectangle

of sides with lengths a and b ¼ a�1, and connection radius r.

Then, the average path length �l is bounded as

�l � a2 þ ar þ 1

2ar
: (5)

Let Ci be the clustering coefficient of node i in the

graph, defined by

Ci ¼
2ti

ki ki � 1ð Þ ;

and let �C be the average of the clustering coefficient for all

nodes in the graph. Then, we have the following result.

Proposition 5. (Clustering coefficient):12 Let GRðn; a; rÞ
be a connected RRG with n nodes embedded in a rectangle

of sides with lengths a and b ¼ a�1, and connection radius r.

Then, the average clustering coefficient of the nodes of the

RRG is

�C ¼
2r2arccos d

2r

� �

� 1

2
d

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4r2 � d
2

p

pr2
; (6)

FIG. 1. Illustration of a RGG created with 250 nodes embedded into a unit

square with a¼ 1 (top) and RRG into a unit rectangle with a¼ 2 (bottom).

In both cases, the nodes are connected if they are at a Euclidean distance

smaller than or equal to r¼ 0.15.
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where d is the expected Euclidean distance between any pair

of connected nodes in GRðn; a; rÞ.

IV. DYNAMICAL NETWORK SYNCHRONIZATION

As mentioned above, complex network synchronization

finds many important applications in the natural and physical

worlds, such as in human learning20 and in wireless sensor

networks.24 In this section, as an important application, we

study the network synchronization problem on some repre-

sentative RRGs.

A. Complex dynamical network model

Consider a dynamic network of n nodes interconnected

in a certain topology, described by the following dynamical

systems on an undirected unweighted simple graph:6

_xi ¼ f ðxiÞ þ c
X

N

j¼1

aijHðxjÞ ; i ¼ 1;…;N; (7)

where xi 2 Rm is the state vector of node i, f ð�Þ is a (usually

nonlinear) function, c> 0 is the constant coupling coeffi-

cient, H 2 Rm�m is the constant inner-coupling matrix, and

A ¼ ½aij� is the outer-coupling matrix (i.e., the adjacency ma-

trix), in which aii¼ 0 and aij¼ aji, with aij¼ 1 if nodes i and

j are connected but ¼ 0 otherwise, i; j ¼ 1;…;N.
The mathematical notion of (complete) synchronization

of the node states, denoted by xiðtÞ; i ¼ 1;…;N, refers to the

following asymptotic dynamical behavior:

lim
t!1

jjxiðtÞ � xjðtÞjj ¼ 0 ; i; j ¼ 1;…;N; (8)

where jj � jj is the Euclidean norm. Physically, this means

that the dynamics of all node states approach each other as

time approaches infinity.

This paper is concerned only with this type of (com-

plete) state synchronization. Obviously, the synchronizabil-

ity of a dynamic network depends on the node dynamics, the

coupling strength, and the network topology. As usual,

assume that the node dynamics _xi ¼ f ðxiÞ satisfy the (local)

Lipschitz condition

jjf ðxÞ � f ðyÞjj � Ljjx� yjj; 8 x; y 2 D; (9)

where D � Rm is the domain of interest and L> 0 is the

Lipschitz constant. For example, the chaotic Lorenz system

satisfies this condition locally in a bounded region containing

its attractor,16 which will be used for simulation below.

Therefore, the global dynamics of the network (7) will

be dominated by the summation term for appropriately cho-

sen constant coupling coefficient c> 0 and constant inner

coupling matrix H. For simplicity, in this paper, the constant

matrix H will be fixed.

B. Network synchronizability

It is now well known that there are two types of net-

works with bounded and unbounded synchronization regions

in the parameter space.

One large class of dynamic networks has an unbounded

synchronized region specified by

ck2 > a1 > 0; (10)

where constant a1 depends only on the node dynamics, and a

bigger spectral gap k2 implies a better network synchronizabil-

ity, namely, a smaller coupling strength c> 0 is needed.5,21,22

Another large class of dynamic networks has a bounded

synchronized region specified by

ck2=kn 2 ða2; a3Þ � ð0;1Þ; (11)

where constants a2; a3 depend only on the node dynamics as

well, and a bigger eigenratio k2=kn implies a better network

synchronizability, which likewise means a smaller coupling

strength is needed.4

In this paper, only the latter criterion is considered,

while the former can be discussed similarly. Thus, in the rest

of the paper, the following sync-index will be adopted:

Q ¼ k2

kn
: (12)

V. EIGENRATIO OF RRGS

As seen above, a key parameter for measuring the syn-

chronizability of a connected simple network is the eigenratio

Q given by (12). To address this important issue, in this sec-

tion, we derive our main result on the eigenratio of a RRG.

Theorem 6. Let GRðn; a; rÞ be a connected RRG with n

nodes embedded in a rectangular lattice with side lengths

a> 0 and b ¼ a�1 and with a radius r> 0. Then, the eigen-

ratio Q is bounded by

1

n� 1ð Þn2 � Q � 8 arð Þ2
a4 þ 1

log22n: (13)

First, it is quite easy to prove the lower bound in (13).

Recall (see, e.g., Ref. 18, Theorem 4.1.1) that for a con-

nected simple graph G with diameter diam(G), its algebraic

connectivity satisfies

k2 	
1

n � diam Gð Þ :

Since, in the worst case all nodes are uniformly located on

the diagonal of the rectangle, within the radius r, the diame-

ter of the graph is the longest, n� 1, one has

k2 	
1

n � diam Gð Þ 	
1

n� 1ð Þn :

Moreover, because kn � n for any connected graph with n

nodes (see, e.g., Ref. 18, Corollary 1.3.8), one has

Q 	 1

n� 1ð Þn2 : (14)

Second, it is quite tedious to prove the upper bound in

(13). To do so, the following result is first needed.
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Theorem 7. Let GRðn; a; rÞ be a connected RRG with n

nodes embedded in a rectangular lattice with side lengths

a> 0 and b ¼ a�1 and with a radius r> 0. Then, two nodes

are connected if and only if they are at a Euclidean distance

smaller than or equal to r. Let diamðGRÞ be the diameter of

the corresponding RRG. Then,

diam GRð Þ 	
$

ffiffiffiffiffiffiffiffiffiffiffiffiffi

a4 þ 1
p

ar

%

: (15)

Proof. Since the nodes of the RRG are uniformly and in-

dependently distributed in the unit rectangle, one may assume

that the n nodes are equally spaced in the area of the rectangle

separated by the Euclidean distance r. In this case, a largest

possible number of nodes are connected along the main diago-

nal of the rectangle. If the length of the main diagonal is d,

then there are bd
r
c connected nodes in this line. Thus, the maxi-

mum shortest path distance in the RRG is bd
r
c with

d ¼ b
ffiffiffiffiffiffiffiffi

a4þ1
p

a
c. For a connected RRG, this is the shortest the di-

ameter can be, because if two nodes in the main diagonal are

separated at a Euclidean distance larger than r, then the diam-

eter of GR will be larger than bdrc. This proves the result.w
Next, recall the following bound1 for the algebraic con-

nectivity of any simple graph.

Theorem 8. (Alon-Milman) The second smallest eigen-

value of the Laplacian matrix of any graph is bounded as

k2 Gð Þ � 8kmax

diam Gð Þð Þ2
log22n: (16)

Now, by substituting (15) into (16), one obtains

k2 Gð Þ � 8kmax

diam Gð Þð Þ2
log22n � 8kmax arð Þ2

a4 þ 1
log22n: (17)

Furthermore, because kn 	 kmax þ 1, one has

Q ¼ k2 Gð Þ
kn Gð Þ �

8kmax

kn Gð Þ diam Gð Þð Þ2
log22n (18)

� 8kmax arð Þ2
kmax þ 1ð Þ a4 þ 1ð Þ log

2
2n � 8 arð Þ2

a4 þ 1ð Þ log
2
2n; (19)

which proves the result.

Theorem 6 proves that for a RRG with a fixed number

of nodes and a connection radius, the eigenratio Q ! 0 as

a ! 1. Therefore, for very elongated rectangles, it is not

possible for the network to achieve synchronization, inde-

pendently of the value of the coupling strength c> 0.

VI. SIMULATION RESULTS

In this section, the simulation results on a RRG of cha-

otic Lorenz systems, in various numerical settings, are

reported and analyzed. All simulations are performed using

MatLab on a RRG with n¼ 200. No size effect is expected

here, thus we can avoid the tedious calculations using larger-

scale networks. Choose coupling strength c¼ 12.0 while the

connection radius r is selected to guarantee the connectivity

of the generated RRGs and that synchronization can be

achieved in all simulations. Every node is a 3-dimensional

chaotic Lorenz system

_x ¼ 10ðy� xÞ; _y ¼ xð28� zÞ � y; _z ¼ xy� ð8=3Þz:
(20)

In all the simulations, the synchronization measure Q

defined in (12) is adopted.

Simulations are performed for various side lengths a 2
½1; 40� with a fixed step size 0.5 and different connection

radii r 2 ½0:1; 3:5� with a fixed step size 0.1. The synchroniz-

ing process is terminated whenever for both t ¼ t
 and

t ¼ t
 þ 1, it achieves

max
1�i;j�n

jjxi � xjjj � d ¼ 10�3: (21)

Then, the time t
 is recorded as the synchronized time.

One typical case of synchronization performance is

shown in Figure 2, which displays only the x-variables of 20

randomly selected nodes from the network of 200 nodes,

with a¼ 50, c¼ 12, and r¼ 2.5, plotted on the time interval

½0; 1�. The total sync error is defined by

E ¼
X

i;j

jjxi � xjjj2: (22)

The most interesting situations emerge when we study

the synchronization time as a function of both the connection

radius r and the rectangle side length a. In Figure 3, we show

the results where the synchronization time is contour plotted

as a function of r and a. The first clear observation is the exis-

tence of a region (in white color in Figure 3) where synchroni-

zation of the system is not achievable. This region

corresponds to very elongated rectangles for a given connec-

tion radius, as predicted by the theory above. For instance, the

synchronization process for a RRG with connection radius

r¼ 2.0 and rectangle side length a> 10 is not achievable. The

main cause for the divergence in the synchronization time is

that the RRG becomes disconnected for a corresponding

FIG. 2. Total network synchronization error versus time.
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radius as the rectangle becomes extremely elongated (see (3)

and Ref. 12).

Another interesting observation is that for a given side

length a> 1, which generates a rectangle, the synchroniza-

tion time decays as the connection radius increases. This is

an expected result because increasing the connection radius

makes the RRG more densely connected, approaching a

complete graph in the limit. However, as we have found ana-

lytically (see (19)), the elongation of the rectangle makes the

network less synchronizable. That is, for a given node num-

ber n and connection radius r, the eigenratio Q depends only

on a, and because Q � 8 arð Þ2
a4þ1ð Þ log

2
2n; as a ! 1, the eigenra-

tio Q ! 0, which implies that the network is poorly synchro-

nizable. In Figure 3, it can be seen that for a given value of r,

the synchronization time increase as a increases, i.e., going

from bottom to top of the plot, and at a certain point the syn-

chronization time diverges due to the network disconnection.

The structural causes, explaining this increase in the syn-

chronization time with the increase of the rectangular side

length, can be resumed as follows. As a ! 1,

• The average degree of the nodes in a RRG decays accord-

ing to the results given in Theorem 1;
• The average path length in a RRG grows to infinity

according to the results given in Proposition 4. Also, the

diameter of the graph increases as we have seen in

Theorem 7;
• The probability that a RRG becomes disconnected

increases according to the results given in Proposition 2.

These three structural properties have significant influ-

ences on the synchronizability of the resulting RRGs. These

results show that as the rectangle becomes more elongated,

the resulting RRG becomes less densely connected, less

“small-world”-like, and more prone to be disconnected. All

of which make the synchronization process more difficult to

converge.

As we have reported previously (see Ref. 12), the aver-

age clustering coefficient follows a non-monotonic behavior

with the increase of a. A RRG first becomes more clustered

as the rectangle elongates, and after a certain critical value,

the clustering decays almost linearly with the subsequent in-

crement of a. Thus, it is possible that this initial increase of

the clustering attenuates the loss of the synchronizability of a

RRG for relatively small values of a.

The region of better synchronizability for the RRGs

here appears to be demarcated by an approximate straight

line: a ¼ 2r � 0:83 (see the deep blue lower triangle in

Figure 3). This means that for a network with the size studied

here, a good synchronization is reached if

aþ 0:83

r
< 2:

VII. CONCLUSIONS

This paper studies the synchronizability of a recently

proposed RRG network model, deriving analytically the

upper and lower bounds of the eigenratio of the network

Laplacian matrix. RRGs account for the spatial distribution

of nodes allowing the variation of the shape of the unit

square commonly used in RGGs. The paper also investigates

the synchronization processing of representative RRG net-

works with nodes being chaotic Lorenz systems, showing

complete consistence with the theoretical results. The new

RRG model has some attractive theoretical and practical fea-

tures that deserve further investigation in the near future,

including its controllability, observability, identifiability, and

potential real-world applications.
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