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Abstract 

In breast and prostate cancer patients, the bone marrow is a preferred site of metastasis. We 

hypothesized that we could use tissue-engineering strategies to lure metastasizing cancer cells to 

tissue-engineered bone marrow. First, we generated highly porous 3D silk scaffolds that were 

biocompatible and amenable to bone morphogenetic protein 2 functionalization. Control and 

functionalized silk scaffolds were subcutaneously implanted in mice and bone marrow development 

was followed. Only functionalized scaffolds developed cancellous bone and red bone marrow, 

which appeared as early as two weeks post-implantation and further developed over the 16-week 

study period. This tissue-engineered bone marrow microenvironment could be readily manipulated 

in situ to understand the biology of bone metastasis. To test the ability of functionalized scaffolds to 

serve as a surrogate niche for metastasis, human breast cancer cells were injected into the mammary 

fat pads of mice. The treatment of animals with scaffolds had no significant effect on primary tumor 

growth. However, extensive metastasis was observed in functionalized scaffolds, and the highest 

levels for scaffolds that were in situ manipulated with receptor activator of nuclear factor kappa-Β 

ligand (RANKL). We also applied this tissue-engineered bone marrow model in a prostate cancer 

and experimental metastasis setting. In summary, we were able to use tissue-engineered bone 

marrow to serve as a target or “trap” for metastasizing cancer cells. 
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Introduction 

Metastasis is a highly complex process. In the case of breast and prostate cancers, hematogeneous 

metastasis is commonly encountered in the red bone marrow [1], and patient survival is poor once 

disseminated disease is diagnosed [2]; metastasis is responsible for 90% mortality of patients with 

solid tumors [3]. The lack of suitable in vivo tissue models has impeded clinical progress [4]. There 

are currently two main approaches for studying syngeneic or xenograft breast and prostate cancer 

bone metastasis in the orthotopic or experimental metastasis setting [5]. In the first, the host’s 

skeleton serves as the site of metastasis and is commonly used to study osteotropism of cancer. In 

the second, fresh bone chips [6-9] or marrow [10] are used and implanted subcutaneously or in the 

mammary fat pad. While human fetal bone or marrow has been used in most cases [6, 8], materials 

from discarded femoral heads [9] have also been used.  

 

Tissue-engineering approaches for cancer research [11] have recently emerged as a potential third 

route for the study of bone metastasis. For example, microfabricated scaffolds seeded with human 

bone marrow stromal cells have been implanted in a window chamber model to permit intravital 

microscopy studies [12]. This microfabricated model generated a chimeric microenvironment, but 

the ability of this model to recapitulate native tissue remains to be established. Bone marrow 

stromal cells are clearly useful for driving osteogenesis and marrow formation [13]; however, bone 

morphogenetic proteins (BMPs) also have a robust clinical track record for the de novo formation of 

bone and marrow [14]. In particular, BMP-2 has been associated with bone development and 

maintenance in the adult skeleton [14, 15]. In vivo tissue engineering of bone has been successful 

[16], but no attempts have yet been made to engineer a bone marrow microenvironment (BMM) 

that can be selectively manipulated. This manipulation of the BMM would provide opportunities to 

ask fundamental questions about cancer metastasis to bones, and to explore the possibility that 

tissue-engineered bone could serve as a surrogate niche or “trap” for cancer metastasis. Several 
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potential avenues are available for manipulating the BMM; chemokines were chosen in the present 

study.  

 

In 1889, Stephen Paget established that breast cancer has preferred sites for metastasis (tissue 

tropism) [17], and recent studies have identified chemokines as potential regulators that dictate the 

actual organ metastasis of breast [18] and prostate [19]  cancers (reviewed in [20, 21]). For 

example, metastatic breast and prostate cancers “home” to bone by following gradients of stromal 

cell-derived factor 1 (SDF-1); this mechanism emulates the hematopoietic stem trafficking 

occurring during fetal development and following bone marrow transplantation [20].  

 

Bone colonization by metastatic cancer cells involves the hijacking of a multitude of signaling 

pathways [22]. For example, osteotropic cancers often induce osteoclast activity through receptor 

activator of nuclear factor kappa-Β ligand (RANKL) signaling. Osteoclast activation in the BMM in 

turn liberates a myriad of growth factors and chemokines stored in the bone mineral matrix, thereby 

driving the recruitment of even more cancer cells to the bone [2, 22]. Our current understanding of 

chemokine-mediated metastasis indicated SDF-1 and RANKL as appropriate choices for 

manipulation of the BMM in the present study.  

 

In summary, this study examined the potential of BMP-2 functionalized scaffolds to support the in 

vivo development of bone and marrow and the subsequent ability of this tissue-engineered BMM to 

serve as a surrogate niche for metastatic cancer cells attracted by locally released chemokines. 

 

Materials and Methods  

Preparation of silk scaffolds. Bombyx mori silk solution was prepared as described previously 

[23]. Briefly, cocoons were cut into 25-mm2 pieces, boiled for 30 min in an aqueous solution of 25 

mM Na2CO3, and then rinsed in distilled H2O to remove sericin proteins. Extracted silk fibroin was 
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subsequently air dried and then dissolved in 9.3 M LiBr solution at 60°C for 4 h, yielding a 25% 

w/v solution. This solution was dialyzed against ddH2O (molecular weight cut off 3500) for 48 h to 

remove the LiBr salt. The resulting aqueous silk fibroin solution was centrifuged twice at 9.700 g 

for 20 min to remove the small amount of silk aggregates that formed during processing. A salt-

leach method was used where NaCl crystals were embedded within silk fibroin to generate highly 

porous silk scaffolds. First, the silk fibroin solution was diluted to 6% w/v with ddH2O. Next, 4 g of 

NaCl crystals (500–600 μm) were added to 2 ml of this fibroin solution as porogens, and scaffolds 

were allowed to solidify for 24 h. Scaffolds were washed extensively in ddH2O to leach out the 

NaCl to yield highly porous silk scaffolds. The size was optimized by generating scaffolds with a 

volume of either 125 mm3 or 27 mm3 and a constant 5 μg BMP-2 (human BMP-2, Wyeth, Andover, 

MA, USA) loading. For 125 mm3 scaffolds, BMP-2 loading was optimized using BMP-2 

concentrations between 0.5 and 10 μg. For all samples, the BMP-2 loading was performed by 

applying 30 μl of a 7% w/v silk solution containing the indicated amount of BMP-2. Scaffolds were 

air dried under a 0.2-m/s
 
airflow at room temperature overnight. Where indicated, scaffolds were 

further modified by water annealing at room temperature for 8 h to induce β-sheets [23]. 

 

In vivo scaffold implantation. Animal studies were performed in accordance with the approved 

institutional protocols B2010–101 and PRO00004354 by the Institutional Animal Care and Use 

Committee (IACUC) of Tufts University and University of Michigan, respectively. Mice aged 6 to 

10 weeks were purchased from Charles River Laboratories. For scaffold implantation studies, 

animals were anesthetized using isoflurane, shaved when necessary, and the surgical area was 

cleaned. As indicated, BMP-2 functionalized or control silk scaffolds were implanted 

subcutaneously at three different sites, namely the rotator cuff, lower abdomen, and upper thorax. 

As controls, 10 mg of demineralized human (0.125–0.850 mm particle size; Community Tissue 

Services, Dayton, OH, USA) or rat bone were added to a size 9 gelatin capsule (Torpac Inc., 

Fairfield, NJ, USA) and implanted as detailed above. Incisions were closed with a one-layer closure 
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using skin clips. Animals were monitored daily over the course of 10 days, at which time the skin 

clips were removed. Scaffolds were removed at the indicated time points and processed for analysis 

as detailed below. 

 

Cell culture. All cell lines were maintained in a humidified atmosphere of 5% CO2 at 37°C, and 

subconfluent cultures were routinely subcultured every 2–3 days. The following media were used: 

MDA-MB-231 and B16F10 cells, RPMI 1640 + 10% v/v FBS; PC3 cells, RPMI 1640 + 10% v/v 

FBS. For in vivo tumor studies, cells were harvested with trypsin and subsequently prepared as 

detailed below. 

 

Tumor models. To examine the potential of tissue-engineered bone to serve as a surrogate niche to 

cancer metastasis, a syngeneic experimental tumor model employing C57BL/6 mice and B16F10 

cancer cells was used [24]. Prior to tumor cell injection, a 125-mm3 scaffold functionalized with 5 

μg BMP-2 was implanted over the rotator cuff in mice and allowed to integrate for more than 4 

weeks. On the day of tumor induction, B16F10 cells were washed and harvested with trypsin-

EDTA, blocked with complete medium, and pelleted. The pellet was subsequently washed twice 

with PBS, and cells were resuspended in PBS at a concentration of 105 cells/ml and kept on ice. 

Mice were shaved, cleaned and the landmarks palpitated to facilitate the intracardiac injection of 

cells into the left ventricle. The spontaneous pulsatile entrance of bright red oxygenated blood into 

the transparent needle hub indicated proper positioning of the needle. A dose of 104 B16F10 cells in 

100 μl was administered over 30 s into the left ventricle with a 27-gauge needle. Within 18 days of 

B16F10 injection, animals were euthanized.  

 

For studies that examined the potential of the scaffolds to serve as a surrogate niche for breast 

cancer metastasis, a human xenograft model was used. Breast tumors were induced by inoculating 

MDA-MB-231 derived tumor cells that metastasized following orthotopic injection in mice [25]. 
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Cells were genetically modified to carry the firefly luciferase gene to allow in vivo bioluminescence 

imaging [25]. Analogous to the syngeneic tumor studies, scaffolds were implanted over the rotator 

cuff in female NOD/SCID mice (NOD.CB17-Prkdscid/NcrCrl), 6–10 weeks in age, and allowed to 

integrate ≥8 weeks. Next, a total of 5×105 cells in 20 μl Matrigel (BD Biosciences, Bedford, MA, 

USA) was injected bilaterally into the 4th or 5th mammary fat pad using a Hamilton syringe 

equipped with a 22-gauge needle. To manipulate the microenvironment of the tissue-engineered 

bone, osmotic minipumps (Durect Corporation, Cupertino, CA, USA) were used. Pumps with a 

nominal pumping rate of 0.11 μl/h over 4 weeks were fitted with an infusion catheter and filled with 

SDF-1 (100 μg/ml), RANKL (100 μg/ml), or PBS according to the manufacturer’s instruction; 

human SDF-1 alpha (catalogue number 100-20) and mouse RANKL (catalogue number 200-04) 

were purchased from Shenandoah Biotechnology, Warwick, PA, USA.  Twelve days after tumor 

inoculation, pumps were implanted s.c. and the catheter was implanted into the scaffold. Disease 

progression was monitored weekly with intraperitoneal injections of D-luciferin (Molecular Probes, 

Eugene, OR, USA), followed by measuring tumor cell-associated bioluminescence using the 

Xenogen IVIS 200 imaging system and Living Image Software 4.2 (Caliper Life Sciences, 

Hopkinton USA). At the study endpoint at 6 weeks post-tumor induction, scaffolds, brain, lung, 

liver, and bones were examined for metastasis by dissecting them from the carcass. Tibia and femur 

from hind legs were harvested and dissected free from muscle and tendons to serve as bone 

samples. Organs were imaged at maximum sensitivity to detect metastatic cancer cells. Tissues 

were scored for the presence or absence of metastasis. Primary tumors were dissected and weighed. 

 

For prostate cancer studies, one scaffold was implanted on the back of male athymic nude mice 

(Athymic Nude-Foxn1nu), 6–10 weeks in age, and allowed to integrate >6 weeks. PC3 cells were 

transduced with GFP-luciferase lentivirus to allow for bioluminescence imaging of tumor growth 

(via luciferase) and localization of cells in tissue sections (via GFP). Next, a total of 1×105 cells in 

10 μl growth medium was injected into the ossified scaffold with a 30-gauge needle. At the time of 
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cell injection, a single pump with either SDF-1 or PBS was implanted as detailed above.  

 

Histology and X-ray microtomography. X-ray microtomography was performed on formalin-

fixed tissues in 70% v/v ethanol. Measurements were carried out with an HMX ST 225 X-ray tube 

equipped with a molybdenum target and a 2000×2000 pixel detector (Nikon Metrology, Leuven, 

Belgium). Projections were recorded over 360°, and dataset voxel sizes were typically 10 μm 

isotropic. The data set was reconstruction with the CTPro 3D software package (Nikon Metrology) 

in the absence of noise reduction or binning. Images were rendered using VGStudio MAX version 

2.2 (Volume Graphics, Heidelberg, Germany). 

 

Bones and scaffolds were prepared for histology by fixing them for 24 h in buffered formalin and 

subsequently demineralizing them for 21 days at 4°C with a 10% w/v EDTA solution at pH 7.4. 

Next, samples were tissue processed and paraffin embedded as detailed previously [26]. For all 

histology samples, at least two level sections were cut to ensure representative images. For 

immunofluorescence images to detect human cells grown in scaffolds, anti-human HLA-ABC 

antibody (BioLegend) was conjugated using the Zenon Alexa Fluor488 mouse IgG labeling kit 

(Invitrogen, San Diego, CA). Seven µm thick paraffin sections were blocked with Image-iT FX 

signal enhancer (Invitrogen) for 30 min before fluorescence-labeled and primary antibodies were 

applied for 2 h at room temperature in the dark. Subsequently, the sections were mounted with 

ProLong Gold anti-fade reagent with DAPI (Invitrogen). Images were taken with Olympus FV-500 

confocal microscope (Olympus, Center Valley, PA). 

 

Statistical analysis. Data were analyzed using GraphPad Instat 5.0b (GraphPad Software, La Jolla, 

CA, USA). Sample pairs were analyzed with the Student’s t-test. Multiple samples were evaluated 

by one-way analysis of variance followed by Dunnett’s post hoc tests to evaluate the statistical 

differences (p≤0.05) between samples and controls, respectively. An exception was the analysis of 
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explanted scaffolds where a Kruskal-Wallis test was used. All error bars were standard deviation 

(SD). 

 

Results 

Here we describe an in vivo tissue-engineered bone marrow model that uses bone morphogenetic 

protein 2 (BMP-2) functionalized three-dimensional (3D) silk protein scaffolds that permit in situ 

bone marrow genesis. The bone marrow can subsequently be modified with an osmotic mini pump 

to locally deliver chemokines or other molecules of interest. We used a water-based silk solution to 

generate 3D scaffolds that were sponge-like (ca. 50 kPa compressive stress), highly porous (>90%) 

[27], biocompatible [28], and readily functionalized with defined amounts of BMP-2 with known 

release kinetics [29].  First, we fixed the amount of BMP-2 loading at 5 μg per scaffold and 

determined the importance of the post-loading treatment in relation to the implantation site and time 

for bone marrow genesis (Fig. 1a, Supplementary Fig. 1). Scaffolds that had a low β-sheet 

(crystalline) content performed best; this was independent of the implantation site. The first signs of 

bone development occurred at 3 days in C57/B6 mice, and a robust tissue-engineered BMM 

occurred at 4 weeks, while NOD/SCID mice required 8 weeks. In C57/B6, NOD/SCID, and 

athymic nude mice, the BMM was maintained for several months (>3); the optimized silk scaffold 

showed a robust tissue engineered BMM (Fig. 1b-d). However, control scaffolds showed neither 

bone nor marrow development in mice (Supplementary Fig 1e). As a reference or control for our 

functionalized silk scaffolds, we used human and rat demineralized bone matrix (DBM) [5, 30]. 

While human DBM showed no signs of bone marrow development, rat-derived DBM required at 

least 8 weeks to develop some bone marrow in vivo. Because BMP-2 scaffolds with a low β-sheet 

content performed best (Fig. 1b-d), we further characterized these scaffolds by changing scaffold 

size and the degree of BMP-2 functionalization (Fig. 1e-h). In light of orthotopic breast tumor 

studies, we selected the rotator cuff as an implantation site to physically separate the tissue-

engineered BMM from the primary tumor. X-ray microtomography demonstrated that with 0.5–10 
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μg BMP-2 the amount of bone significantly increased, while there were no differences between the 

5 μg and 10 μg BMP-2 scaffolds (Fig. 1e, f). Furthermore, at 5 μg BMP-2 functionalization, the 

amount of bone formation was independent of scaffold size but increased over 16 weeks (Fig. 1g, 

h). The 125 mm3 scaffolds with a 5-μg BMP-2 loading were found to be optimal for this study 

because the size of the engineered tissue allowed easy access and manipulation with an infusion 

catheter of the osmotic minipump.  

 

Next, we examined the ability of the tissue-engineered BMM to serve as a surrogate niche for 

metastasis (Fig. 2a). Using mice with an established BMM, we induced orthotopic breast tumors 

and subsequently manipulated the BMM by locally delivering receptor activator of nuclear factor 

kappa-B ligand (RANKL). To rule out the potential systemic impact of this RANKL delivery 

strategy, we monitored primary tumor growth over 6 weeks, and the extent of metastasis (Fig. 2b-

d). There was no significant difference between the control group and mice receiving RANKL in 

terms of primary tumor growth, tumor weight, and metastasis to distant organs (Fig. 2b-d). 

However, there was a significant impact on the tissue-engineered BMM as determined by X-ray 

microtomography (Fig. 2f), but this did not affect the bone volume of the rest of the skeleton (Fig. 

2g). The tissue-engineered BMM harbored human breast cancer cells (Fig. 2h, i). Bioluminescence 

imaging demonstrated that the control scaffold, which did not develop bone marrow, had the lowest 

signal, whereas substantially higher values were obtained for SDF-1, and significantly higher ones 

were obtained for the RANKL treatment group (Fig. 2h, i).  

 

Finally, we next assessed the ability of our tissue-engineered BMM to serve as a model system to 

study prostate cancer bone metastasis. While there was tumor engraftment for all animals (5/5), 

delivery of SDF-1 substantially reduced PC3 growth when compared to controls (Fig. 3c) but with 

minimal effects on tissue or bone volume (Fig. 3d). Histology confirmed growth of prostate cancer 

cells in the BMM (Fig. 3e). To complement the human breast and prostate cancer studies, the 
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B16F10 syngeneic experimental metastasis model was used (Fig. 3f). Histology of scaffolds 

demonstrated that B16F10 cells were able to invade and colonize the tissue-engineered BMM (Fig. 

3g-j).  

 

Discussion 

In 1889, Stephen Paget established that breast cancer has preferred sites for metastasis (tissue 

tropism) [17], and recent studies have identified chemokines as potential regulators that dictate the 

actual organ metastasis of breast and prostate cancer [3]. We therefore examined the ability of the 

tissue-engineered BMM to serve as a surrogate niche for metastasis (Fig. 2a). Using mice with an 

established BMM, we manipulated the BMM by locally delivering receptor activator of nuclear 

factor kappa-B ligand (RANKL). RANKL activates osteoclasts, which in turn degrade bone and 

subsequently release growth factors and chemokines stored in the bone matrix [2, 22]; these factors 

could critically contribute to a pre-metastatic niche. Tumor growth and metastasis was unchanged 

following local RANKL delivery (Fig. 2b-d); this suggested that RANKL had minimal systemic 

effects. This was further supported by the observation that RANKL only had a significant impact on 

the tissue-engineered bone volume (Fig. 2f), but not the bone volume of the rest of the skeleton 

(Fig. 2g). Most importantly, the tissue-engineered BMM harbored human breast cancer cells (Fig. 

2h, i); this colonization could be readily manipulated in situ. Bioluminescence imaging 

demonstrated that the control scaffold, which did not develop bone marrow, had the lowest signal 

and the highest one was obtained for the RANKL treatment group (Fig. 2h, i).  This observation 

supported our hypothesis that a metastatic niche can be selectively manipulated using tissue 

engineering. The extent to which this colonization of the BMM recapitulates all steps typically 

observed in traditional osteotropic cancer models remains to be established. Nonetheless, the idea 

that metastatic cancer cells exploit a BMM “homing” mechanism analogous to that driving 

hematopoietic stem trafficking into bone marrow seems quite plausible [20]. We speculate that this 
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luring of metastatic cancer cells into the BMM would then conceivably reduce the overall 

metastatic burden in systemic host tissues (Fig. 2d). 

 

We next assessed the ability of our tissue-engineered BMM to serve as a model system to study 

prostate cancer bone metastasis. Previous in vitro and in vivo studies showed the significance of the 

CXCR4/7-SDF-1 signaling axis in tissue tropism for prostate cancer metastasis [21], although direct 

experimental proof has been difficult to obtain because of a lack of methods that permit the 

selective manipulation of the BMM. By combining local SDF-1 delivery with prostate cancer cell 

injection into the tissue-engineered BMM (Fig. 3a, b), it was possible to monitor cell response in 

situ. While there was tumor engraftment for all animals (5/5), delivery of SDF-1 substantially 

reduced PC3 growth when compared to controls (Fig. 3c) but with minimal effects on tissue or 

bone volume (Fig. 3d). This observation was unexpected; one might speculate that SDF-1 delivery 

induced cancer stem cell quiescence [31] resulting in overall reduced metastatic growth. However, 

additional studies are needed to better understand the underlying biology in the BMM. We currently 

also do not know how this engineered BMM supports osteoblastic prostate cancer; this is a 

limitation of the current study.  

 

Current implant-based models for the study of osteotropism of cancers are typically based on fresh 

bone chips [6, 8, 9] or marrow [10]; these are implanted subcutaneously or into the mammary fat 

pads of mice. Human fetal bone or marrow has been used in most cases [6, 8], although materials 

from discarded femoral heads [9] have also been used. These studies are often designed to examine 

the interaction of human cancer cells with a humanized bone microenvironment; however, a 

number of limitations arise, as well as logistical and ethical challenges. For example, marrow 

models are plagued by poor control over the resulting bone microenvironment and by 

immunological mismatches between the bone marrow-derived immune cells and the human tumor 

cells (i.e., a potential marrow versus cancer response) (e.g., [10]). Bone chips have additional 
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limitations and in general show poor vascularization, which often leads to necrosis and subsequent 

fibrosis [6, 8, 9]. The sharp edges of bone pieces can also often create wound problems or 

dehiscence in mice. Bone material from orthopedic surgery, in particular, provides little control 

over the quality of the bone, coupled with a low capacity to sustain hematopoiesis in vivo [9].  

 

Humanized bone models are emerging as interesting model systems to study osteotropism of cancer 

[4]; however, they still require a significant amount of refinement. The current study demonstrates 

that the use of optimized silk scaffolds resulted in robust vascularization and bone and red marrow 

development in a syngenic setting, while none of the studied scaffolds showed adverse reactions in 

mice. This observation is in line with previous in vivo studies [32]. We selected silk because it is a 

biocompatible and biodegradable biopolymer with minimal endogenous biological activity [32, 33]. 

Here control scaffolds (i.e., silk scaffolds with no BMP-2 functionalization) showed neither bone 

nor marrow development in mice (Fig 1a). Furthermore these control scaffolds showed the lowest 

capacity to capture metastatic cancer cells (e.g., Fig. 2h) indicating that at functional bone marrow 

is critical to lure cancer cells into an tissue-engineered BMM. 

 

Historically, studies examining the BMM have relied on the epiphyses and diaphysis of long bones 

that are difficult to access and cannot be readily subjected to local manipulation in situ. More 

recently, alternatives have been sought, for example, the calvarium for intravital high-resolution 

microscopy of the bone marrow [34]. However, local in situ manipulation of the calvarium has not 

been attempted and is expected to be technically challenging. Here, we applied a simple yet 

powerful method to study osteotropism of breast and prostate cancer cells in situ. The benefits of 

employing a tissue-engineered BMM are twofold. First, it provides a simple and robust method to 

generate a tissue-engineered BMM in vivo. Second, it provides flexibility to manipulate the BMM 
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with the use of an osmotic minipump. These features will enable future studies of breast and 

prostate cancer as well as hematopoietic malignancies and bone marrow in general. 

 

Conclusions 

Manipulating the metastatic BMM in vivo is technically challenging as current models depend 

heavily on the host’s skeleton, with occasional xenogenic or syngeneic models exploiting either 

fresh bone chips or the osteogenic properties of whole or fractionated marrow. We developed a 

simple yet powerful method to in vivo tissue engineer a BBM that could be readily manipulated in 

situ to understand the biology of bone metastasis. With the methodology described here, we 

demonstrated that a tissue-engineered BMM can serve as a surrogate niche for bone marrow 

metastasis. By selectively manipulating the engineered BMM, it was possible to either increase or 

suppress the number of metastatic cells at this site.  
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Figure Legends 

 



! 18!

 

 

Figure 1. In vivo tissue engineered bone marrow. (a) Process optimization led to robust tissue-

engineered bone and marrow. All silk scaffolds were 125 mm3 and had a nominal BMP-2 loading 
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of 5 μg, except control scaffold that contained no BMP-2. Rat demineralized bone matrix (DBM) 

from Long-Evans rats was used as a control [30]. (b) Macroscopic and scanning electron 

microscopy images (scale bar 200 μm) of scaffolds before and after 16 weeks in vivo. (c) 

Corresponding H&E histology of scaffold with extensive bone (arrows) and hematopoiesis (scale 

bar 500 μm). Magnified area is shown in (d) with sinusoidal blood vessels, hematopoiesis, mature 

bone and silk scaffold (scale bar 25 μm). (e) X-ray microtomographic images of 125 mm3 silk 

scaffolds with different amounts of BMP-2 after 4 weeks in vivo and (f) corresponding 

quantification. (g) Representative images and (h) bone volume measurements for 125 mm3 

scaffolds loaded with 5 μg BMP-2 over time. (Error bars, s.d.;  **P < 0.01; ***P < 0.001; ns, not 

significant; n ≥ 3). 
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Figure 2. Engineering a surrogate niche for metastasizing breast cancer cells. (a) Experimental 

design for the breast cancer study. Delivery of RANKL did not impact (b) primary tumor growth, 
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(c) weight of the primary tumor, and (d) the extent of metastasis. (e) Image of the setup at the end 

of the study. (f) The RANKL scaffolds contained less bone as determined by X-ray 

microtomography, (g) but did not affect the bone volume of the systemic bones (femur + tibia + 

fibula). (h) Bioluminescence quantification of explanted scaffolds at the end of the study. (i) 

Bioluminescence image of scaffolds with corresponding histology of the RANKL scaffold; errors 

denote areas of bone resorption. (Error bars, s.d.;  *P < 0.05; ***P < 0.001; n ≥ 3). 
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Figure 3. Engineered bone marrow microenvironment for prostate cancer and experimental 

metastasis. (a) Experimental design for the prostate cancer study. (b) In vivo bioluminescence 

image of PC3 cells in scaffold with integrated osmotic minipump and (c) respective quantification 
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of bioluminescence at week 2 (Error bars, s.d.; ns, not significant; n = 5). (d) Bone volume 

measurements of scaffolds at week 4. (e) Phase contrast image of (1) PC3s (dotted line), (2) tissue-

engineered bone (dashed line), (3) silk scaffold (solid line) and fluorescent images corresponding to 

nuclei, PC3s and stacked images (scale bar 20 μm); all images were from the SDF-1 treatment 

group. (f) Design for the experimental metastasis study in immune-competent mice. (g) H&E 

histology of scaffold with macrometastasis (scale bar 400 μm). (h) Magnified view of area 2 and (i) 

area 1 from panel (g) (scale bar 50 μm). (j) Magnified view of selected area with micrometastasis 

(dashed line), hematopoiesis (H), sinusoidal vessels (S), and adipocytes (Adipo).   
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Supplementary Figure 1.  Histology of in vivo tissue engineered bone marrow. Representative 

examples for (a) first signs of bone without hematopoiesis (scale bar 25 μm), (b) initial bone 

formation and marrow establishment (scale bar 50 μm), (c) bone and hematopoiesis (scale bar 100 
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μm), (d) extensive bone and extensive hematopoiesis (scale bar 200 μm), (e) no marrow at 4 and (f) 

16 weeks (scale bars 200 μm).  

 

 

 

 

 

 

 

 


