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SEQUENCING RELIABILITY GROWTH TASKS USING

MULTIATTRIBUTE UTILITY FUNCTIONS

KEVIN J WILSON∗, JOHN QUIGLEY

Department of Management Science
University of Strathclyde, UK

In both hardware and software engineering, the reliability of systems improve
over the Test, Analyse and Fix (TAAF) cycle as reliability tasks are performed
and faults are designed out of the system. There are many possible tasks which

could be carried out and a large numbers of sequences of these tasks possible.
In this paper we consider the sequencing problem, taking into account the
fact that the testing will be stopped once a reliability target is reached. We
solve the problem by maximising the expectation of a two attribute utility
function over cost and time on test. All marginal utilities are set to be risk
averse. A reliability growth model based on the underlying engineering process
is used. The method is illustrated with an example grounded in work with the

aerospace industry.
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1. Introduction

During new product development an initial design is subject to detailed anal-

ysis, identifying improvements until performance requirements are met [1].

Common reliability tasks which analyse the design and subsequently facilitate

the enhancement include Fault Tree Analysis (FTA), Failure Mode and Effects

Analysis (FMEA), and Highly Accelerated Life Testing (HALT) [5]. These

tasks can be resource intensive and costly to implement. Although each task

assumes a different perspective upon the analysis of the design, the outcomes

may not be mutually exclusive because each has the goal of design improve-

ment by understanding weaknesses. Any weakness may be exposed through

different routes. Therefore, the marginal benefit of introducing new analy-

sis tasks to a development programme will eventually be outweighed by the

marginal cost of implementing the analysis.

We have adapted a reliability model [6] to support the assessment of the

system reliability. This point process model assumes a fixed but unknown

∗Corresponding Author, Email: kevin.j.wilson@strath.ac.uk



number of faults within the design and each is realised independently if the

design is used on test or in-service. Dynamic reliability models have been

considered previously by [8,2]. Prior distributions are elicited from engineers

with to assess the design weaknesses and hence the number of potential faults

that may exist, with uncertainty expressed through probability distributions.

A discussion of the elicitation process is given in [3]. Historical data can be

used to determine the expected rate of occurrence of faults.

In Section 2 we review the reliability model used in the paper. In Section 3

we outline a process to find the optimal sequence of tasks which maximises the

prior expectation of a utility function over cost and time on test. In Section 4

we illustrative the method using an example. We then make some conclusions

in the final section.

2. Optimal allocation of reliability tasks

2.1. Problem definition

We consider the model developed in [9,7]. Suppose that the current design of

an engineering system has associated with it a number of identified engineer-

ing concerns, labelled i = 1, . . . , I. Then, for each concern i, there is some

probability, denoted λi, that this concern will ultimately be realised. Let us

define Xi to be an indicator variable such that

Xi =

{

1, if concern i is ultimately realised,

0, otherwise.

Then the probabilities of Xi being in its two possible states are λi and 1− λi

respectively.

As part of the Test, Analyse And Fix (TAAF) cycle there are a number

of possible tasks which could be performed on the equipment, labelled j =

1, . . . , J . Each of these tasks will have a certain efficacy at identifying each of

the different faults in the system. Denote by pi,j the conditional probability

that task j will realise fault i given that the fault truly exists.

We can elicit both λi and pi,j from engineering experts inside the organi-

sation. If we assume that each time a fault is found and removed no new fault

is added to the system, then in the system there will be some fixed unknown

number of faults, denoted N .

2.1.1. Prior reliability

If we assume that the faults are independent then the reliability of the system

at time t is given by R(t) =
∏I

i=1 Ri(t)
Xi =

∏I

i=1[XiRi(t) + (1 −Xi)]. Prior



to performing any of the tasks the expected reliability is

EX [R(t)] =

I
∏

i=1

[1− (1−Ri(t))λi]

2.1.2. Post-development reliability

Suppose we have performed a number of the tasks. We will either observe fault

i in one of the tests, di = 1, or not, di = 0. This will update, through Bayes

Theorem, the probabilities of the faults truly existing to Pr(Xi = 1 | di = 1) =

1,Pr(Xi = 0 | di = 1) = 0, as when a fault is found it must exist and

Pr(Xi = xi | di = 0) =



















1− λi

1− λi[1−
∏J

j=1(1− pi,j)θj ]
, xi = 0,

∏J

j=1(1− pi,j)
θjλi

1− λi[1−
∏J

j=1(1− pi,j)θj ]
, xi = 1,

where θj is an indicator variable which takes the value 1 if task j has been

performed and 0 if not. The prior expectation of the reliability is then

ED

{

EX|D [R(t)]
}

=

I
∏

i=1



1− (1−Ri(t))λi

J
∏

j=1

(1− pi,j)
θj



 .

3. Optimal sequencing of reliability tasks

3.1. Problem definition

We could perform all of the reliability growth tasks possible for a system.

However, if we were to reach our reliability target after fewer than the allocated

tasks, then we would stop testing and save time and money. Therefore, finding

the optimal sequence of reliability tasks is an important question.

To model this we need to consider the probability distribution of the reli-

ability as we are interested in quantities of the form Pr(R(t) ≥ R0) = α, for

some α close to one. To do so let us transform the reliability so that it is not

restricted to [0, 1]. Specifically, define

η(t) = log [R(t)] .

Assume that the transformed reliability follows a Normal distribution η(t) ∼

N(m(t), v(t)). Justification for this choice will be given later. Then the prob-

abilities of interest Pr(R(t) ≥ R0) = Pr(η(t) ≥ logR0).



We can fully specify the distribution of the reliability by specifying

m(t), v(t) as m(t) = Ed

{

EX|d [η(t)]
}

and v(t) = Ed

{

EX|d

[

η(t)2
]}

−

Ed

{

EX|d [η(t)]
}2

. These are calculated via

Ed

{

EX|d [η(t)
n]
}

=
∑

d

I
∏

i=1

Pr(Di = di)
∑

x

I
∏

i=1

Pr(Xi = xi | d)×

[

I
∑

i=1

log (Ri(t))

]n

,

for n = 1, 2.

These are not fast and efficient calculations to perform. Each vector d and

x are of length I with each element having two possible states, 0 and 1. The

number of sequences of length J is JPJ , where P denotes permutations. There-

fore the total number of calculations which would be necessary to evaluate the

probability distribution of η(t) for all sequences of length J is N = 22I+1×JPJ .

For example, if I = 5, J = 5 then N = 245, 760 and if I = 15, J = 14 (still very

small) then N = 1.87× 1020. In practice, for a reasonably large problem, it is

not going to be possible to evaluate all of the required expectations exactly.

We can approximate the logarithm of the reliability by taking a rare event

approximation. If we do so we get

− log [R(t)] =

I
∑

i=1

(1−Ri(t))λi −

I
∑

i=1

(1−Ri(t))λi

J
∑

j=1

θj(1− αi,j),

where αi,j is 1 if task j finds fault i given that fault i exists and 0 if it does

not find i when it exists. In this case,

m(t) = −





I
∑

i=1

(1−Ri(t))λi −

I
∑

i=1

(1−Ri(t))λi

J
∑

j=1

θj(1− pi,j)



 ,

v(t) =

I
∑

i=1

[(1−Ri(t))λi]
2

J
∑

j=1

θj(1− pi,j)pi,j .

By the Lyapanov Central Limit Theorem [4] the distribution of the approxi-

mation is asymptotically Normal with increasing numbers of activities.

Using the approximations the total number of calculations required to solve

the design problem for a sequence of length J reduces to N = 2IJ ×J PJ . In

the specific cases, if I = 5, J = 5 then N = 6000 and if I = 15, J = 14 then

N = 3.66 × 1013. We see that the number of calculations required has been

significantly reduced.



3.2. Expected utility solution

We need to define a utility function which incorporates the uncertainty on the

reliability R(t). The utility we define will include this reliability uncertainty in

both the financial cost and time cost utilities and so there is no need to include

a specific utility function for reliability. Thus the overall utility function will

be U(Y, χ), where Y represents financial cost and χ represents time on test.

Suppose that all of the possible sequences of tasks of length J are given by

s1, . . . , sMJ
, where MJ =J PJ . Then the Bayesian optimal sequence of tasks

is given by

max
sMJ

[

Ed

{

EX|d [U(Y, χ)]
}]

,

where the utility function U(Y, χ) incorporates the probability distribution of

R(t).

Suppose that we order the tasks for sequence si ascending from 1 to J .

Then if we perform j tasks the total costs and time on test will be given by

y
(tot)
j =

∑j

k=1 yk and χ
(tot)
j =

∑j

k=1 χk respectively. Introducing our rule that

we stop testing if we reach the target reliability, the cost and time on test for

sequence si are

Y =
J
∑

j=1

y
(tot)
j γj

j−1
∏

k=1

(1− γj), χ =

J
∑

j=1

χ
(tot)
j γj

j−1
∏

k=1

(1− γj),

where γj is an indicator variable which takes the value 1 if R(t) > R0 and 0 if

not. If we assume utility independence between cost and time on test we can

then define the general utility function to be a binary node:

U(C) = p1U(Y ) + p2U(χ) + p3U(Y )U(χ),

for trade-off parameters p1, p2, p3 such that p1 + p2 + p3 = 1. Examples of

suitable risk averse marginal utility functions for financial cost and time on

test would be U(Y ) = 1 − (Y/Y0)
2 and U(χ) = 1 − (χ/χ0)

2, however any

suitable functions on [0, 1] could be used.

We see that, to calculate the expected utility of a particular sequence, we

need E[γj ], for all j, which are the Pr(R(t) > R0) for a particular stage of a

specific sequence.

4. Illustrative example

4.1. Background

Suppose that in an elicitation session engineers identify 15 possible design flaws

in a product under development. There are 9 possible tasks which the engineers



could carry out to identify and design out these flaws. This means that in all

there are 362,880 possible sequences of the tasks which could be carried out.

Each task has associated with it a cost of between 0 and 50 units and

a duration of between 0 and 20 units. The target reliability, which would

be assessed by the decision maker, is 0.8, the maximum time on test is 150

units and the maximum total cost, found by summing the costs of each of the

possible tasks, is 258 units. We also require the marginal reliability functions

for the faults. There are various possibilities here but if the rate of failure from

the fault can be thought of as constant over time a suitable choice for the time

to failure is the exponential distribution. This results in a marginal reliability

function of

Ri(t) = exp {−µit} ,

where µi is the rate of failures resulting from fault i. The final parameters

which need to be specified are the trade-off parameters for the binary utility

function. In the example, the λi are between 0 and 0.5, 54% of the pi,j are

equal to zero indicating that task j will not find fault iand the rest are between

0 and 0.5 and each µi is chosen to be 0.02.

4.2. Results

We wish to schedule the tasks in order to minimise the expected cost and total

time on test. We do so by maximising the prior expected utility as outlined

in the previous section. We have a single binary utility function for cost and

time on test. Suppose that initially the decision maker felt that the utility of

each was equally important. Then p1 = 1/2, p2 = 1/2, p3 = 0.

We calculate the expected utility for each and then choose the order with

the maximum value. The expected utilities for all of the possible orderings are

given against both expected cost and expected time on test in Figure 1.

We see that there are clear relationships between both cost and time on

test and the expected utility, with the maximum utility achieved with low cost

and low time on test. The relationship is stronger with cost than with time

on test. The relationships reflect the quadratic forms of the marginal utility

functions.

The optimal ordering of tasks has an expected utility of 0.875 and corre-

sponds to the sequence (4, 2, 8, 1, 9, 5, 7, 6, 3). That is, we first carry out task

4 and then if we haven’t met the reliability target we move on to task 2. If we

still haven’t met the reliability target we then carry out task 8, etc.

We can consider the costs, time on test and probabilities of reaching the

target reliability following each task. They are given in Table 1.



Figure 1. Expected utilities for the different task orderings against expected cost (left) and

expected time on test (right).

Task 4 2 8 1 9 5 7 6 3

Cost 17 52 63 63 109 114 135 138 165

Time 9 10 18 24 40 43 48 52 67

Probability 0.0002 0.10 0.46 0.82 0.97 0.99 1.00 1.00 1.00

Plots of the probability of reaching the target after each task by the number

of tasks completed (left) and the time and financial costs against the probability

of reaching the target after each task (right) are given in Figure 2. In the right-

hand plot financial costs are in red and time on test is in blue.

From the table and figures we see that it is not likely that we will have to

perform all of the tasks to achieve the target reliability. It is likely that only

4 or 5 tasks will be needed and that we can reach the reliability target with a

spend of 63-109 and a time on test of 24-40.

5. Summary

We have shown how to find an optimal sequence of reliability tasks for a rel-

atively small problem. Even with the approximation of the reliability as the

number of possible tasks increases the problem will become very computation-

ally expensive. A future direction of this work is to use a Gaussian process

emulator to solve such problems with many tasks quickly and efficiently.



Figure 2. The probability of reaching the target reliability for a given number of tasks (left)

and the financial cost (red) and time on test (blue) against the probability of reaching the
target reliability (right).
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