
Strathprints Institutional Repository

May, Allan and McMillan, David and Thöns, Sebastian (2015) Economic 

analysis of condition monitoring systems for offshore wind turbine sub-

systems. IET Renewable Power Generation. ISSN 1752-1416 , 

http://dx.doi.org/10.1049/iet-rpg.2015.0019

This version is available at http://strathprints.strath.ac.uk/54611/

Strathprints is  designed  to  allow  users  to  access  the  research  output  of  the  University  of 

Strathclyde. Unless otherwise explicitly stated on the manuscript, Copyright © and Moral Rights 

for the papers on this site are retained by the individual authors and/or other copyright owners. 

Please check the manuscript for details of any other licences that may have been applied. You 

may  not  engage  in  further  distribution  of  the  material  for  any  profitmaking  activities  or  any 

commercial gain. You may freely distribute both the url (http://strathprints.strath.ac.uk/) and the 

content of this paper for research or private study, educational, or not-for-profit purposes without 

prior permission or charge. 

Any  correspondence  concerning  this  service  should  be  sent  to  Strathprints  administrator: 

strathprints@strath.ac.uk

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Strathclyde Institutional Repository

https://core.ac.uk/display/42592015?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://strathprints.strath.ac.uk/
mailto:strathprints@strath.ac.uk


1 
 

Economic analysis of condition monitoring systems for offshore wind 

turbine sub-systems 

 
Allan May 1*, David McMillan2, Sebastian Thöns3 

 
1 Centre for Doctoral Training in Wind Energy Systems, University of Strathclyde, 204 
George Street, Glasgow, UK 
2 Institute of Energy and Environment, University of Strathclyde, Glasgow, UK 
3 Department of Civil Engineering, Technical University of Denmark, Brovej, Kgs. Lyngby, 
Denmark 
*allan.may@strath.ac.uk 
 
 

Abstract: The use of condition monitoring systems on wind turbines has increased dramatically in 

recent times. However, their use is mostly restricted to vibration based monitoring systems for the 

gearbox, generator and drive train. A survey of commercially available condition monitoring 

systems and their associated costs has been undertaken and is presented for the blades, drive train, 

tower and foundation.  

This paper considers what value can be obtained from integrating these additional systems into the 

maintenance plan. This is achieved by running simulations on an operations and maintenance model 

for a wind farm over a 20 year life cycle. The model uses Hidden Markov Models to represent both 

the actual system state and the observed condition monitoring state. The CM systems are modelled 

to include reduced failure types, false alarms, detection rates and 6 month failure warnings.  

The costs for system failures are derived, as are possible reductions in costs due to early detection. 

The drive train has additional sensors to increase the overall CM system detection rate. The 

detection capabilities of the CM systems installed on blades, tower and foundation is investigated 

and the effects on operational costs are examined. Likewise, the number of failures detected 6 

months in advance by the CM systems is modified and the costs reported. 

 

Nomenclature 

AE Acoustic emission 
C Cost 
CAPEX Capital expenditure 
CBM Condition based maintenance 
CM Condition monitoring 
CMS Condition monitoring system 
DT Downtime 
f Number of failures  
E Emission state matrix 
HMM Hidden Markov model 
LP Lost production 
NPV Net present value 
O&M Operations and maintenance 
OPEX Operational expenditure 
P State transition matrix 
PM Preventative maintenance 
r Discount rate 
R Effectiveness of condition monitoring systems 
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ROI Return on investment 
SCADA Supervisory control and data acquisition 
SHM Structural health monitoring 
U Probability of failure 
V Reliability of condition monitoring systems 
t Time period under investigation 
T Fixed period of time 
そ Failure rate 
µ Repair rate 
  
Subscript 
E Energy production 
f Component failure 
fa False alarm 
I Installation 
L Labour price 
V Vessel 
RP Replacement parts 
 
Superscript 
+ Condition monitoring equipment is used 
k Number of components 
y Number of years 
 

1. Introduction 

Wind energy has enjoyed a large growth in recent years as countries around the world seek to exploit 

renewable resources. Offshore wind projects have been part of this expansion but access related issues 

such as remote locations, specialist access equipment and extreme weather has led to operation and 

maintenance (O&M) costs which are up to five times that of onshore [1]. O&M costs are a sizeable part of 

the total costs associated with an offshore wind project - up to 30% of the energy generation cost [2]. 

As such, there have been many investigations to discover ways of reducing O&M costs. Increased 

utilisation of SCADA data and condition monitoring (CM) systems have allowed for a shift in 

maintenance pattern. 

Maintenance plans can be divided generally into preventative and corrective maintenance. 

Corrective maintenance occurs after a failure has occurred. Preventative maintenance (PM) is used to 

minimise downtime by servicing or component replacement. This can be in the form of scheduled 

maintenance, where servicing occurs based on calendar intervals, or condition based maintenance (CBM), 

where maintenance actions are triggered by the actual condition of a component.  

CBM theoretically allows for a reduction in both downtime and maintenance operations. The 

majority of CM systems are vibration based and focused on the drive train of wind turbines - the generator, 
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gearbox and associated bearings - as these components historically have large amounts of downtime per 

failure [3] and can be monitored effectively [4], [5].  

Several studies examine the possible benefit of CM drive train systems and the majority of these 

show a return on investment (ROI) of the monitoring equipment [6]–[8]. These studies utilise simplified 

CM systems which show direct correlation between the system and output. The system will always inform 

the user ahead of time of any impending failure mode.  

Different types of imperfections have been introduced to CM systems and their effects on O&M 

costs have been examined [2], [9]–[13]. Typically, the time until the CM system ROI becomes positive 

increases in these studies and in some cases the use of CM systems isn‟t economically valid. These studies 

almost all exclusively use only a vibration based condition monitoring system. 

García Márquez et al. [14] shows some CM systems analysing parts of the wind turbine other than 

the drive train are available commercially and some further experimental CM techniques show promise. 

These include systems for monitoring foundations, offshore foundation areas (to examine scour) and 

blades. 

There has been limited work examining the economic benefit of Structural Health Monitoring (SHM) 

systems. A work by Thöns, Faber and Rücker [15] dedicated to quantifying the value of SHM for offshore 

wind turbine structures shows expected benefits which could be associated to a positive ROI for the 

majority of scenarios examined. Preliminary work has been completed investigating the use of multiple 

monitoring systems. The work of Thöns and McMillan [16] examines the use of CM systems and an SHM 

system for offshore foundations. May and McMillan [17] take a broad approach to the use of CM systems 

for all subsystems. 

This paper will look at extending the studies of economic benefit currently conducted for vibration 

drivetrain CM studies to other types and subsystems. These alternative commercially available CM 

systems are introduced in Section 2 and in Section 4 a cost study of the capital expenditure (CAPEX) and 

operational expenditure (OPEX) of these systems is shown. The remainder of the Section 4 introduces an 

O&M cost model and the differences between how PM and CBM O&M costs are realised. The difference 

between strategies includes possible reductions in component costs, downtime and access costs. Section 3 

details how subsystems and CM systems are modelled. A wide range of factors are included in the CM 

modelling: overall detection rate of failures; increase in failure detection rate with multiple CM systems; 

fault class reduction due to advanced detection; advanced failure detection of 6 months or more; and false 

alarms. 
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2. Condition Monitoring Systems 

The condition monitoring systems described below have been selected due to the possibility of them 

delivering real-time information to a turbine operator and being included in a regular SCADA or existing 

CM system data stream. The majority of these technologies have been chosen from the studies of CM 

systems by Ciang, Lee and Bang [18] and Crabtree [19].  

2.1 Oil Analysis 
Oil performs essential functions for gearbox, generator and bearings and is monitored with several 

SCADA channels dealing with temperature, pressure and oil filter status [20]. By further analysing the 

content, quality and the debris suspended within lubricating oil much can be learned about a component's 

condition. There have been many approaches suggested for analysing oil. However, the majority of these 

methods are offline and as such cannot be conducted in real time [21], [22].  

Dielectric current sensors can monitor a change in the electromagnetic properties of oil and can 

detect both types (ferrous and non-ferrous) and an estimation of the amount of debris. Another technique 

uses magnets to attract ferrous particles onto a screen. Once the screen is full it is then flushed. The time 

between flushes are recorded to give an indication of oil debris content. 

2.2 Vibration 
Vibration based CM systems have been widely adopted for monitoring wind turbine drive trains. 

Accelerometers are used to measure the forces being applied to the component and these are trended over 

time with frequency. Techniques on how to analyse this vibration data for wind turbines are given by 

Hameed et al. [23].  

However, vibration systems have also been utilised for other applications including blade and tower 

monitoring. The monitoring techniques and methods are in some aspects similar to drive train CM systems 

[24] but the data are sampled at lower frequencies. The vibration data can be utilized to calculate damage 

indicators which can be based on the natural frequencies and mode shapes of the structure and foundation. 

Such damage indicators facilitate the detection and the localization of structural damages.  

2.3 Optical Fibre 
Optical fibre systems have been demonstrated on wind turbine blades to measure strain using two 

distinct methods. In one method, the attenuation of light as it travels through the fibre is measured. It is 

from measuring this deviation that strain can be determined. The second method uses fibre Bragg gratings. 

A Bragg grating is an etching in an optical fibre that reflects a certain wavelength of light. If the grating is 

subject to strain then the wavelength returned to the measuring point alters. As multiple gratings can be 

used on the same fibre and are highly sensitive, fibre Bragg grating allow for blade impacts to be detected.  
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Some optical systems are available for retrofitting onto existing turbines with minimal modification 

to the turbine. However, some systems require that the fibres are impregnated into the blades during the 

curing phase. This obviously requires special blades be manufactured. One study suggests that having 

fibres impregnated may actually be advantageous to ensure that the curing of blades is completed properly 

[25]. There is the possibility to realise time and energy savings in the manufacturing process using this 

technique. 

2.4 Acoustic Emission 
Acoustic emission (AE) involves the use of piezoelectric sensors to record the release of stored 

elastic energy during cracking and deformation. The energy released is in the form of high energy waves 

which are outside the audible range. The signals can be categorised by their amplitude into the type of 

damage occurring and when several sensors are used a location can be determined. AE events have been 

shown to 'cluster' around the ultimate failure point.  

3. Operation Modelling  

3.1 Markov Processes 
The wind is a stochastic process and complex loadings lead to complex component failure patterns. 

Various methodologies have been implemented to examine the failure process and the effectiveness of 

various O&M plans. Gamma processes [26], P-F Curves [12] and Markov chains have been widely used to 

represent wind turbine failure patterns. Simulations are used instead of analytical expressions to account 

for these wind complexities.  

Failure rates, そ, are commonly used to express the number of failures, f, expected to occur over a 

fixed time period, T, usually a year. These can be converted into a percentage chance of failure, U, for any 

different given period of time, t. These are shown in Equations (1) and (2). Failure rates can be used to 

populate a state transition matrix, P, used in Markov processes as in Equation (3). In this equation, the 

ability of the system to transition from a failed state to a repaired one is given as a percentage, µ. 

 膏 噺  捗脹       (1) 戟岫建岻 噺 な 伐  結貸碇痛       (2) 鶏 噺  釆な 伐 戟 戟航 な 伐 航挽      (3) 継 噺  峙 撃 な 伐 撃な 伐 迎 迎 峩      (4) 

 

3.2 Condition Monitoring System 
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Hidden Markov Models (HMM) show an observed state instead of the actual state of the system. 

The observable state can be different to the actual condition of the system. This is shown graphically in 

Figure 1. In HMM it is the emissions matrix, E, that contains the probabilities of what is observed by the 

operator and is shown in Equation (4). The emissions matrix is used to define how accurately the condition 

monitoring system reports failures and how frequently it returns false results. 

Condition monitoring effectiveness is a concept used in several works [8], [9], [17]. The 

effectiveness of the condition monitoring system to detect a failure before it occurs is stored as a 

percentage, R, in the emissions matrix. As the value of R increases then there is an increased likelihood 

that the system will detect a failure before a turbine shutdown occurs. The effectiveness is referred to in 

this paper as CM detection rate. Weiss [27] gives detection rates for the GE Bentley Nevada ADAPT wind 

system and these are shown in Table 1. 

In this paper, multiple CM systems that observe different properties are added to the same sub-

system. For example, Nie [28] states that multiple oil sensors would provide greater accuracy of condition 

for components. These have been modelled as parallel systems as shown in Tavner [29].  

The reliability of the CM system is defined as V. This is the ability of the CM system to correctly 

show that the system is operating while it is indeed operating correctly. The lower the percentage, the 

greater chance of the system showing an erroneous failed state. The effects of CM system reliability have 

been investigated by the authors in  a previous study [17] and for this paper the reliability has been fixed at 

99%. Takoutsing et al. [30] state that false warnings and alarms occur frequently and at 99% this equates 

to 4 false alarms per turbine per year. 

These two properties, V and R, allow for false positives, false negatives and CM system failures to 

be accounted for. 

 

Table 1 CM system detection rates 
 
Subassembly Detection Rate 

 

Gearbox 50% 

Generator 80% 

Drive Train (incl. Main Bearing and Coupling) 40% 

 

3.3 Failure Analysis 
A model has been constructed that represents turbines as structures with 13 sub-assemblies. This 

follows the taxonomy as originally used in WMEP programme in Germany within the “250 MW Wind” 
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project covered in the annual Wind Energy Reports from ISET [31] and explored for possible offshore 

developments by Faulstich, Hahn and Tavner [32]. A notable exception to this taxonomy is the addition of 

a subsystem representing the offshore foundation. The layout of the O&M model and flow of data is 

shown in Figure 2. This includes the turbine taxonomy and the required information for each subsystem. 

For clarity, the “Support and Housing” subsystem has been renamed “Tower and Access”.  

A wind farm is constructed from multiple independent turbine structures. Failure rates are taken 

from operation reports from 2007-2009 for Egmond aan Zee offshore wind farm [33]. The farm consists of 

36 Vestas V90 3 MW turbines which have the number of turbine stops (regardless of whether on site 

intervention was required or not) and downtime per subsystem reported. The farm is located between 10 

and 18 km from the coast of the Netherlands in the North Sea. These failure rates are modified as by 

Dinwoodie, Quail and McMillan [34] which uses the number of recorded personnel visits to the wind farm 

to modify the failure rate as a proportion of total stops.  The failure rate and downtime are divided into 

'Major' and 'Minor' failures for each subsystem are based on the onshore ratio taken again from Faulstich, 

Hahn and Tavner [32]. The work describes that the „Minor‟ class of failures account for approximately 75% 

of all failures but only 5% of the downtime. Conversely, the „Major‟ class is 25% of total failures and 95% 

of the downtime. „Minor‟ faults are described as those taking less than 24 hours to clear. A scheduled 

maintenance service occurs at a rate of 1 visit per turbine per year. 

During 2008 and 2009 all the gearboxes at Egmond aan Zee were replaced due to technical issues 

[35] and to improve availability. This will have altered the failure rates and downtime of the gearbox to 

make it unrepresentative of the current reliability. There are not many other sources available of actual 

offshore operation data to directly compare this to. Besnard [36] shows a breakdown of the total downtime 

for the Horns Rev for 2009-2010 which excludes its own serial failures and has approximately 5 failures 

per year compared to 6 for Egmond aan Zee. Horns Rev consists of 80 Vestas V80 2 MW turbines located 

approximately 18 km off the coast of Denmark. The two wind farms are compared in Table 2 excluding 

ambient fault downtime. For use in the model the total hours of downtime assigned for gearboxes is 

reduced by 50% so that the estimated downtime becomes 38.59% of total downtime. 
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Table 2 Comparison of Egmond aan Zee and Horns Rev Wind Farm 

Subassembly 
Estimated downtime per subsystem 

Egmond aan Zee Horns Rev 

 

Blade system 1.72% 8.00% 
Brake system 0.17% 1.00% 
Control system  9.56% 8.00% 
Converter  3.67% 9.00% 
Electrical  2.05% 12.00% 
Gearbox 55.69% 33.00% 
Generator  15.12% 9.00% 
Pitch system 4.96% 6.00% 
Scheduled service 5.34% 11.00% 
Yaw system  0.88% 2.00% 
Structure 0.44% 0.00% 
Grid  0.40% 1.00% 
 

Smith establishes that the majority of components experience periods of infant mortality, 72%, and 

only a small amount show wear out at the end of their life [37]. The failure rates are used for the first 3 

years before being reduced for a further 2 years using a Weibull function with a shape parameter of 0.8 

[38]. 

3.4 Modelling Operations Strategies 
The model is solved by simulation. The model generates an operational and observed state for every 

turbine subsystem based on comparing a randomly generated uniformly distributed number to the 

percentages contained in the P and E matrices. This is repeated for each turbine in the farm and for each 

operational year on a monthly timescale. Each failure event type has associated repair, downtime and fault 

class specifying the required vessels.  

The PM strategy cost is based entirely on the modified data from Egmond aan Zee. It assumes an 

annual service per turbine, that all failures are classified as CM system unobserved failures, and there are 

no false alarms. The wind farm does have a SCADA system but these and weather based observations 

aren‟t included in the cost model as these variables are already a part of the annual downtime values in the 

operation reports. 

For the CBM strategy, an algorithm compares the operational and observed states and notes any 

differences. These are then classified as CM observed failure events, CM unobserved failure events and 

false alarms. CM observed failures in certain instances have reduced failure classifications and costs. An 

annual service per turbine is also included. 

O&M costs for both a PM and CBM strategies are calculated using this information and the cost 

model outlined below. In the model, each turbine is simulated independently at least for 4000 Markov 
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years where convergence is observed. The resulting total failures are then averaged. This gives the costs 

for that operational year. 

4. Cost Modelling 

The annual operating and maintenance costs are calculated from adding the costs incurred from 4 

items: replacing parts; the lost energy production; the logistics costs including crew and vessel hire; and 

the installation and use of CM systems. 

The costs for each year are levelised to represent the Net Present Value (NPV) of the lifetime 

operating costs. NPV is shown in Equation (6) where a discount rate, r, of 8.2% is used [39] and cost of 

year i is defined by CO&M. Additionally, all costs were adjusted for inflation to 2015 – where other years 

are quoted, a value of 2.2% has been used. 軽鶏撃 噺  デ 寵捺┃謎岫沈岻岫怠袋追岻日槻沈退怠       (6) 

 
4.1 Replacing Components 
A failure in a subsystem will incur a cost for part replacement. The cost depends on the severity of 

the failure and damage caused by the failure, Cf. The cost of replacement parts, CRP, is summed for each 

subsystem, k, as seen in Equation (7). 

If the failure is detected in advance by the CM system then in some cases the replacement costs, 系捗袋, 

can be lowered if the damage isn't as severe. This alternate cost, 系眺牒袋 , is shown in Equation (8). 

The costs for turbine replacement parts are compiled from the work of Martin-Tretton et al. [40]. 

This gave average 2010 list prices for 2.1 to 3 MW onshore turbines. The additional cost of marinisation 

for offshore use was found using a factor of 1.27 [34]. The cost of the repairs for the tower and foundation 

are taken from the work of Thöns and McMillan [41]. 

A thorough FMEA of a wind turbine [42] was used to determine which corresponding components 

from the parts list were replaced in relevant major and minor subsystem failures both with and without 

CM detection. Due to the age of the previous study it was checked against a less complete but more 

modern FMEA for a Repower 5MW turbine [43]. There are few sources for the costs of components so 

major failures were compared to the new price of subsystems from estimates by the Crown Estate [44] and 

Williams, Crabtree and Hogg [11].    

 系眺牒 噺 デ 系捗岫件岻賃沈退怠       (7) 系眺牒袋 噺 デ 岾系捗岫件岻 髪 系捗袋岫件岻峇賃沈退怠      (8) 



10 
 

4.2 Lost Production 
A turbine cannot produce energy while it is not operational or offline for maintenance. The longer 

the downtime (DT) associated with a failure then the greater the lost production (LP). In the cost benefit 

analysis the LP is used to represent income that would have been earned if the turbine was operating. 

The cost of lost production, CLP, is the sum of the DT from all subsystem failures, Tf, multiplied by 

the energy production cost, CE, shown in Equation (9). This is the cost of energy in the market (including 

obligation tariffs prices per unit) multiplied by the capacity factor.  

If a CM system can detect a failure in advance then the DT will be reduced as logistic operations can 

be started in advance of the failure causing a shutdown. This reduced downtime value is indicated by 劇捗袋. 

As mentioned previously, there is the possibility of receiving false alarms. A critical subsystem alarm will 

result in a turbine shut down until a trained technician can inspect the component or further analysis can be 

performed on the data. The time taken to resolve false alarms, Tfa, is added to the DT in Equation (10) 

along with the alternative cost of lost production, 系挑牒袋 , when using a CM system. No average downtime 

associated with false alarms was available so therefore 24 hours is used to represent the DT in the model 

as an approximation. 系挑牒 噺 系帳 デ 劇捗岫件岻賃沈退怠       (9) 系挑牒袋 噺 系帳 デ 岾劇捗岫件岻 髪 劇捗袋岫件岻  髪  劇捗銚岫件岻峇賃沈退怠     (10) 

4.3 Operations Costs 
Technicians and appropriate vessels need to be used to complete resets and to replace parts. Each 

failure mode is assigned a failure category. This category relates to the severity of the failure. A high 

category failure indicates that large parts will need to be replaced requiring both a crew access vessel and a 

crane vessel. It also requires a large logistics time and a crew in excess of 7. Conversely, low category 

failures can be organised more quickly as they utilise only a crew access vessel and a small crew. If the 

CM equipment allows for a significant reduction in replacement components then the fault class may also 

be reduced. 

The installation costs, CI, are given in Equation (11). The costs of vessel hire, CV, are based on 

Bjerkseter and Ågotnes [39] and the labour costs per hour, per crew member, CL, are £90 as used by 

Williams, Crabtree and Hogg [11]. The total number of hours required to complete repairs are and logistic 

hours required to mobilise the vessel are estimated from a commercial report. Vessels are hired by the day 

but the crew are hired by the hour including travel time to the farm based on the distance from shore and 

the speed of the vessel. The annual service scheduled serviced that is mentioned in Section 3.4 is included 

in this variable for both the PM and CBM cost models. 
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Procuring large vessels significantly in advance or for long periods of time can reduce effective day 

rate costs [45]. A percentage of the failures detected by the CM system are assigned to have been detected 

over 6 months in advance for applicable subsystems where it is probable that this may occur and that 

would require crane or large service vessels. These use a lower vessel cost, 系蝶袋, to give an alternative 

operations costs, 系彫袋, shown in Equation (12). The lower vessel cost is taken from the spread of values 

shown in Bjerkseter and Ågotnes [39]. 系彫 噺 デ 盤系蝶岫件岻 髪 系挑岫件岻匪賃沈退怠      (11) 系彫袋 噺 デ 盤系蝶岫件岻 髪 系蝶袋岫件岻 髪 系挑岫件岻匪賃沈退怠      (12) 

 

4.4 Monitoring Systems 
Condition monitoring systems incur costs for the procurement and installation of the CM system. 

Some have further annual costs associated with maintenance, analysis and software. For this paper, generic 

costs have been produced from an array of vendors to produce the values shown in Table 3. Several of 

these costs have been given on the condition of anonymity from the vendor. The capital cost of the system 

is added to the O&M costs for the first operational year. The annual costs are added to the costs for each 

year of operation.  

 

Table 3 Anonymised generic costs of commercially available CM and SHM systems 
 
Subsystem Drive Train Blades Tower Foundation 

 

CM Type Vibration Oil Acoustic Vibration Acoustic Optical Vibration Vibration 

 

Capital Costs [£] 6,550 9,200 8150 10,900 38,400 12,300 4,350 14,050 

Annual Costs [£] 570 0 0 770 0 0 80 4,070 

 

5. Cost Benefit Analysis 

The simulations in this paper use a wind farm consisting of 20 turbines of 3 MW size for an 

operational life of 20 years. The capacity factor used in the model is 33.3% is based on the value from 

Egmond aan Zee [33] as is the average distance to shore – 13 km. 

The costs for turbine part replacement, installation costs, lost production (including false alarms) and 

costs for monitoring systems are summed. A base case demonstrating only preventative maintenance is 

used to compare the results of a CBM plan. Unless otherwise stated, every CM system has a detection rate 
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of 80%, excluding the system for the vibration drive train which is as noted in Table 1. Likewise, the 

percentage of faults that are detected more than 6 months in advance to access lower vessel costs is set at 

10% of all detected faults unless otherwise noted. 

5.1 Drive Train CM Systems 
As discussed earlier, most studies find that vibration based CM systems for the drive train offer 

return on investment (ROI). A „Drive Train CMS‟ is defined as one that detects failures on the gearbox, 

generator, the main bearing and output shafts. Other CM methods that can be used as a Drive Train CMS 

include oil sensors and AE systems. The effects of these systems on the operating costs are examined in 

Table 4. 

Table 4 Drive train CM systems 
 
Drive Train CMS Lifetime Saving Over PM 

 

Vibration £12,000,000 

Vibration & Oil Sensor £19,100,000 

Vibration & AE £18,900,000 

Vibration, Oil & AE £20,300,000 

  

An example year of the first 3 years of O&M costs for the CBM strategy for the entire farm is 

£6,600,000, consisting of £1.97m in spare parts (30%), £2.47m in lost production (37%) and £2.19m for 

logistics costs (33%) including CM annual operating fees. This compares to £8,300,000 for the PM 

strategy for the same year where all components of the model show higher costs. 

In the model, a vibration CM system offers potential lifetime savings of approximately £6m over a 

PM strategy. If either an oil sensor system or an AE system is used in addition to the vibration CM the 

lifetime savings increase. This indicates that the additional O&M cost reductions found from adding CM 

systems are larger than the costs of the CM systems themselves.  

The probability of detection increases from 50% for the gearbox system with only a vibration CM 

system to 98% for one with all three drive train systems. This results in an increase of capital costs for a 20 

turbine wind farm from £131,000 to £478,000. However, the improved detection rates allow for an 

approximate reduction in replacement part costs of 17% per annum.  While overall LP remained similar, 

the smaller repairs also allowed for significantly smaller logistics costs. 

5.2 Structural Monitoring 
Blade, tower and foundation SHM systems were added to a standard vibration based drive train CM 

system. The effects of these systems on operating costs are shown in Table 5. 
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Table 5 SHM Systems on Blades and Tower 
 
SHM System & Drive Train Vib CM Lifetime Saving Over PM 

 

Blades (Optical) £13,000,000 

Blades (Vib) £12,900,000 

Blades (AE)  £12,600,000 

Tower £11,800,000 

Tower & Foundation £11,700,000 

Tower, Foundation & Blades (Vib) £12,500,000 

Foundation £11,800,000 

 

Blade SHM systems offer further savings over a Drive Train CMS alone. The largest saving over a 

PM strategy was when using an optical blade SHM system. This gave savings of £13,000,000 which is an 

increase of 7% over the Drive Train CMS. If a SHM system to monitor the tower is added this increases 

lifetime costs over solely using a Drive Train CM by 1.6%. In a scenario where a tower, foundation, blade 

and Drive Train CM systems are utilised an increase of 4% in savings is observed compared to PM.  

The ability of the CM and SHM systems to detect failures has a direct influence on the ROI of the 

monitoring system. This is investigated in Figure 3. A vibration based monitoring system is placed on the 

drive train, blades, tower and foundation. The detection rates for all the SHM systems excluding the Drive 

Train CM is set at 60% and increased in increments to 99% and the resulting levelised lifetime savings 

recorded. 

At 60% the lifetime O&M saving was £12,300,000. This increased to £12,800,000, an increase of 

4%, when the fault detection rate was set at 99% and followed a linear pattern for detection rates in 

between. The higher quality a CM or SHM system is, that is one with a high detection rate, the more likely 

it is to reduce the O&M costs for a wind farm. 

5.3 Advanced Failure Warning 
All of the previous simulations assume that 10% of the total detected faults by CM systems were 

detected with greater than 6 months warning. This assumption is examined in Figure 4. The number of 

faults detected in advance is increased from 10% to 50%. This gives an increase in savings of £250,000 
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from £11.91m to £12.16m which is an increase of 2% for a scenario where only a Drive Train CMS is 

used. 

 5.4 Additional Analysis 
A report from GL Garrad Hassan, The Crown Estate and Scottish Enterprise gives more recent 

offshore availability figures as between 90 and 95% [46]. This is much higher than the average figures 

reported from Egmond aan Zee of 80% for the 3 years up to 2009. The simulation with the modified 

Egmond aan Zee data gives a figure of 87%. This suggests that the failure rates used are too high for wider 

conclusions to be made. 

If only the reduced failure rates from the Weibell function are used with infant mortality rates 

dropping for the first 3 years the availability increases to 91% with a PM strategy and 92% with a CBM 

strategy. This increases to approximately 92% and 93% respectively with a reduced failure rate profile 

with a further two years of learning. In this last scenario, savings where a vibration drive train CM system 

is used becomes £8.6 million. As the costs for both the PM and CBM strategies has changed in this 

scenario the savings between strategies are compared to the total levelised cost of the PM strategy, in this 

case 16%. In the similar scenario listed in Table 4, £12.0 million of savings is 18% of the PM strategy cost. 

Increasing the capacity factor of the wind farm to 50% increases the cost of LP. This pushes savings 

to £13.7 million (17.5% of the PM strategy cost) for a vibration only drive train CM system. Conversely 

reducing all the vessel hire costs to 80% of the standard day charter prices the savings reduce to £10.7 

million (17%). 

6. Discussion 

Monitoring the gearbox and generator subsystems appear to offer the largest benefits to O&M costs. 

These systems have large downtimes associated with major failures (>3000 hours), high repair costs 

(>£100,000) and not insignificant failure rates (>0.1 annually). Drive Train Vibration CM has the 

advantages of monitoring these subsystems and the main shaft at a relatively low cost. Acoustic emission 

can monitor all these subsystems but at larger cost and arguably, AE systems may have a greater detection 

rate than their vibration based counterparts. Oil sensors can diagnose a wide range of faults, some out with 

the capabilities of either an AE or vibration CM. The combination of these three systems offers an 

increased chance of detecting faults before causing shutdown and the reduction in replacement parts and 

lost production appear to outweigh the investment costs. The model is currently not capable of defining 

the different failure modes where one sensor type is better than another so both systems may have larger 

ROI than initially indicated. Rotor blades and hub systems also have similar failure characteristics that 

allow for monitoring to reduce O&M costs.  
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Failure rates have an important impact on the model, as are the sources of component costs. O&M 

models that have been developed for offshore wind use onshore numbers such as Williams, Crabtree and 

Hogg [11] even though offshore has seen marked increases in failure rates [29] or expert judgement as in 

Netland et al. [13]. The failure rates in this document have had to be modified to remove a serial defect 

and the effectiveness of the gearbox replacement are unknown. It is hoped that as more information 

becomes available about offshore wind farm operations, a more cohesive database of good quality 

operational information could be used for O&M models such as these.  

Due to the high reliability (annual failure rates of 0.01 for major failures [34]) and the limited 

intervention associated with tower damage (approximately 600 hours), a SHM system appears to 

marginally increase costs as seen in Section 5.2. However, the implemented approach neglects the tower 

and offshore structure failure risk reduction and does not build upon a comprehensive structural integrity 

management model to quantify the cost savings due to less inspections, which has been reviewed in 

another work of the authors [47] . 

Additional benefits of CM/SHM systems beyond the scope of the paper are ice detection and 

reduction in insurance premiums. Insurance premiums can be reduced by a significant amount over the 

lifetime by the use of CM/SHM systems and by avoiding scheduled maintenance that is stipulated by the 

insurer if no CM/SHM is present. 

7. Conclusions 

A model has been produced that examines the effects of extending condition monitoring and 

structural health monitoring systems on the operation and maintenance costs of an offshore wind farm to 

beyond only a vibration based drive train system. A cost study of commercially available real time 

operating CM/SHM systems has been completed and the results are utilized in the model. Multiple factors 

of the CM systems were modelled including fault detection rate, advanced (6 month) fault detection and 

false alarms. CM/SHM systems were added to various subsystems of a wind turbine and in some cases, 

multiple CM systems were used on the same subsystem to increase the fault detection rate.  

It was found that adding additional CM systems to the drive train, gearbox and generator and 

increasing the fault detection rate offered reductions on the O&M costs outstripping the expense of the 

additional monitoring systems. Blade monitoring systems increased O&M savings by 7% over using just a 

drive train CM system. 

The detection rate of the system had significant impact on the possible O&M savings if the cost for 

the system did not increase. As the detection rate for a monitoring system for the blades, drive train and 
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tower increased from 60% to 99% then the lifetime levelised savings increased by 4%. The same is true of 

increasing the ability of the CM system to detect failures in advance failure. 

Despite the found reduction of the O&M costs, both the CM and the SHM model can be extended to 

account for further areas of potential benefits such as the reduction in insurance premiums with CM and 

the reduction of structural risks and inspection times with SHM. 
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Figure 1 - Example of a hidden Markov process 
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Figure 2 - Overview of developed O&M model with required information and data flow 
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Figure 3 - Detection rate of blade, tower, foundation systems with Drive Train CMS against levelised 

lifetime savings 
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Figure 4 - Percentage of faults detected 6 months or more in advance of failure against levelised 

lifetime savings 


