
Strathprints Institutional Repository

Diyaroglu, C. and Oterkus, E. and Oterkus, S. and Madenci, E. (2015) 

Peridynamics for bending of beams and plates with transverse shear 

deformation. International Journal of Solids and Structures, 69-70. pp. 

152-168. ISSN 0020-7683 , http://dx.doi.org/10.1016/j.ijsolstr.2015.04.040

This version is available at http://strathprints.strath.ac.uk/54635/

Strathprints is  designed  to  allow  users  to  access  the  research  output  of  the  University  of 

Strathclyde. Unless otherwise explicitly stated on the manuscript, Copyright © and Moral Rights 

for the papers on this site are retained by the individual authors and/or other copyright owners. 

Please check the manuscript for details of any other licences that may have been applied. You 

may  not  engage  in  further  distribution  of  the  material  for  any  profitmaking  activities  or  any 

commercial gain. You may freely distribute both the url (http://strathprints.strath.ac.uk/) and the 

content of this paper for research or private study, educational, or not-for-profit purposes without 

prior permission or charge. 

Any  correspondence  concerning  this  service  should  be  sent  to  Strathprints  administrator: 

strathprints@strath.ac.uk

http://strathprints.strath.ac.uk/
mailto:strathprints@strath.ac.uk


 

 

1 

 

Peridynamics for Bending of Beams and Plates with Transverse 

Shear Deformation 

 
C. Diyaroglu*, E. Oterkus*, S. Oterkus** and E. Madenci** 

* Department of Naval Architecture, Ocean and Marine Engineering 

University of Strathclyde, Glasgow, United Kingdom 

 

** Department of Aerospace and Mechanical Engineering 

University of Arizona, Tucson, United States of America 

 
Progressive failure analysis of structures is still a major challenge.  There exist various predictive 

techniques to tackle this challenge by using both classical (local) and nonlocal theories.  

Peridynamic (PD) theory (nonlocal) is very suitable for this challenge, but computationally costly 

with respect to the finite element method.  When analyzing complex structures, it is necessary to 

utilize structural idealizations to make the computations feasible.  Therefore, this study presents 

the PD equations of motions for structural idealizations as beams and plates while accounting for 

transverse shear deformation.  Also, their PD dispersion relations are presented and compared 

with those of classical theory.   

 

 

1. Introduction 

Peridynamic (PD) theory was originally introduced for the solution of deformation field 

equations (Silling, 2000) without any structural idealizations.  It satisfies all the fundamental 

balance laws of classical (local) continuum mechanics; however, it is different in the sense that it 

is a nonlocal continuum theory and it introduces an internal length parameter into the field 

equations.  This internal length parameter defines the association among the material points 

within a finite distance through micropotentials.  Removal of micropotentials between the 

material points allows damage initiation and growth through a single critical failure parameter 

regardless of the mixed-mode loading conditions.  The creation of a new (crack) surface is based 

on a local damage measure.  The local damage is defined as the ratio of broken interactions to 

the total number of interactions at a material point. 

 

Finite Element Analysis (FEA) with traditional elements suffers from the following 

shortcomings: (1) The interface between dissimilar materials is assumed to have zero thickness 

without any specific material properties; however, it presents a weak link and it is usually the 

location of failure.  Therefore, it fails to appropriately model the interface between dissimilar 

materials. (2) Failure is a dynamic process, and it requires remeshing.  It is computationally 

costly, and the crack growth is guided based on the linear elastic fracture mechanics (LEFM) 

concepts.  It breaks down when multiple complex crack growth patterns develop. (3) Stress and 

strain fields are discontinuous, and mesh refinement does not necessarily ensure accurate stress 

fields near geometric and material discontinuities. (4) Finally, crack nucleation is not resolved. 

The analysis always requires a pre-existing crack. 
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In order to remedy or remove these shortcomings, Cohesive Zone Elements (CZE) and eXtended 

Finite Elements (XFEM) were developed; however, CZE requires a priori knowledge of the 

crack path.  In a complex analysis, it is not practical and the results are dependent on the mesh 

(structured or unstructured).  Furthermore, the results are sensitive to the strength parameters in 

the traction-separation law of the cohesive zone model.  Determination of these parameters poses 

additional uncertainties.  Although XFEM removed such uncertainties, it still requires an 

external criteria for crack propagation.  Thus, the results depend on the criteria employed in the 

analysis.  It also breaks down when multiple complex crack growth patterns develop.   

 

The PD theory overcomes the weaknesses of the existing methods, and it is capable of 

identifying all of the failure modes without simplifying assumptions.  The PD methodology 

effectively predicts complex failure in complex structures under general loading conditions.  

Damage is inherently calculated in a PD analysis without special procedures, making progressive 

failure analysis more practical.   

 

An extensive literature survey on PD is given in a recently published textbook by Madenci and 

Oterkus (2014).  A comparison study between peridynamics, CZE, and XFEM techniques is 

given by Agwai et al. (2011).  They showed that the crack speeds obtained from all three 

approaches are on the same order; however, the fracture paths obtained by using peridynamics 

are closer to experimental results with respect to other two techniques. 

 

Another advantage of PD is its length-scale parameter, which does not exist in classical 

continuum mechanics.  Such a length-scale parameter gives PD a nonlocal character.  Hence, it 

allows the capture of physical phenomena not only at the macro-scale, but also at various other 

scales.  This characteristic can be established through the PD dispersion relations.  The classical 

theory is only valid for a special case of a long wavelength limit; however, the PD shows 

dispersion behavior similar to that observed in real materials.  Hence, it is proven to be 

acceptable to perform multi-scale analysis simulations. 

 

Although peridynamics is a powerful technique in failure analysis and has an internal length 

scale, it is usually computationally more expensive, especially with respect to finite element 

analysis.  The computational time can be significantly reduced by using parallel computing either 

by using a CPU (Central Processing Unit) and/or GPU - based (Graphics Processing Unit) 

architecture for which PD equations of motion are very suitable.  However, modeling very large 

and detailed structures such as aerospace and marine vehicles can still be computationally 

demanding.  Hence, in such cases it is necessary to reduce computational time through structural 

idealization. Taylor and Steigmann (2013) proposed a peridynamic plate model based on bond-

based formulation by using an asymptotic analysis. The formulation is capable of capturing out- 

of-plane deformations for thin plates. Moreover, O’Grady and Foster (2014a,b) developed a non-

ordinary state-based peridynamic model for Euler-Bernoulli beam and Kirchhoff-Love plate 

formulations by disregarding the transverse shear deformations. Therefore, the focus of this 

study is present a new PD formulation for thin or thick beams and plates by taking into account 

transverse shear deformation, i.e. a Timoshenko beam and Mindlin plate, respectively, based on 

an original (bond-based) PD formulation. Moreover, PD dispersion relations are obtained and 

compared against those from classical theory.  
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The following sections present the PD kinematics for a Timoshenko beam and a Mindlin plate, 

and the corresponding PD equations of motion as well as the PD material parameters.  They also 

describe the procedure to determine the surface correction factors for these parameters and the 

application of the boundary conditions and determination of the critical curvature and critical 

shear angle in terms of the fracture mechanics parameters.  Finally, the corresponding dispersion 

relations are derived and compared with the classical theory.  The numerical results establish the 

validity of the present formulation by considering simple benchmark problems. 
 

 

2. Peridynamic kinematics 

At any instant of time, every point in the beam or plate denotes the out-of-plane deflection and 

rotations of a material particle, and these infinitely many material points (particles) constitute the 

beam or the plate.  In the undeformed state of the body, each material point is identified by its 

coordinates, 
( )kx  with ( 1,2,..., )k   , and is associated with an incremental volume, 

( )kV , and a 

mass density of 
( )( ).k x   According to the PD theory introduced by Silling (2000), the motion of 

a body is analyzed by considering the pair-wise interaction between material points 
( )kx  and 

( )jx

.  The interaction between the material points is prescribed through a micropotential that depends 

on the deformation and constitutive properties of the material.  Also, a material point is only 

influenced by the other material points within a neighborhood defined by its horizon,  .  The 

micropotentials are zero for material points outside its horizon.  Each material point can be 

subjected to prescribed body loads, displacement, or velocity, resulting in motion and 

deformation.  

 
2.1. Beam kinematics 

As shown in Fig. 1, the transverse shear angles, 
( )j  and 

( )k , of material points j  and k  can be 

expressed as  

 

 ( ) ( )

( ) ( ) ( ) ( )

( )( )

sgn
j k

j j j k

j k

w w
x x 


 

    
 

  (1a) 

 

 ( ) ( )

( ) ( ) ( ) ( )

( )( )

sgn
j k

k k j k

j k

w w
x x 


 

    
 

  (1b) 

 

in which 
( )jw , ( )j  and 

( )kw , ( )k  represent the out-of-plane deflection and rotation of material 

points j  and k , respectively.  The distance between the material points j  and k  is specified as 

( )( ) ( ) ( )j k j kx x   .   

 

Considering the material point k  as the point of interest, the transverse shear angle, ( )( )k j , 

arising from the interaction between material points j  and k  can be defined as the average of 

the transverse shear angles at these material points in the form 
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 ( ) ( ) ( ) ( )

( )( ) ( ) ( )

( )( )

sgn
2

j k j k

k j j k

j k

w w
x x

 



  

    
 

  (2) 

 

The curvature between the material points j  and k  can be defined as 

 

( ) ( )

( )( )

( )( )

j k

k j

j k

 



 

   
 

  (3) 

 

 

 
 

Figure 1. Original and deformed configurations of a Timoshenko beam.  

 

When considering the material point j  as the point of interest, the transverse shear angle and 

curvature for the interaction between the material points j  and k  become 

 

 ( ) ( ) ( ) ( )

( )( ) ( ) ( )

( )( )

sgn
2

k j k j

j k j k

j k

w w
x x

 



   

        
  or  

( )( ) ( )( )  j k k j
 (4a) 

 

and  

 

( ) ( )

( )( )

( )( )

k j

j k

j k

 



 

   
 

  or  
( )( ) ( )( )  j k k j

 (4b) 

 
2.2. Plate kinematics 

As illustrated in Fig. 2, 
( )j  and 

( )k  represent the rotations with respect to the line of action 

between the material points j  and k .  Considering the material point k  as the point of interest, 

the curvature, 
( )( )k j , with respect to the line of action between the material points j  and k  can 

be defined as 
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( ) ( )

( )( )

( )( )

j k

k j

j k

 





  (5) 

 

Through coordinate transformation, the rotations and curvature with respect to the line of action 

between the material points j  and k  can be decomposed as  

 

( ) ( ) ( )cos sinj x j y j        (6a) 

( ) ( ) ( )cos sink x k y k        (6b) 

 

and 

 

( ) ( ) ( ) ( )2 2

( )( )

( ) ( ) ( ) ( )

cos sin
x j x k y j y k

k j

j k j kx x y y

   
  

    
           

  (7) 

 

in which 
( ) ( ) ( )( ) cosj k j kx x     and 

( ) ( ) ( )( ) sinj k j ky y    , with 
( )( )j k  representing the 

distance between material points j  and k . The slope with respect to the line of action between 

the material points j  and k  can be expressed as  

 

( ) ( )

( )( )

( )( )

j k

k j

j k

w w





   (8) 

 

in which 
( )jw  and 

( )kw  represent the out-of-plane deflections at material points j  and k .  As 

sketched in Fig. 2, the transverse shear angles at material points j  and k  can be expressed as  

 

( ) ( )( ) ( )j k j j      (9a) 

 

( ) ( )( ) ( )k k j k      (9b) 
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Figure 2. Original and deformed configurations of a Mindlin plate.  

 

Considering the material point k  as the point of interest, the transverse shear angle, 
( )( ) k j

, 

between material points j  and k  can be defined as the average of the shear angles at these 

material points in the form 

 

( ) ( ) ( ) ( )

( )( )

( )( ) 2

j k j k

k j

j k

w w  



 

    (10a) 

 

or 

 

   ( ) ( ) ( ) ( )( ) ( )

( )( )

( )( )

cos sin cos sin

2

x j y j x k y kj k

k j

j k

w w        



  

    (10b) 

 

When considering the material point j  as the point of interest, the transverse shear angle and 

curvature for the interaction between the material points j  and k  become 

 

( ) ( ) ( ) ( )

( )( )

( )( ) 2

k j k j

j k

j k

w w  



  

   
 

  (11a) 

 

and 

 

( ) ( )

( )( )

( )( )

k j

j k

j k

 





   (11b) 

 

It is worth noting that 
( )( ) ( )( )  j k k j

 and 
( )( ) ( )( )  j k k j

.  
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3. Peridynamic equations of motion 

The PD equations of motion at material point k  can be derived by applying the principle of 

virtual work  

 
1

0

( ) 0
t

t
T U dt    (12) 

 

where T  and U  represent the total kinetic and potential energies in the beam or plate. This 

principle is satisfied by solving for the Lagrange equation  

 

( ) ( )

0
k k

d L L

dt

  
     q q

, (13) 

 

where the vector 
( )kq  includes the independent field variables (out-of-plane deflection and 

rotations), and the Lagrangian L  is defined as  

 

L T U  . (14) 

 
3.1. Beam equations of motion 
The total kinetic energy of the system due to bending and transverse shear deformation can be 

written as 

 

 2 2

( ) ( ) ( )

1

1

2
k k k

k

I
T w V

A
 





    
 &&   (15) 

 

in which 
( )kV  represents the infinitesimally small incremental volume of material point k and the 

dot (.) above a parameter denotes differentiation with respect to time.  The parameters  , I , 

and A  correspond to mass density of the material, the moment of inertia, and the cross sectional 

area of the beam, respectively. 

 

The total potential energy of the system can be obtained by summing the micropotentials, 

(k)( ) (k)( )( )j jw  and 
(k)( ) (k)( )

ˆ ( )j jw , between material points arising from bending and transverse 

shear deformation  

 

   

   

(k)( ) (k)( ) ( )(k) ( )(k) ( ) (k) (k) (k)

1 1

(k)( ) (k)( ) ( )(k) ( )(k) ( ) (k) (k) (k)

1 1

1 1

2 2

1 1 ˆˆ ˆ    
2 2

j j j j j

k j

j j j j j

k j

U V b V

V b w V

  

 

 

 

 

 

       
       

 

 

w w

w w

  (16) 
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in which (k)b  and (k)b̂  represent the body moment and body force at material point k .  The 

independent variables are out-of-plane deflection and rotation of the material point, 
(k)w  and 

(k)
.  Hence, the resulting Euler-Lagrange equations can be expressed as 

 

( ) ( )

0
k k

d L L

dt w w

 
 

 
  (17a) 

 

and 

 

( ) ( )

0
k k

d L L

dt  
 

 
 

  (17b) 

 

Using the Lagrangian definition  L T U  and performing differentiation yield the following 

equations of motion 

 

   
( )( ) ( )( )

( ) ( )( ) ( )( ) ( )( ) ( )( ) ( ) ( )

1 ( ) ( )

1 ˆ ˆ ˆ 0
2

k j j k

k j k k j j k j k j k

j k k

w f f V b
w w

 
  





  
    

   
  (18a) 

 

and 

 

 
 

 
 

   

( )( ) ( )( )

( ) ( )( ) ( )( ) ( )( ) ( )

1 ( ) ( )

( )( ) ( )( )

( )( ) ( )( ) ( )( ) ( ) ( )

1 ( ) ( )

1

2

1 ˆ ˆ 0
2

k j j k

k j k k j j k j

j k k

k j j k

j k k j j k j k

j k k

I
f f V

A

f f V b

   
 

 


 









  
  

   
  

    
   




 (18b) 

 

in which ( )( )
ˆ

k jf , ( )( )
ˆ j kf , 

( )( )k jf , and 
( )( ) j kf  are defined as 

 

   ( )( ) ( )( ) ( )( ) ( )( )

( )( ) ( )( )

( )( ) ( )( ) ( )( ) ( )( )

ˆ ˆ1 1ˆ ˆ   ,   
k j k j j k j k

k j j k

j k k j j k j k

f f
 

   

 
 

 

w w
 (19a,b) 

 

and 

 

 
 

 
 

( )( ) ( )( ) ( )( ) ( )( )

( )( ) ( )( )

( )( ) ( )( )( )( ) ( )( )

1 1
   ,   

k j k j j k j k

k j j k

j k j kk j j k

f f
 

  

 
 

 

w w
 (20a,b) 

 

They represent the peridynamic interaction forces between material points j  and k  arising 

from transverse shear deformation and bending.  For a linear material behavior, they can also be 

defined in the form  
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   ( )( ) ( )( ) ( )( ) ( )( )
ˆ ˆ     and            k j s k j j k s j kf c f c  (21a,b) 

 

and 

 

   ( )( ) ( )( ) ( )( ) ( )( )      and           k j b k j j k b j kf c f c  (22a,b) 

 

in which sc  and bc  are the peridynamic material parameters associated with the transverse shear 

deformation and bending of the beam, respectively.  

 

Invoking Eqs. (2-4) and substituting for the peridynamic forces from Eqs. (21) and (22) in Eq. 

(18) result in  

 

 ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

1 ( )( )

ˆsgn
2

j k j k

k s j k j k

j j k

w w
w c x x V b

 








  
     

 
  (23a) 

 

and 

 

 ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )( ) ( ) ( )

1 1( )( ) ( )( )

1
sgn

2 2

j k j k j k

k b j s j k j k j k

j jj k j k

w wI
c V c x x V b

A

     
 

 

 

   
      

 
  (23b) 

 

As mentioned earlier, if the peridynamic interactions are limited within the horizon, then these 

equations can also be written in an integral form as 

 

             , , , , ˆ, sgn ,
2

s

H

w x t w x t x t x t
w x t c x x dV b x t

 



   

     
 
  (24a) 

 

and 

 

     

           

, ,
,

, , , ,1
sgn ,

2 2

b

H

s

H

x t x tI
x t c dV

A

w x t w x t x t x t
c x x dV b x t

  


 




  
  

 
    

         




 (24b) 

 

As derived in Appendix A, the PD material constants sc  and 
bc  can be expressed in terms of the 

shear and Young’s moduli, G  and E , as 

 

2

2
s

k G
c

A
   and  

2 2

1

4

2


 b

E I k G
c

A A
 (25a,b) 
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in which k  is the shear correction factor, and is equal to 6/5  for rectangular cross sections. 

 

 
3.2. Plate equations of motion 
The total kinetic energy of the system due to bending and transverse shear deformation can be 

expressed as 

 

2 2 2

( ) ( ) ( ) ( )

1

1

2
k k k k

k

T u v w V




      (26) 

 

Invoking the representation of the in-plane displacement components in terms of rotations as 

( ) ( )k x ku z   and ( ) ( )k y kv z   and performing integration through the thickness of the plate 

result in 
 

2

2 2 2 2 2

( ) ( ) ( ) ( )

1 2

1

2

h

k x k y k k

k h

T w z z dz A  


 

 
      

 
   (27a) 

 

or 

 
2 2

2 2 2

( ) ( ) ( ) ( )

1

1

2 12 12
k x k y k k

k

h h
T h w A  





 
   

 
  (27b) 

 

in which 
( )kA  represents the infinitesimally small incremental area of each material point and h  

represents the thickness of the plate.   
 

The total potential energy of the plate can be obtained by summing the micropotentials, 

 (k)( ) (k)( )j jw  and  (k)( ) (k)( )
ˆ

j jw , between material points arising from bending and transverse 

shear deformation  

 

   

   

(k)

(k)( ) (k)( ) ( )(k) ( )(k) ( ) (k) (k)

1 1

(k)

(k)( ) (k)( ) ( )(k) ( )(k) ( ) (k) (k)

1 1

1 1

2 2

ˆ1 1 ˆ ˆ    
2 2

j j j j j

k j

j j j j j

k j

b
U V V

h

b
V w V

h


  

 

 

 

 

 

         
       
  

 

 

w w

w w

 (28) 

 

in which (k)b  and (k)b̂  represent the resultant body moment and body force at material point k .  

The independent variables are out-of-plane deflection and rotations of the material point, 
( )kw  

and
( )k .  Hence, the resulting Euler-Lagrange equations can be expressed as 
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( ) ( )

0
k k

d L L

dt w w

 
 

 
 (29a) 

 

and 

 

( ) ( )

0
k k

d L L

dt   
 

 
 

  with  ,  x y  (29b) 

 

Using the Lagrangian definition  L T U , performing the differentiation while invoking Eqs. 

(6, 7) and (10, 11), and substituting from Eqs. (19-22) yield the following equations of motion 
 

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( )

1 ( )( )

ˆcos sin
2 2

j k x j x k y j y k

k s j k

j j k

w w
hw c V b

   
  







   
     

 
  (30a) 

 

3
( ) ( ) ( ) ( )

( ) ( )

1 ( )( ) ( )( )

( ) ( ) ( ) ( ) ( ) ( )

( )( ) ( ) ( )

1 ( )( )

cos sin cos
12

1
cos sin cos

2 2 2

x j x k y j y k

x k b j

j j k j k

j k x j x k y j y k

s j k j x k

j j k

h
c V

w w
c V b

   
    

 

   
   











     
             

   
     

 




 (30b) 

 

and 

 

3
( ) ( ) ( ) ( )

( ) ( )

1 ( )( ) ( )( )

( ) ( ) ( ) ( ) ( ) ( )

( )( ) ( ) ( )

1 ( )( )

cos sin sin
12

1
          cos sin sin

2 2 2

x j x k y j y k

y k b j

j j k j k

j k x j x k y j y k

s j k j y k

j j k

h
c V

w w
c V b

   
    

 

   
   











     
             

   
     

 




 (30c) 

 

Note that the peridynamic interactions are limited within the horizon of material points. As 

derived in Appendix A, the PD material constants 
sc  and 

bc  can be expressed in terms of the 

shear and Young’s moduli, G  and E , as 

 

2

3

9

4
s

E
c k


   and  

2
2

2

3 27

4 80
b

E h
c k

 
 

  
 

  (31a,b) 

 

in which 2k  is the shear correction factor that can be chosen based on the frequency of the 

lowest thickness shear mode as 
2 2 12k  , and 1 3  . 

 

The PD material parameters bc  and 
sc  are determined for a material point whose horizon is 

completely embedded in the material.  For these material points, both classical and peridynamic 
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Strain Energy Densities (SED) are equivalent.  However, the PD material parameters 
bc   and 

sc  

require correction if the material point is close to boundaries.  The correction of the material 

parameters is achieved by numerically integrating the SED at each material point inside the body 

for simple loading conditions and comparing them to their counterparts obtained from classical 

solutions.  SED is composed of bending and transverse shear deformation.  Therefore, the 

parameter bc  is corrected by bg  based on the SED due to the bending, and 
sc  by sg  due to the 

transverse shear deformation.  Their derivation is explicitly described in Appendix B. 

 

4. Boundary conditions 

Unlike the local theory, the boundary conditions are imposed through a nonzero volume of 

fictitious boundary layers.  This necessity arises because the PD field equations do not contain 

any spatial derivatives; therefore, constraint conditions are, in general, not necessary for the 

solution of an integro-differential equation.  However, such conditions can be imposed by 

prescribing constraints through a fictitious boundary layer.  

 

In order to apply a displacement or rotation constraint, a fictitious boundary layer, 
cR , is 

introduced outside the actual material, as shown in Fig. 3.  The size of this layer is equivalent to 

the horizon.  An external load, such as a moment or a transverse load, can be applied in the form 

of body loads through a layer within the actual material, R .  This layer can have a thickness of a 

single layer of material points if the discretization is done by using a meshless approach 

(Madenci and Oterkus, 2014). 

 

   

(a)                                                    (b) 

Figure 3. Application of boundary conditions in peridynamics: (a) beam and (b) plate. 

 

 

5. Peridynamic dispersion relations 

 

Peridynamic dispersion relations are compared against those of the classical Timoshenko and 

Mindlin plate theories.  In the derivation of these dispersion relations, the wave number, the 

wave frequency and phase velocity of the wave are denoted by  ,  , and  , respectively. The 

relationship among these parameters is   .  The compressional and shear wave speeds are 

defined by 2

c E   and 2

s G  , respectively, where G and E are the shear and Young’s 
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moduli of the material.  The wave number is related to the half-wavelength,  , by the 

relationship    .   

 

5.1 Beam dispersion relations 

Dispersion relations are determined by considering a wave propagating in the x-direction.  

Therefore, wave solutions for material points located at x  and x  can be expressed as   

 

   
0,

i x t
w x t w e

   and    sgn( )

0,
i x t x x

w x t w e
       (32a) 

 

   
0,

i x t
x t e

     and    sgn( )

0,
i x t x x

x t e
         (32b) 

 

in which   is the phase difference between material points located at x  and x , and 0  and 0w  

represent the amplitudes of these waves.   

 

Substituting these wave solutions into the PD equations of motion given in Eq. (24) leads to a 

homogeneous set of equations for 0  and 0w .  For a nontrivial solution to exist, the determinant 

of their coefficient matrix must vanish, resulting in the wave dispersion relation as 

 
2

2

2 3

3 2 1

2

2
01

2

s s

s b s

B BAc Ac

I
Ac Ac c

A
B B A B



 



 (33) 

 

where the terms 
iB  with 1,2,3i   are explicitly given in Appendix C; they are dependent on the 

phase difference and the horizon.  As explained in Appendix C, for long wavelength (or small 

wave number,  ), the resulting wave dispersion relation is the same as that of the classical 

theory (Reis, 1978; Amirkulova, 2011).  As expected, both theories yield the same relationship 

for long wavelength.   

 

For specified values of 200 GPaE  , 
37850 kg/m  , 5 / 6k  , 710  mh  , 0.3  , and finite 

horizon size, 
810  m  , the evaluation of the determinant without any simplification leads to 

the variation of the wave frequency,  , as a function of the wave number,  , for the first and 

second modes as shown in Fig. 4. Although both modes involve a combination of transverse and 

angular displacements, the first mode is dominated by transverse motion and the second mode is 

dominated by angular motion (Reis, 1978).  For both modes, the PD wave dispersions level off 

as the wave number increases which is a well-known behavior observed in experimental studies 

(Eringen, 1972; Weckner and Silling, 2011). However, the wave frequency always increases 

linearly according to the classical theory (CT).   
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         (a)                                                                                      (b)  

 

Figure 4. Comparison of PD and CT wave frequency dispersions: (a) first mode and (b) second mode. 

 

The variation of the normalized phase speed,  / s k   as a function of wave number,  , for 

the first mode is shown in Fig. 5a.  As shown in Fig. 5a, both PD and CT predict zero speed in 

the limit as   approaches zero.  The phase speed of the CT reaches a constant value close to the 

shear wave speed of a bar for short wavelengths (or relatively large wave numbers).  For the 

second mode, both theories predict comparable results for the long wavelengths (or relatively 

small wave numbers) while classical phase speed reaches the compressional wave speed, c , of a 

bar for short wavelengths (or relatively large wave numbers), as depicted in Fig. 5b.  However, 

the phase speed decreases as the wave number increases according to the PD theory as observed 

in real materials.  

 
 

   
    (a)                                                                                   (b)  

 

Figure 5. Comparison of PD and CT wave speed dispersions: (a) first mode and (b) second 

mode. 

 

5.2. Plate dispersion relations 

As in the case of a beam, the dispersion relations for a plate can be obtained by considering a 

wave propagating in the x-direction.  Therefore, wave solutions for material points located at x  

and x  can be expressed as   
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   
0,

i x t
w t w e

 x  and     cos

0,
i x t

w t w e
     x  (34a) 

   
0,

i x t

x xt e
   x  and     cos

0,
i x t

x xt e
       x  (34b) 

   
0,

i x t

y yt e
   x  and     cos

0,
i x t

y yt e
       x  (34c) 

 

in which  cos   is the phase difference between material points located at x  and x , and 0w , 

0x  and 0y  represent the amplitudes of these waves.   

 

Substituting these wave solutions into the PD equations of motion given in Eq. (30) leads to a 

homogeneous set of equations for 0x , 
0y , and 0w .  For a nontrivial solution to exist, the 

determinant of their coefficient matrix must vanish, resulting in the wave dispersion relation as 

 

2

1 2 3

3
2

6 4 7 5 8

3
2

10 5 8 9 11

1 1 1
0

2 2 12 2

1 1 1

2 2 2 12

s s s

s b s b s

s b s b s

c M h c M c M

h
c M c M c M c M c M

h
c M c M c M c M c M

 

 

 

  

   

  

  (35) 

 

where the terms 
iM  with  1,.....,11i   are explicitly given in Appendix C; they are dependent on 

the phase difference and the horizon.  As explained in Appendix C, for long wavelength (or 

small wave number,  ), the resulting wave dispersion relation is the same as that of the CT 

(Soedel, 2004).  Thus, both theories give the same relationship for long wavelength.  

 

For specified values of 200 GPaE  , 
37850 kg/m  , 85 10  mh   , 2 5 (6 )k   , 1/ 3  , 

and finite horizon size, 
810 m  , the evaluation of the determinant without any simplifications 

leads to the variation of the wave frequency,  , as a function of the wave number,  .  Figure 6 

shows comparisons of nondimensionalized phase speed (  2/ s k  ) as a function of wave 

number / (2 / )    for the first three modes; lowest flexural mode 
1 , thickness-shear mode 2

, and thickness-twist mode 3 .  

 

As observed in Fig. 6a, both the classical and PD theories estimate zero speed in the limit as 

wave number,  , approaches zero, whereas the classical theory phase speed nearly approaches 

the Rayleigh surface wave speed, 0.9274s   , for Poisson’s ratio of 0.30   as wave 

number,  , increases (Stephen, 1997).  In Figs. 6b and 6c, both theories estimate comparable 

results for the long wavelengths (or relatively small ).  However, PD theory captures the feature 

of real materials that phase velocity decreases as the wave number increases. Also comparisons 

of wave frequency dispersions for increasing wave number are shown in Fig. 7.  As a 

characteristic of real materials, dispersion curves of the peridynamic theory for all modes level 
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off as the wave number increases and exceeds a value of 2   (Silling, 2000).  Thus, PD theory 

captures the experimentally observed feature of real materials, which are always dispersive as a 

result of long-range forces.  

 

 

   
                                              (a)                                                                                  (b)  

 

 

   (c)                                                    

 

Figure 6. Comparison of wave speed dispersions: (a) lowest flexural mode 
1 , (b) thickness-

shear mode 2 , and (c) thickness-twist mode 3 . 

 

 

   
   (a)                                                                                         (b)  
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   (c)                                                    

 

Figure 7. Comparison of wave frequency dispersions: (a) lowest flexural mode 
1 , (b) 

thickness-shear mode 2 , and (c) thickness-twist mode, 3  

 

 

6. Critical curvature and critical angle 

In order to include failure in the material response, the response functions in the governing 

equations for the plate can be modified through a history-dependent scalar value function, 

   ( , )
j k

H x x t  as 

 

     ( )( ) ( )( )
ˆ ,k j s k jj k
f c H x x t     (36a) 

 

and  
 

     ( )( ) ( )( ),k j b k jj k
f c H x x t     (36b) 

 

It is defined as  

 

                    , '  , '1 if and
,

0 otherwise

c ck j j k k j j k

j k

x x t x x t
H x x t

      
  


 (37) 

 

Critical curvature and angle values can be expressed in terms of the critical energy release rate of 

the material. In order to find these relationships, the total strain energy required to remove all of 

the interactions across a newly created crack surface, A, shown in Fig. 8, must be determined and 

equated to the corresponding critical energy release rate value.  
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Figure  8. Interaction between two material points whose line of action crosses the crack surface.   

 

The total bending strain energy required to remove all of the interactions across the new crack 

surface A is  
 

   2

( ) ( ) ( ) ( )
1 1

1

2

K J
c

b b c j k k j
k j

W c V V
 

   

 

  x x   (38) 

 

The total bending strain energy, c

bW , can be equated to the mode-I critical energy release rate, 

IcG , in order to determine the value of the bending critical curvature as  

 

   2

( ) ( ) ( ) ( )
1 1

1

2

K J

b c j k k j
k j

Ic

c V V

G
A


 

   

 




 x x

   (39) 

 

Based on the expression derived by Silling and Askari (2005) and Madenci and Oterkus (2013)  

for the critical energy release rate, it is evident that  

  4( ) ( ) ( ) ( )
1 1

2

K J

j k k j
k j

V V
h

A



 

   

 




 x x

 (40) 

Finally, the critical curvature can be expressed as  

 

4

4 Ic
c

b

G

c h



    (41) 

 

Similarly, the total shear strain energy required to remove all of the interactions across the 

surface A is  
 

   2

( ) ( ) ( ) ( )
1 1

1

2

K J
c

s s c j k k j
k j

W c V V
 

   

 

  x x   (42) 
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This total shear strain energy, c

sW , can be equated to the mode-III critical energy release rate, 

IIIcG , in order to determine the value of the critical shear angle as  

 

   2

( ) ( ) ( ) ( )
1 1

1

2

K J

s c j k k j
k j

IIIc

c V V

G
A


 

   

 




 x x

    (43) 

 

By using the relationship given in Eq. (40), the critical shear angle can be obtained as  
 

4

4 IIIc
c

s

G

c h



   (44) 

 

7. Results 

As part of the numerical results, simple static loading conditions are considered first to compare 

the PD predictions with the analytical solutions.  A plate with a center crack under bending is 

considered next.  In order to obtain the static solution, the adaptive dynamic relaxation technique 

given by Kilic and Madenci (2010) is used, and the horizon size is chosen as 3.015 x    where 

x  is the uniform grid spacing.  

 

7.1. Timoshenko beam subjected to pure bending and transverse loading 

The length of the beam is 1mL  , with a cross sectional area of 
20.1 0.1mA   .  Its Young’s 

modulus is specified as 200GPaE  .  Only a single row of material (collocation) points are 

necessary to discretize the beam. The distance between material points is 0.01mx  . The left 

edge is constrained by introducing a fictitious region with a size of  .  The beam is first 

subjected to bending moment and then transverse loading, as shown in Figs. 9 and 10.  The 

loading is applied to a single material point at the right end of the bar as a body load of 
9 23.33 10 N/mb   for bending and 9 3ˆ 5 10 N/mb   for the transverse loading, corresponding to 

an applied moment of 53.33 10 NmM   and a transverse load of 55 10 NP   , respectively.   
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(a)   

                                                                          

 
(b) 

 

Figure 9. (a) Timoshenko beam subjected to pure bending and (b) its discretization.  

 

     

 

(a) 
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(b) 

 

Figure 10. (a) Timoshenko beam subjected to transverse loading and (b) its discretization.   

 

The analytical solutions for the transverse displacement and the rotation due to pure bending are 

given as 

  
2

2

Mx
w

EI
    (45a) 

 

and 

 

Mx

EI
     (45b) 

 

As depicted in Fig. 11, the PD and analytical solutions are in good agreement.  

 

 

   

      
   (a)        (b)  

Figure 11. Variation of (a) rotation and (b) transverse displacement along a Timoshenko beam 

subjected to pure bending loading. 

 

Under the transverse loading case, the analytical solutions for the transverse displacement and 

the rotation are given as  
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3
2

2 3

Px P x
w Lx

kGA EI

 
   

 
          (46a) 

 

and 

 

 22

2

P Lx x

EI



            (46b) 

 

As shown in Fig. 12, the PD and the analytical solutions also agree well with each other.  This 

verifies that the PD equations of motion accurately captures the deformation behavior of a 

Timoshenko beam.  

 

    
(a)        (b) 

 

Figure 12. Variation of (a) rotation and (b) transverse displacement along a Timoshenko beam 

subjected to transverse force loading. 

 

7.2. Mindlin plate subjected to pure bending and transverse force loading 

As shown in Figs. 13 and 14, the length and width of the plate is 1mL W  with a thickness of 

0.1 mh  . The Young’s modulus of the plate is specified as 200GPaE  .  Only a single row of 

material (collocation) points in the thickness direction is necessary to discretize the domain.  The 

distance between material points is 0.01mx  . The left edge is constrained by introducing a 

fictitious region with a size of 3 x . The loading is applied to a single row of material points at 

the right end of the plate as a resultant body load of 
83.33 10 N/mxb    for bending and 

8 2ˆ 5 10 N/mb    for the transverse loading.  
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(a) 

 

 
(b) 

 

Figure 13. (a) Mindlin plate subjected to pure bending loading and (b) its discretization.   
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(a) 

 
(b) 

Figure 14. (a) Mindlin plate subjected to transverse force loading and (b) its discretization.  

 

The peridynamic solutions of the transverse displacement and the x-direction rotation for 

bending moment and transverse loading cases are compared with finite element (FE) solutions 

by using a shell element, which is suitable for thick shell structures, available in commercial 

software, ANSYS.  

 

As depicted in Figs. 15 and 16, the PD and the FE solutions agree well with each other. This 

verifies that the PD equation of motion given in Eqs. (30a-c) can accurately capture the 

deformation behavior of a Mindlin plate.  
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(a)  (b) 

 

Figure 15. Variation of (a) rotation and (b) transverse displacement along a Mindlin plate 

subjected to pure bending loading. 

 

 

   
   (a)        (b) 

 

Figure 16. Variation of (a) rotation and (b) transverse displacement along a Mindlin plate 

subjected to transverse force loading. 

 

7.3. Mindlin plate with central crack 

Crack growth in a square plate with an initial central crack aligned with the x-axis, as shown in 

Fig. 17, is analyzed. The length and width of the plate are 1mL W  with a thickness of 

0.1 mh  . Plate thickness to crack length ratio is 2 0.5h a  , which has the properties of a thick 

plate, where 2a is the initial crack length.  The Young’s modulus of the plate is specified as 
3.227GPaE   and the shear modulus is 1.21GPaG  . Only a single row of material 

(collocation) points in the thickness direction is necessary to discretize the domain. The distance 

between material points is 32 10 mx    . The horizon size is chosen as 3.015 x   . 
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(a) 

 

 
(b) 

 

Figure 17. (a) Mindlin plate with a central crack subjected to pure bending loading and (b) its 

discretization.   

 

The material is chosen as polymethyl-methacrylate (PMMA), which shows a brittle fracture 

behavior.  Mode-I fracture toughness of this material is given as 1.33MPa m  (Ayatollahi and 

Aliha, 2009) and Mode-III fracture toughness is given as 7.684MPa m (Farshad and Flueler, 

1998).  The critical energy release rates of mode-I and mode-III can be found from  
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K
G
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    (47) 
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In order to show simple mode-I crack growth, a bending moment loading is applied through a 

single row of material points at the horizontal boundary regions of the plate.  Small increments 

of resultant body loading of 250 N/myb    are induced in order to achieve stable crack 

growth. Under the applied uniform bending, the crack starts to grow at the end of nearly 66000 

time steps, and as expected, it propagates towards the edges of the plate, as shown in Figs. 18a-d.  

 

 

   
                                (a)                                                                       (b)     

   
                               (c)                                                                         (d)     

 

Figure 18. Crack evolution at (a) 66000th , (b) 67000th, (c) 68000th, and (d) 69000th time step.  

  

 

8. Final remarks 

This study presented the PD equations of motion for a Timoshenko beam and Mindlin plate.  PD 

dispersion relationships were also obtained and it was observed that they are similar to the ones 

observed in real-materials, which cannot be predicted by using classical theory.  After 
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establishing the validity of the PD predictions, the expressions for critical curvature and shear 

angle values in terms of mode-I and mode-III critical energy release rates of the material were 

also utilized to predict crack growth in a plate under pure bending.   
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Appendix A: PD material parameters 

 

A.1 Timoshenko beam 

 

As the horizon size approaches zero, PD equations must recover their classical counterparts. 

Therefore, the out-of-plane deflection and transverse shear angle at material point j  can be 

expressed, using Taylor series expansion and disregarding higher order terms, as  
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Substituting from Eqs. (A.1a,b) into Eqs. (23a,b) and performing the algebraic manipulations 

lead to  

 ( ) ( ) ( ) ( )(, , ) ( ) ( )

1

ˆ
xx xk s k k j k j k

j

w c Vw b 




    (A.2a) 

 

and 

 

2

( ) ( ) ( )( ) ( ) ( ) ( ) ( ) ( )( ) ( )( ), , , ( ) ( )

1 1

1

4
k b k j k j s k k k j k jxx k

j

x j k

j

xx

I
c V c V b

A
w

      
 

 

     
 

   (A.2b) 

 

Expressing the infinitesimal incremental volume, 
( ) ( )( )j j kV A   , with 

( )( )j k  representing the 

spacing between two consecutive material points, and converting the summation to an 

integration as 
( )( )j k  approaches zero, i.e., 

( )( )j k d   ,  yield 
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Performing the integrations results in  
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Note that these PD equations of motion have the same form as those of the classical Timoshenko 

beam equations 
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where the shear correction factor, k , can be taken as 5 / 6  for rectangular cross sections. 

Finally, equating the coefficients of the independent variables in the PD equations of motion to 

those of the classical equations yields the relationships between the PD material constants, sc  

and bc , and the shear and Young’s moduli, G  and E , as 
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A.2 Mindlin plate 

 

As the horizon size approaches zero, PD equations must recover their classical counterparts.  

Therefore, out-of-plane deflection and rotations at material point j  can be expressed, using 

Taylor series expansion and disregarding higher order terms, as  
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Substituting from Eqs. (A.7a,b) into Eqs. (30a-c) and performing the algebraic manipulations 

lead to  
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The classical counterpart of the PD equations of motion for a Mindlin plate can be written as  
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where 2k  is a correction coefficient that is introduced to account for the fact that the shear 

stresses are not constant over the thickness.  The parameters D and G are the flexural rigidity and 

shear modulus, respectively, which are defined as  
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The correction factor can be chosen based on the frequency of the lowest thickness shear mode 

as  
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Finally, equating equations of the peridynamic and classical theories reveals the relationships 

between the peridynamic material constants, sc  and bc , and Young’s modulus, E, as well as 

constraint on the value of the Poisson’s ratio as 
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and 1 3  . 

 

 

Appendix B: Surface corrections 

 

B.1 Timoshenko beam 

 

SED due to bending in the classical theory can be expressed as   
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where 
,x  .  Its counterpart in PD theory can be expressed in discretized form as  
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Considering pure bending loading, the PD SED becomes  
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Hence, the surface correction factor for pure bending can be defined as  
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On the other hand, SED due to transverse shear deformation in the classical theory can be written 

as  
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where 
,xw   .  Its counterpart in the PD theory can be expressed in discretized form as  
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Considering pure shear loading along the x-direction, PD SED becomes  
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Similar to pure bending, the correction factor for pure shear loading can be obtained as   
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The surface correction factors for material point j  and material point k  can have different 

values; therefore, the surface correction factors for an interaction between material point j  and 

material point k  can be taken as their average 
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B.2 Mindlin plate 

 

SED due to bending in the classical theory can be expressed as   
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where 
x,x x  , 

y,yy  , and 
x,y y,xxy    .  Its counterpart in the PD theory can be expressed 

in discretized form as  
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Considering pure bending loading along the x- and y-directions, i.e.  

 

0x yM M  , 0xyM   (B.12) 

results in curvatures  
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0x y   , 0xy    (B.13) 

 

The classical and PD SED for this loading condition become  
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Hence, the surface correction factor for pure bending can be defined as  
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On the other hand, SED due to transverse shear deformation in the classical theory can be written 

as  
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where 
,x x xw    and 

,yy yw   .  Its counterpart in the PD theory can be expressed in 

discretized form as  
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Applying pure shear loading along the x-direction, i.e.  

 

0xQ    and  0yQ     (B.18) 

 

results in shear angles 
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Classical and PD SED for this loading condition become  
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and  
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Similar results can also be obtained for pure shear loading along the y-direction as  
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Similar to pure bending, the correction factor for pure shear loading can be obtained as   
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The surface correction factors for material point j  and material point k  can have different 

values; therefore, the surface correction factors for an interaction between material point j  and 

material point k  can be taken as their average 
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Appendix C: Dispersion relations 

 

C.1 Timoshenko beam 

 

The terms appearing in Eq. (33) are defined as  
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  1

0

1 cosB d



      (C.1a) 
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    (C.1b) 

 

and 

 

 3

0

sinB i d



     (C.1c) 

 

As suggested by Silling (2000), in the limit of long wavelength (or small  ), these integrals can 

be analytically evaluated by considering the first three terms of the Taylor series expansion of 

the cosine and sine functions  
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and 
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With the evaluation of these integrals and considering the PD material parameters, the 

determinant from Eq. (33) can be expressed as  
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 (C.3) 

 

in which   is the Poisson’s ratio.  The nondimensional wave frequency and wave number, pd  

and  , respectively, are defined as  

 

pd

s

h


   and h   (C.4a,b) 

The non-dimensional geometric parameters, m  and t , are defined as  
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m
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Disregarding the higher order terms of the horizon simplifies the wave dispersion relation for 

long wavelength limit (or small ) as  

    4 2 2 2 42 1 2 1 0pd pd k mk k              (C.6) 

As expected, this equation recovers the nondimensional wave dispersion relation in the classical 

theory (CT) (Amirkulova, 2011) for a long wavelength limit.  It leads to four different values for 

wave frequency, which represent two waves traveling to the right and two waves traveling to the 

left of the beam.  Therefore, there are two distinct modes that can propagate in a Timoshenko 

beam (Reis, 1978).  The first mode yields zero frequency ( 0 ) when the wave number is 

equal to zero ( 0  )  
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and the second mode can be expressed as  
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The wave dispersion relations for long wavelength limit are shown in Figs. C.1 and C.2 for the 

specified values of 200 GPaE  , 
37850 kg/m  , 5 / 6k  , 710  mh  , 0.3  , and horizon 

size, 810  m  .  

 

 

   
 

Figure C.1. Classical wave frequency dispersion for the first and second modes (combine these 

plots) 
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Note that the wave number of the second mode is real for 3.16 . This indicates that the first 

mode is a propagating mode for any wave frequency, while the second mode only propagates for 

wave frequencies 3.16  and is exponentially attenuated for 3.16 , as discussed by Reis 

(1978).  Therefore, 3.16  is the cut-off frequency for the second mode.  

 

The variations of nondimensional phase speed,  / k   and  / /E G  , as a 

function of the wave number are shown in Fig. C.2 for the first and second modes.  

 

 

   
 

Figure C.2. Classical wave speed dispersion for the first and second modes 

 

The phase speed,  / k   or  / /E G  , converges to unity as the wave number, 

, increases.  Hence, the phase speed for the first mode,  / k  , converges to the shear 

wave speed, s , of the CT, since  
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Moreover, the phase speed for the second mode,
 

 / /E G  , converges to the 

compressional wave speed, c , of the CT, since  
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   (C.10) 

 

C.2 Mindlin plate 

 

The terms appearing in Eq. (35) are defined as  
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in which dV denotes the infinitesimal volume of a material point, which can be written in 

cylindrical coordinates as dV h d d   .  Evaluation of these integrals yields Bessel functions 

of the first kind, J0() and J1(), and Struve functions, H0() and H1(). 

 

As indicated by Silling (2000), in the limit of a long wavelength () or for a very small wave 

number ( 0  ), the integrals in Eqs. (C.11a-k) can be simplified by using the first three terms 

of the Taylor series expansion for cosine and sine functions 
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and 
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Substituting the relationships given in Eqs. (C.12a,b) into integrations given in Eqs. (C.11a-k) 

and solving the determinant equation given in Eq. (35), while ignoring higher order terms of 

horizon size,  yield the dispersion relationship for a long wavelength limit in the PD theory  

 

 

2 2 2 2

3
2 2 2 2

3
2 2 2

0

0 0
12

0 0 1
2 12

k Gh h k Ghi

h
k Ghi D k Gh

D h
k Gh

   

  

  

  

   

   

 (C.13) 

 

with the constraint on Poisson’s ratio ( 1 3  ).  

 

This relationship is equivalent to the dispersion relationship obtained from the classical theory 

(CT). Moreover, roots of Eq. (C.13) correspond to three different natural frequencies. Soedel 

(2004) explained that the lowest of these frequencies is the one that the transverse deflection 

mode dominates and other two are considered as shear modes.  

 

Shown in Fig. C.3 are the nondimensionalized phase speed ( / s  ) dispersion relationships with 

the change of wave number ( /h  ) for three different wave modes for the long wavelength limit 

while considering the following properties of a plate 2 5 (6 )k    and 1 3  .  

 

 

   
 

Figure C.3. Classical phase speed dispersions and wave frequency dispersions. 

 

Variations similar to those in Fig. C.3 and comparisons with Rayleigh-Lamb waves, which have 

the property of waves in a plate with infinite extent, can be seen in Stephen (1997). Also, in 

Stephen (1997), 1  is named as the lowest flexural mode, 2  as the thickness-shear mode, and 
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3  as the thickness-twist mode. In Fig. C.3, when the wave number ( /h  ) reaches the value of 

two, which means the wave length is now comparable with the thickness of a plate, all the phase 

speeds become flat.  

 

Figure C.3 shows the nondimensionalized wave frequency (   / /s h   ) dispersions with the 

change of wave number ( /h  ) for three wave modes of the CT or for the PD theory in the long 

wavelength limit.  


