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Abstract

We model a scheme for the coherent control of light waves and cur-

rents in metallic nanospheres which applies independently of the nonlinear

multiphoton processes at the origin of waves and currents. Using exact

mathematical formulae, we calculate numerically with a custom fortran

code the effect of an external control field which enable us to change the

radiation pattern and suppress radiative losses or to reduce absorption,

enabling the particle to behave as a perfect scatterer or as a perfect ab-

sorber. Data are provided in tabular, comma delimited value format and

illustrate narrow features in the response of the particles that result in

high sensitivity to small variations in the local environment, including

subwavelength spatial shifts.

Background & Summary

Recently several groups have been able to enhance light-matter interaction pro-
cesses by controlling the near and far field optical response of nanostructures.
Control methods include nonlinear [1] and linear control based on pulse shap-
ing [2, 3], combination of adaptive feedbacks and learning algorithms [4], as well
as optimization of coupling through coherent absorption [5], time reversal [6]
and phase and polarization control [7]. Spatiotemporal control of surface pla-
mons in nanosystems has been described using ultrashort pulses [8, 9, 10, 11].
Interference between fields was proposed in quantum optics as a way to suppress
losses in beam splitters [12] and has been recently applied to show control of
light with light in metamaterials [13, 14] and in graphene films [15]. Coher-
ent control of second-harmonic generation using a second pump beam has been
recently demonstrated numerically in particles with cylindrical symmetry [16].



For spheres, it was shown in [17] that the directionality of the emission ob-
tained combining two pump beams results from selection rules that depend on
the order of specific process and on the size of the particles.

In a recent paper [18], we model a scheme for the coherent control of scat-
tering and absorption patterns in a nanosphere in a uniform backgrond medium
which applies independently of the multiphoton processes at the origin of scat-
tering and absorption, as long as the pump beam is not depleted. We use a
control beam coherent with the radiation produced by the nonlinear process:
a simple way to realize this is by driving two nonlinear processes of the same
order with the same pump, using the output of one of them to control the
other. Using the Huygens-Fresnel principle, formally proved in the Stratton-
Chu theorem [19], we can understand this scheme in terms of the formation of
equivalent surface currents, which are combination of physical surface currents
proportional to surface polarizations and tangent field components. These are
due to the control field, incident to the surface of the sphere from the outside,
and to the field generated by the nonlinear volume polarization, when this is
present, which is incident to the surface from the inside. Forming equivalent
surface currents that can radiate only outside or inside the particle we induce
the particle to behave as a perfect scatterer or a perfect absorbed on the con-
trolled modes. These equivalent surface currents depend linearly on the control
field, so this is a linear control scheme.

The control is extremely sensitive to phase variations and produces a reduc-
tion of the absorption and variations in the scattered energy of several orders of
magnitude. These features can be applied to detection of changes in the position
of the particle far smaller than the particle itself, suppression of radiative losses,
sensing of variations in the electric permittivity, ǫ, and magnetic permeability,
µ, and optical switching.

For applications in which substrates are used, the theory as it stands can be
applied only when the index between the substrate and the medium that contains
the spheres is matched, and the thickness of the substrate is such that reflections
from the lower face of the substrate and guided modes in the substrate can be
neglected. When these conditions are not met, substrates remove the reflection
symmetry and perturb the modes of the particle reducing the degeneracy among
them [20, 21]. From the point of view of applications, this is actually a beneficial
effect, as degeneracy makes selecting the correct angles of incidence and obser-
vation more difficult and requires the use of a larger number of control beams.
On the other hand, the theory will have to be performed using the modes of the
particles in presence of the substrate and not the Mie’s modes used in this paper.

When pump and control beams with broad spatial profiles are used, the rela-
tive phase differences are (almost) spatially periodic over the cross section of the
pump, so that the optimal control conditions will be formed on an array of spa-
tial points. On points in this array that are separated by at least a wavelength,
the theory used here can be extended also to the control of arrays of spheres in
which the interaction among different spheres is negligible. Control of arrays of
interacting particles is also possible, but in that case the theory will have to be
adapted by considering the modes of the array.



With appropriate control beams and pump, one can control the directionality
of nonlinearly generated electromagnetic waves not only in a single sphere, but
also in a regular array of spheres, for which both the radiation patterns and the
spatial positions could be determined. This can be very useful for applications
such as optical antennae and for surface enhanced spectroscopy, providing a ref-
erence of regularly spaced optical nano beacons for the localization of molecules.

The data stored in the repository, access details are provided in Data Cita-
tion 1, allows one to verify and test the results shown in the figures published
in the Scientific Report paper [18] and in this paper.

Methods

The theory behind this work is explained in detail in a Scientific Reports paper
by the same authors [18] and relies on the ability of determining the effect of
both surface and volume nonlinearities by considering the boundary conditions
at the surface of the sphere. Here we give the equations necessary to reproduce
the results published in that paper. Surface [22, 23] and volume nonlinearities
appear in the boundary conditions at frequency ω as

ǫinEi
⊥ − ǫexEs

⊥ = −ǫinEB
⊥ + ǫexEc

⊥ −∇‖ · PS , (1)

Ei
‖ − Es

‖ = −EB
‖ + Ec

‖ − (ǫex)−1∇‖P
S
⊥ , (2)

Hi
‖ −Hs

‖ = −HB
‖ +Hc

‖ + iω(n̂× PS), (3)

where E and H are the electric and magnetic fields, respectively, i, s, c stand for
internal, scattered and external control fields, ex, in for external and internal,
and E⊥ = n̂(n̂ ·E), E‖ = −n̂× (n̂×E) and analogously for the other fields. Ei

and Es are the combination of particles modes (solutions of the homogeneous
equations without nonlinear polarizations) that fulfill the boundary conditions.
The modes’ amplitudes depend upon the left-hand sides of Eqs. (1-3) which, for
any EB , HB and PS , enable us to find the form of Ec, Hc necessary to control
the interaction of light with the particle through the amplitudes of the inter-
nal and scattering modes, regardless of the nature of the underlining nonlinear
processes.

For sake of simplicity, we concentrate here the control of two modes and
outline later how the theory generalizes to an arbitrary number of modes. As a
consequence of the rotational invariance, the only modes that are spatially cor-
related at the surface of a sphere are internal and scattering electric or magnetic
multipoles with the same value of l (total angular momentum) and m (angular
momentum along the direction of propagation of the pump). Electric (magnetic)
multipoles have magnetic (electric) fields with null radial component [24]. We
recall that there are another two types of multipolar waves for the external
medium that are relevant to this work: incoming, which propagate inward and
have a divergence at the center, and regular, which are used to expand waves
with amplitudes bounded everywhere, as the plane waves. All types of electric
or magnetic multipoles with the same indexes l and m have the same angular



dependence in spherical coordinates [24], but different radial dependence. In
our notation

f c = (ǫexEc
⊥, E

c
‖, H

c
‖), (4)

fNL = −(ǫinEB
⊥ +∇‖ · PS , EB

‖ + (ǫex)−1∇‖P
S
⊥ , HB

‖ − iωn̂× PS), (5)

are the surface vector functions of the control field (f c) and of the nonlinear
(NL) sources that appear in the boundary conditions, Eqs. (1-3), for a pump
of amplitude ap = 1 in arbitrary units. The real amplitude and phase of f c are
encoded in the complex amplitude ac. For any pair of internal and scattering
modes, ilm, slm, for which we adopt the same notation as for f c, the amplitudes
ailm, aslm are given by

[

ailm
−aslm

]

=

[

i′lm · f c i′lm · fNL

s′lm · f c s′lm · fNL

] [

ac

aNL

]

(6)

where the scalar product indicates the sum of the overlap integrals (i.e. the
spatial correlations) of all the components with aNL = (ap)N the amplitude of
fNL and N the order of the nonlinear process. Note that slm, ilm, are either
transverse electric or transverse magnetic, but for ease of notation we do not
specify which type they are. The biorthogonal mode [25] s′lm (i′lm) is orthogonal
to all modes other than slm (ilm). For spheres the biorthogonal modes can be
found analytically and depend on all internal and scattering modes with the
same l and m, correlated at the surface of the sphere, according to the formula

u′
j = uiG

−1

ij , (7)

where u1 = slm, u2 = ilm, G−1 is the inverse of the (Gram) matrix with
elements Gij = (ui · uj) and we sum over repeated indexes. When longitudi-
nal modes are present [26], we can include them simply by defining u3 as the
longitudinal mode spatially correlated to slmand ilm.

Generalizing Eq. (6) to include any number of modes and external incident
waves is straightforward, as the amplitude of each mode requires only the scalar
product of its biorthogonal mode with the sum of all the fields incident on the
surface and the surface polarization. For any set of incident electromagnetic
waves, {fex

j }, the first column of the matrix in Eq. (6) is replaced by two
matrices: the matrix S with elements Sij = −s′i · fex

j and the matrix I for the

internal modes with elements Iij = i′i · fex
j , where i = (l,m). When fNL = 0,

the amplitudes of the modes are given by the product of these two matrices
with the amplitudes of the incident waves. When fNL 6= 0, the amplitudes of
the modes are given by the product of the augmented matrices S̃ and Ĩ , with S̃
(Ĩ) obtained by adding to S (I) the column −s′i · fNL (i′i · fNL), with a column
vector containing the amplitudes of the incident waves and of fNL. Control of
the amplitudes of N modes can be achieved with N − 1 control beams when
fNL 6= 0 and the matrix [Ĩ , S̃]T is invertible.



Code availability

We used the Fortran90 code Sphere.f90, version 347, which calculates the for-
mulae given above evaluating spherical Bessel and Hankel functions using sub-
routines supplied with the book A. Doicu et al, Light Scattering by Systems of
Particles, Springer (2006) [27]. We are happy to pass on the part of this code
that we wrote to other researchers who can then use it if they have the required
subroutines. We cannot provide these subroutines due to copyright.

Data Records

Numerical data have been generated with a custom Fortran90 code and are
available on PURE, see Data Citation 1, the repository of the University of
Strathclyde. For the control of a gold sphere, we have used the previous analyt-
ical equations and the Lorentz-Drude model for the for the dielectric function of
gold. Data are given in tabular, comma delimited value format, with columns
named according to the quantity plotted in the corresponding figures of the
Scientific Report paper [18] and in this paper.

LD.csv contains data for the dielectric function of gold calculated with a
Lorentz-Drude model [28].

We control the internal and scattering modes i10 and s10 of the electric
dipole to generate data in Fig2a.cvs and Fig2b.cvs. In Fig2a.cvs the amplitude
of the control beam is chosen so that the amplitude of s10, a

s
10

, can vanish at
the appropriate phase; data columns are the intensity of the field scattered in
a direction orthogonal to both pump and control: other multipoles do not emit
in this direction so the intensity has the same dependence of the amplitude as

10

and shows an extremely sharp variation.
The ratio of the amplitudes as

10
and ai

10
shows that we find the condition for

a perfect scatterer in Fig2a.cvs and for a perfect absorber in Fig2b.cvs, while
the amplitudes of the other modes are not affected by the control beam. By
removing the dominant internal mode, we can minimize the total absorption,
which is very useful to reduce heating and, as a consequence, increase stability
in experiments.

Data in Fig3.cvs shows the radiation patterns with and without control in
the equatorial plane θ = 90◦ of the sphere.

In Fig4a.cvs, we give data for the intensity of the field scattered in a direction
at π/2 with respect to the control beam and at π/4 with respect to the pump.
In Fig4b.cvs we give the amplitudes on the modes excited, showing that the
control beam affects only the modes l = 2,m = ±2. Even in this case we can
observe a subwavelength variation of the intensity.

In Fig5a.cvs we give the intensity scattered in the same direction as for data
in In Fig4a.cvs, but using an incoming multipolar wave with l = 2,m = 2 as con-
trol beam. In this case the variation of the intensity is smaller than in Fig4a.cvs
because the multipolar control wave affects only the l = 2,m = 2 mode, as can
be seen by plotting data in Fig5b.cvs. This shows that using incoming multipo-



lar waves (which are extremely hard to realize experimentally) is not necessarily
more effective than using plane waves. Finally, plotting data in Fig6a.cvs and
Fig6b.cvs shows how the sensitivity to phase variation can be applied to mon-
itor small variations in the dielectric permittivity of the host medium; similar
results could be achieved with variations of the magnetic permeability. With
the intensity and phase of the pump and control beams optimised to suppress
the s10 mode for a particular environment, ǫex, (corresponding to ∆ǫex = 0 in
Fig. 6) we observe a strong sensitivity to small changes in ǫex in the scattered
intensity. As the modes of the system depend upon the local environment, the
relative phase and amplitude of the control beam required to maintain suppres-
sion of the modes change with it. When we vary the optimised amplitude of
the control field by ±20% we observe in Fig6a.cvs that the curve of the scat-
tered intensity drifts, so that the minima no longer occurs at ∆ǫex = 0, and the
sensitivity decreases slightly. In Fig6b.cvs we observe that the sharpness of the
feature in the scattering intensity reduces significantly when the relative phase
of the control beam, Φc, is changed from the optimised value, but the position
of the minima in this case does not drift.

Finally, we give the data used to validate the numerical code and plotted in
the figures in this data descriptor.

spheres-dielec.csv contains values for the complex dielectric function of gold [29],
found using a fit to data in P.B. Johnson and R.W. Christy [30], used to generate
the following files.

spheres.csv contains the data for the extinction efficiencies against wave-
length for gold spheres of radii r = 10, 25, 50 and 400 nm, in a host medium
of water (n=1.3), calculated using the code bhmie.f with the fitted dielectric
function for gold.

spheres-test.csv contains the data for the extinction efficiencies against wave-
length for gold spheres of radii r = 10, 25, 50 and 400 nm, in a host medium
of water (refractive index n = 1.3), calculated using our sphere code with the
fitted dielectric function for gold.

Technical Validation

The datasets referenced in this descriptor were validated via comparison with
results from literature. All calculations were performed for gold particles using
a Lorentz-Drude oscillator model for the complex dielectric function [28],

ǫr(ω) =ǫr1(ω)− iǫr2(ω) (8)

=1−
√
f0ω

2

p

ω(ω − iΓ0)
+

k
∑

j=1

fjω
2

p

(ω2

j − ω2) + iωΓj

, (9)

where ω is the frequency, ωp is the plasma frequency, k is the number of oscil-
lators and fj is the oscillator strength, ωj is the oscillator frequency and 1/Γj

is the oscillator lifetime. The terms with j = 0 are associated to the intra-
band transistions. This model, including the relevant values for the oscillator



strength, frequency and damping, were taken from [28] and written as a cus-
tom Fortran90 code. The output of this code was validated by reproducing the
values of the complex dielectric function, plotted against oscillation energy, in
[28]. The results are presented in Figure (1).

The linear part of the numerical code used to calculate the fields for a system
with local response was validated against the Mie code written by C.F. Bohren
and D.R. Huffman (bhmie.f) in “Absorption and Scattering of Light by Small
Particles", New York, Wiley, (1983) [31], which is widely available online. We
calculated the extinction efficiencies defined as,

Qext =
σext

π( r
λ
)2
, (10)

where λ is the wavelength of the incident field, r is the particle radius and
σext is the extinction cross-section. For a direct comparison of the results, we
normalize the values we calculated by a factor of 4π3. The (normalized) values
calculated by both codes are plotted in Figure (2).

Usage Notes

We have used Gnuplot for plotting the data, but any software package able
to read data in csv (comma separated value) format should produce the same
results.
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Figure 1: The components of the complex dielectric function for gold calculated
using a Lorentz-Drude oscillator model [28]. The real (ǫr1) and imaginary (ǫr2)
parts of the optical dielectric function plotted against photon energy (hν) in
electron volts, where ν is the frequency.
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Figure 2: Extinction efficiency spectra for spheres of different radius. The
calculations were performed for a linear system with local response using a
dielectric function fitted from data in the literature. For spheres of radius r =
10, 25, 50 and 400 nm in a host medium of water (n = 1.3), the extinction
efficiencies Qext via plane wave excitation calculated using the code written by
Bohren and Huffman [31] (points) were compared with our own results (lines).
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