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ABSTRACT

This paper presents a hybrid compressible-incompressible approach for simulating the Richtmyer-Meshkov in-

stability (RMI) and associated mixing. The proposed numerical approach aims to circumvent the numerical defi-

ciencies of compressible methods at low Mach numbers, when the flow has become essentially incompressible. A

compressible flow solver is used at the initial stage of the interaction of the shock wave with the fluids interface and

the development of the Richtmyer-Meshkov instability. When the flow becomes sufficiently incompressible, based

on a Mach number prescribed threshold, the simulation is carried out using an incompressible flow solver. Both the

compressible and incompressible solvers use Godunov-type methods and high-resolution numerical reconstruction

schemes for computing the fluxes at the cell interfaces. The accuracy of the model is assessed by using results for a

2D single-mode RMI.
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1 Introduction

A number of studies have shown that Godunov-type methods for compressible flows become very dissipative when the

Mach number is sufficiently low [1–7]. A first analysis of the problem was presented by [2,8,9], and more recently by [5,6].

A review of different approaches regarding the above problem can be found in [7]. In brief, a statement of the problem has as

follows. The solution of the compressible Euler equations, s(x,y), can be split into a fast acoustic component sfast(x, t, t/M∗),

where M∗ is the reference Mach number, and a slow component, s(x, t) = sfast(x, t, t/M∗)+ sslow(x, t)+O(M∗), where sslow

(O(M2)) represents the solution of the incompressible system. Carrying out the asymptotic analysis for the discrete Euler

equations and comparing the results with the exact solution, it was shown [3, 4] that the solution of the Riemann problem

at the cell interface creates an artificial acoustic wave of the same order of magnitude (O(M∗)), which destroys the incom-

pressible sought solution. This is known in the literature as “cancellation error” (see [5] and references therein). Further

analysis by [5] linked the entropy generation with the dissipation of kinetic energy in Godunov-type schemes, proving that

the projection of the initial data on piecewise constants creates an artificially velocity jump at the cell interface.

In addition to the cancellation error, compressible simulations based on explicit numerical schemes encompass numer-

ical efficiency issues due to time step restrictions. The time-step is commonly dictated by the highest eigenvalue of the

system ∆t =C∆x/λn, where C is the CFL number, λn = max{|uq|+aq}, and the subscript (.)q denotes the three directions

x,y and z. When the Mach number of the flow is low and the sound speed aq becomes significantly larger than the speed with

which the flow evolves (uq), the speed of acoustic waves determines the time step value, thus resulting in a clear loss of time-

marching efficiency. In order to overcome the above numerical problem, three main research directions have been pursued so

far. The first approach concerns modification of the numerics for solving the compressible Euler equations, by introducing

either a reference state for the variables and performing the calculations only with respect to their fluctuations [10], or a

predictor-corrector type algorithm that involves the solution of one [11, 12], or two elliptic-equations for the pressure [13].

The second approach, adopted by [3] and by [14], concerns the modification of the Riemann-solver by either compensating

for, or modifying, the strength of the acoustic waves. The third approach [6] corrects the extrapolated quantities locally on

the mesh in order to reduce the artificial velocity jump at the cell interfaces. Although the aforementioned approaches offer

a partial remedy to the problem, accuracy and efficiency issues regarding the use of compressible solvers at (very) low Mach

numbers, when the flow becomes essentially incompressible, still remain unresolved.

In the present paper, we propose a hybrid compressible-incompressible approach which is suitable for multi-mode RMI

mixing. In order to assess accuracy, the method is tested on a 2D single-mode RMI problem and its results are compared

against compressible solutions. Although the present study is motivated by accuracy issues at late time RMI mixing, the use

of the hybrid compressible-incompressible approach is relevant to every fluid mechanics problem that features compressibil-

ity ar early times and incompressible flow behaviour at later times such as combustion applications and astrophysics.

2 Numerical model

The compressible model is based on the Euler equations in a conservative form



∂U

∂t
+

∂E

∂x
+

∂F

∂y
= 0 , (1)

where





U = (ρ,ρu,ρv,E)T

E = (ρu,ρu2 + p,ρuv,(E + p)u)T

F = (ρv,ρuv,ρv2 + p,(E + p)v)T

. (2)

and ρ is the density of the fluid, u and v are the Cartesian components, p is the pressure, e is the internal energy and

E = ρe+ 0.5ρ(u2 + v2) is the total energy per unit volume. The system is closed by the equation of state for ideal gases

p = ρe(γ−1), where γ is the ratio of specific heats. The convective fluxes are computed by solving the Riemann-problem at

the cell interfaces using the characteristics-based solver [15–17]:

ECB
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2

=




ρ̃u

ρ̃u
2
/ρ̃+ p̃

ρ̃uρ̃v/ρ̃

ρ̃uρ̃w/ρ̃

ρ̃u(Ẽ + p̃)/ρ̃




. (3)

The flow variables at the cell interfaces are given by

ρ̃ = ρ0 + r1 + r2 , (4)

ρ̃u = (ρu)0 +(u+ c)r1 +(u− c)r2 , (5)

ρ̃v = (ρv)0 +(v+ c)r1 +(v− c)r2 , (6)

ρ̃w = (ρw)0 +(w+ c)r1 +(w− c)r2 , (7)

Ẽ = E0 +(H +aλ0)r1 +(H −aλ0)r2 . (8)



Here, H is the total enthalpy, c is the speed of sound and the terms r1 and r2 are defined by

r1 =
1

2γ
(q1 −q0) , (9)

r2 =
1

2γ
(q2 −q0) , (10)

where qn, with n = 1,2,3, are the variables along the three characteristics:

qn =
1

2
([1+ sign(λn)]UL +[1− sign(λn)]UR) , (11)

and λn, n = 0,1,2 are the system eigenvalues. The variables at the left and right of the cell interface UL and UR are calculated

using the TVD-MUSCL scheme:

UL= Ui +
1

2
ϕ(rL)(Ui −Ui−1) ,

UR= Ui +
1

2
ϕ(rR)(Ui+2 −Ui+1) ,

(12)

where:

rL =
Ui+1 −Ui

Ui −Ui−1
,

rR =
Ui −Ui−1

Ui+1 −Ui

,

(13)

The limiter ϕ(rK) (K = R,L) is defined by [18]:

ϕ(rL)= max[0,min(2,2rL,βL)] ,

ϕ(rR)= max[0,min(2,2rR+1,βR)] .

(14)



where

βL=
−2/rL,i−1 +11+24rL,i −3rL,irL,i+1

30
,

βR=
−2/rR,i+2 +11+24rR,i+1 −3rR,i+1rR,i

30
.

(15)

The above formulas allow up to fifth-order of accuracy. To reduce the numerical dissipation at low Mach numbers, the

modifications proposed in [6], henceforth labelled as “Low-Mach correction” (LM), were also implemented.

The incompressible model is based on the Euler equations for variable density flow





∂u

∂x
+

∂v

∂y
= 0

∂(ρUI)

∂t
+

∂(ρEI)

∂x
+

∂(ρFI)

∂y
=−∇p

, (16)





UI = (u,v,1)T

EI = (u2,uv,u)T

FI = (uv,v2,v)T

. (17)

A review of methods for incompressible flows can be found in [7]. The variable density, ’incompressible’ equations,

are also solved in conservative form due to the coupling with the density transport equation. The incompressible fluxes are

computed by the Riemann-solver of [19]:

ERU

i+ 1
2

=
1

2

[
(EL +ER)−S(UR −UL)

]
, (18)

where S is the highest wave speed computed in the cell:

S = max{|uL −aL|, |uR −aR|, |uL +aL|, |uR +aR|} . (19)



Since in the incompressible fluid model the information travels across the domain with infinite speed, it is not possible

to directly apply (19) and a new definition for S is required. The real wave speed of the compressible model is therefore

replaced by a ‘fictitious’ wave speed, which assumes that the information travels across the cell with the speed of the fluid.

Therefore, the new S simply becomes:

S = max{|uL|, |uR|} . (20)

In the present paper, the Pressure-Projection (PP) technique [20, 21] has been employed to solve the system (16). PP

makes use of the Hodge decomposition [22] of the velocity field into parts that are divergence and curl-free: Ũ = UI +∇φ,

where UI is the divergence-free component of the solution Ũ. The gradient ∇φ of the potential φ denotes the curl-free portion.

Taking the divergence of the above equation gives ∇ · Ũ = ∇2φ. Once φ has been computed, then the solution can be found

through UI = Ũ−∇φ. The problem is therefore split into a hyperbolic equation for the momentum and an elliptic equation

for the pressure:

∇ ·

(
1

ρ
∇p

)
=

1

∆t
∇ · Ũ . (21)

Once p is computed, it is used to recover the divergence-free component of ρ̃U: ρUI = ρ̃U−∇p. The solution is

obtained in three steps:

1. The momentum equation in (16) is advanced in time without the pressure term:

(̃ρU)
n+1

= (ρU)n +∆t

[
−

(
∂(ρE)

∂x
+

∂(ρF)

∂y

)]
. (22)

2. The linear system of equations arising from the numerical discretisation of the Poisson equation (21) is solved by the

Stabilised Bi-Conjugate Gradients (Bi-CGSTAB) method [23]. Due to the nature of the methods used in this study as

well as the data structure of the computer code, a collocated grid arrangement for the unknown variables was employed,

ie, the flow variables are stored in the cell centres.

3. The tilde-solution from (22) is projected onto the divergence-free space and the final incompressible solution is recov-

ered:



(ρU)n+1 = (̃ρU)
n+1

−∆t∇pn+1. (23)

The multi-component model comprises N − 1 (N is number of species) advective equations for passive scalars, ϕi

(1 ≤ i ≤ N) which are solved together with the Euler equations:

∂ϕi

∂t
+

∂(uϕi)

∂x
+

∂(vϕi)

∂y
= 0 . (24)

These equations cast in different terms, e.g., density, mass fraction, volume fraction, depending on the nature of the

problem. In the present RMI simulations, two fluids have been considered, hence one advection equation has been added to

the Euler equations. In the compressible part of the simulation, if γ and Cv (specific heat at constant volume) are the same for

both fluids considered here (thus the simulation results do not depend on their values), the additional transport equation casts

in terms of the density multiplied by volume fraction, ϕ = ρVf . In the incompressible part of the simulation, the transport

equation is casted in terms of total density.

The numerical transition (henceforth labelled as ’NT’) from the compressible to the incompressible solver is based on

the local Mach number of the flow, M which is calculated at each time step of the compressible solver. NT is activated when

M is less than a given threshold MNT. For RMI simulations, it was found that MNT = 0.2− 0.3 gives satisfactory results

(see further discussion in Section 3). The pressure is initialised by the Poisson solver during the first time step. For the

first guess for the iteration procedure, the pressure is calculated by the total energy equation but use of a constant pressure

throughout the domain also gives satisfactory convergence. At the beginning of the incompressible simulation, the density

is calculated using the volume fraction available from the compressible solution: (ρMIX)I = Vf (ρ1)I +(1−Vf )(ρ2)I. The

incompressible densities, ρ1 and ρ2 are calculated by averaging the densities in the cells with Vf = 0 and Vf = 1 at the

end of the compressible simulation. The density is subsequently updated at each time step through the solution of (16). A

third-order accurate Runge-Kutta time-stepping method was used for both compressible and incompressible simulations.

3 Numerical tests

To investigate the accuracy of the hybrid compressible-incompressible method for RMI problems, a 2D single-mode

RMI case has been considered. The dimensions of the computational domain are: −4π < x < 4π (this does not include the

extended 1D domain used for boundary condition purposes; see discussion below), 0 < y < 2π and the initial conditions,

as per [24], consist of a light and a heavy gas separated by a sinusoidal perturbation of amplitude 0.2 and an incident

shock-wave of Mach number 1.5 travelling from the light (ρ = 1.15kg/m3) to the heavy (ρ = 5.77kg/m3) fluid along the



x-direction. In the hybrid solution, the time step at the end of the compressible stage was ∆t ≈ 2.2×10−5 s using a CFL=0.5.

In order to preserve ∆t at the first incompressible time-step, the CFL for the incompressible solver was set as 0.04. At the

very end of the simulation (t = 0.2s), the compressible time-step remained around 2.2×10−5 s, whereas the incompressible

solver uses ∆t ≈ 4.5× 10−5 s. This clearly highlights the gain in time-stepping efficiency, which is achieved by using the

incompressible solver at late times, thus making the hybrid solver more efficient than the fully compressible one for very-long

time simulations. The hybrid solver is approximately 2.5 faster than the full compressible method for long time simulations.

The comparison between the compressible and hybrid solvers is based on total wall clock time required to run the flow case

on the same computer (using the same number of processors). Note that the CFL number in the incompressible simulation

could gradually increase its value, thus improving further the efficiency of the simulations. However, the value of CFL is also

dictated by accuracy issues. A larger CFL value would result in larger time steps, which can compromise the accuracy of the

simulation. In this study we found that CFL=0.04 results in a good ‘compromise’ between accuracy and computational cost.

In the compressible stage of the computations, the boundary conditions are periodic in the direction normal to the

shock propagation, whereas a one-dimensional extended domain (beyond the computational domain) is used at both the inlet

and the outlet of the shock-tube in order to allow the shocks to exit the domain preventing their excessive reflection. The

extended domain comprises 7000 cells with the same step size as the cells in the main domain. That’s enough to prevent

to the re-shock of the interface due to reflection at the end of the extended domain.This technique does not completely

eliminate the reflection of the shock waves, which is impossible to cancel where the mesh size changes, but it reduces their

magnitude by approximately 99.97% [25]. When switching to the incompressible scheme, the one-dimensional extended

domain containing the shocks was disconnected from the main domain and was replaced by a symmetry boundary condition.

There is a limited number of previous RMI studies dealing with the transition of the flow from the compressible to the

incompressible regime. Based on experimental evidence for a single mode RMI, [26] suggested that the transition time is

t ≈ 1/k2A∆ua0 (t = 0 is considered to be the time instant where the shock reaches the initial interface), where k and a0

are the wavenumber and initial amplitude of the perturbation. [27] also proposed a similar relation t ≈ 1/k2M0c0a0, where

M0 is the Mach number of the incident shock and c0 is the speed of sound in the fluid ahead of it. For the present RMI

case, the transition time according to Aleshin’s et al. formula should be t = 0.06513s. However, our numerical test showed

that the transition, based on the local Mach number threshold of 0.2, occurs at an earlier time tNT 0.052s, which coincides

approximately with the time the shock wave leaves the domain. Several numerical tests aimed at addressing the sensitivity

of the incompressible solver with respect to the transition Mach number were carried out. Using MNT = 0.2 and MNT = 0.3

showed to have no influence in the evolution of the instability; however, the number of iterations in the Poisson solver

for reaching convergence slightly varied and the best ‘compromise’ in terms of efficiency was found to be achieved for

MNT = 0.3. It was found that applying a residual threshold of r = 1×10−4 (dimensionless) in the solution of the pressure-

Poisson equation gives satisfactory results. Grid convergence tests were performed using four uniform, block-structured,

computational grids: 64×16 (G1), 128×32 (G2), 256×64 (G3) and 512×128 (G4). The growth of the mixing layer, Ws,

was used for comparing the results on different grids. For the single-mode case Ws is defined by



Ws =
hb +hs

2
, (25)

where hb and hs are the height of bubble (portion of light fluid penetrating the heavy fluid) and spike (portion of heavy fluid

penetrating the light fluid), respectively. These quantities are computed at each time step as the distance between the initial

position of the interface and the position where Vf = 0.5. The grid convergence results for the C, C+LM, and H methods are

shown in Table 1. The grid converge index (GCI) [28] with respect to the growth of the mixing layer is defined as:

GCI = Fs

|ε|

rp −1
. (26)

where ε is the relative error between two successively refined grids and the constants have values: Fs = 3, p = 2 and r = 2,

which means that for the chosen parameters GCI = |ε| (the smaller the better). is. Full compressible simulations of the

single-mode RMI case were performed to compare the results with the hybrid solver. The compressible simulations were

carried out with the low-Mach correction (henceforth labelled as ’C+LM’) and without the low-Mach correction (henceforth

labelled as ’C’). The solutions obtained using the hybrid solver are labelled as ’H’. Fig. 1 and Table 1 show that convergence

on G3 is achieved by the H method. However, good results are also achieved on G2 and an adequate approximation is

obtained on G1. Overall, the H method performs better than C and C+LM method.

Time C C+LM H

[s] G1-G2 G2-G3 G3-G4 G1-G2 G2-G3 G3-G4 G1-G2 G2-G3 G3-G4

0.10 5.02 2.24 1.32 5.10 1.41 1.15 4.55 1.16 0.42

0.15 1.34 1.17 1.33 2.68 2.96 1.04 3.69 0.46 0.34

0.20 4.51 2.43 2.11 1.31 4.67 1.37 2.83 1.02 0.38

Table 1. GCI [%] at different instants for the C, C+LM and H solvers.

The averaged |∇ ·U| throughout the computational domain, for the C+LM and H methods, and for times t > tNT is

shown Fig. 2. C+LM gives small values of |∇ ·U| but still far from being considered divergence-free. For t > 0.052 s traces

of compressibility still exist. The hybrid approach gives divergence-free velocity field with |∇ ·U| being of the order of 10−2

s−1 decreasing to 10−3 s−1 for t ≥ 0.08 s. In Fig. 3, the velocity divergence along the central line (y = π) is plotted for

the C+LM and H solutions for times t > tNT. The C+LM results show an irregular spatial pattern of ∇ ·U, which becomes

smoother (and decreasing in value) at late times. The H solution gives ∇ ·U < 10−3.



Time [s] Ws−C+LM Ws−H4 εr[%]

0.075 1.18 1.20 1.03

0.100 1.37 1.38 1.27

0.125 1.51 1.53 1.14

0.150 1.63 1.65 1.22

0.175 1.74 1.76 1.39

0.200 1.83 1.86 1.74

Table 2. Relative error between the C+LM and H solutions with reference to the compressible solution (see also Fig. 4).

A comparison of the growth of the mixing width for the C, C+LM and H methods on G2 and G4 is shown in Fig. 4. In

both the grids, the lines start bifurcating after tNT. The discrepancies between the three solution methods on G4 are small,

whereas a they are clearly visible when looking at G2, especially at later times. Table 2 shows the relative error between

the different solutions; the C+LM and H solutions are compared with the solution of the compressible solver (C) without

low-Mach correction. The inset plot in Fig. 4b shows that the transition from the compressible to the incompressible solu-

tion takes place smoothly and that the low-Mach correction does not have any noticeable effects on the mixing width results

when grid-convergence is achieved. This is further confirmed by Fig. 6, where it is possible to see some snapshots of the

volume fraction field at different instants in time from the switching moment. On the other hand, in Fig. 4(a), where grid

convergence is not yet achieved, it is possible to notice the difference in the predicted growth. Here, the mixing computed

by the H solver lies in between the compressible methods. Contrarily from G4, the use of low-Mach correction on a coarse

grid makes a noticeable difference with an increased predicted mixing (see also Fig. 5).

According to Figures 5 and 6, the C and C+LM mushroom predictions at resolution G2 are diffused and hazy with one

roll-up, whereas the H results are less diffused (due to the incompressible solver), featuring two roll-ups. At resolution G4,

the C+LM solution gives a less diffused mushroom and roll-ups compared to the C solution. The H solution gives an even

sharper mushroom compared to C+LM. At late times the vortices in the C and C+LM solutions are rolled-up twice, whereas

the H solution results in three roll-ups.

4 Concluding remarks

A hybrid compressible-incompressible method for RMI flows was presented. Numerical tests were carried out for a 2D,

single-mode RMI case. The results from the hybrid method were compared with compressible solutions, including a variant

of the compressible solver based on a low-Mach correction. The relative error in the results of the three different methods

(H, C+LM and C) with respect to the growth of the mixing width was small. The transition from the compressible to the

incompressible solution did not create any unphysical artifacts. The hybrid solver gave a sharper mushroom compared to C

and C+LM and the two symmetric vortices had three roll-ups at late time compared to two roll-ups in the case of the C and

C+LM methods at the finest resolution. It is expected that for multimode calculations sufficient accuracy should be obtained



with 16 meshes per minimum wavelength. Results from the application of the hybrid method to multi-mode RMI problems

demonstrating the applicability and advantages of the present approach to late-time RMI mixing will be presented in a future

paper.
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Fig. 1. Grid-convergence for a single-mode instability (H).

Fig. 2. Absolute average value of velocity divergence at t > tNT ≈ 0.052 s for C+LM and H solutions.



(a) t ≈ 0.060 s (b) t ≈ 0.080 s

(c) t ≈ 0.12 s (d) t ≈ 0.16 s

(e) t ≈ 0.20 s

Fig. 3. Divergence of velocity along the central line (y = π) for C+LM (solid lines) and H (dashed lines) simulations at different time instants t > tNT.
The mushroom-like interface between the fluids at each instant is displayed in the background of the graphs.

(a) G2 (b) G4

Fig. 4. Predicted growth of the single-mode instability using the compressible (C), compressible with low-Mach correction (C+LM) and hybrid (H)
methods.
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Fig. 5. Comparison of volume-fractions at different time instants for the C, C+LM and H methods on grid G2.
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Fig. 6. Comparison of volume-fractions at different time instants for the C, C+LM and H methods on grid G4).


