
Strathprints Institutional Repository

Heryudono, Alfa and Larsson, Elisabeth and Ramage, Alison and von

Sydow, Lina (2015) Preconditioning for radial basis function partition of

unity methods. Journal of Scientific Computing, 67 (3). pp. 1089-1109.

ISSN 0885-7474 , http://dx.doi.org/10.1007/s10915-015-0120-6

This version is available at http://strathprints.strath.ac.uk/54560/

Strathprints is designed to allow users to access the research output of the University of

Strathclyde. Unless otherwise explicitly stated on the manuscript, Copyright © and Moral Rights

for the papers on this site are retained by the individual authors and/or other copyright owners.

Please check the manuscript for details of any other licences that may have been applied. You

may not engage in further distribution of the material for any profitmaking activities or any

commercial gain. You may freely distribute both the url (http://strathprints.strath.ac.uk/) and the

content of this paper for research or private study, educational, or not-for-profit purposes without

prior permission or charge.

Any correspondence concerning this service should be sent to Strathprints administrator:

strathprints@strath.ac.uk

http://strathprints.strath.ac.uk/
mailto:strathprints@strath.ac.uk

Journal of Scientific Computing manuscript No.

(will be inserted by the editor)

Preconditioning for radial basis function partition of unity

methods

Alfa Heryudono · Elisabeth Larsson · Alison

Ramage · Lina von Sydow

Received: date / Accepted: date

Abstract Meshfree radial basis function (RBF) methods are of interest for solving par-

tial differential equations due to attractive convergence properties, flexibility with respect

to geometry, and ease of implementation. For global RBF methods, the computational cost

grows rapidly with dimension and problem size, so localised approaches, such as partition

of unity or stencil based RBF methods, are currently being developed. An RBF partition

of unity method (RBF–PUM) approximates functions through a combination of local RBF

approximations. The linear systems that arise are locally unstructured, but with a global

structure due to the partitioning of the domain. Due to the sparsity of the matrices, for large

scale problems, iterative solution methods are needed both for computational reasons and to

reduce memory requirements. In this paper we implement and test different algebraic pre-

conditioning strategies based on the structure of the matrix in combination with incomplete

factorisations. We compare their performance for different orderings and problem settings

and find that a no-fill incomplete factorisation of the central band of the original discretisa-

tion matrix provides a robust and efficient preconditioner.

Authors are listed in alphabetical order.

Heryudono was partially supported by AFOSR grant FA9550-09-1-0208 and by National Science Foundation

grant DMS-1318427.

A. Heryudono

Department of Mathematics, University of Massachusetts, Dartmouth, Massachusetts, 02747, USA

Tel.: +1-508-999-8516

E-mail: aheryudono@umassd.edu

E. Larsson

Department of Information Technology, Uppsala University, Box 337, 751 05 Uppsala, Sweden

Tel.: + 46-18-471 2768

E-mail: elisabeth.larsson@it.uu.se

A. Ramage

Department of Mathematics and Statistics, University of Strathclyde, Glasgow, G1 1XH, Scotland

Tel.: +44-141-548 3801

E-mail: a.ramage@strath.ac.uk

L. von Sydow

Department of Information Technology, Uppsala University, Box 337, 751 05 Uppsala, Sweden

Tel.: + 46-18-471 2785

E-mail: lina@it.uu.se

2 Heryudono, Larsson, Ramage, von Sydow

Keywords radial basis function · partition of unity · RBF–PUM · iterative method ·
preconditioning · algebraic preconditioner

Mathematics Subject Classification (2000) MSC 65F08 · MSC 65M70

1 Introduction

There is an increasing interest in using methods based on radial basis function (RBF) ap-

proximation [12] for the solution of partial differential equations (PDEs). The main advan-

tages of these methods are that they are mesh free, which provides flexibility with respect

to the geometry of the computational domain; they can be spectrally accurate for smooth

solution functions [30,31]; they are comparatively easy to apply to high-dimensional prob-

lems, which is vital for application areas such as finance, quantum dynamics, and systems

biology.

The typical form of an RBF approximation û(x) to a solution function u(x), where x =
(x1, . . . ,xd) ∈ R

d , is

û(x) =
N

∑
j=1

λ jφ j(x), (1)

where λ j are coefficients to be determined. Here φ(r) is a radial basis function, and φ j(x) =
φ(ε‖x− x j‖), where x j, j = 1, . . . ,N are the (scattered) node points at which the individual

RBFs are centred. The parameter ε is called the shape parameter and controls the flatness of

the RBFs. This shape parameter has a significant influence on the accuracy of the approxi-

mation, as well as on the conditioning of the resulting linear systems.

By requiring the RBF approximation to interpolate the solution at the node points, we

arrive at a linear system

Aλ = u, (2)

where the N ×N matrix A has entries ai j = φ j(xi), i, j = 1, . . .N, λ = (λ1, . . . ,λN)T , and
u = (u(x1), . . . ,u(xN))T . If the basis function that is used has global support, the matrix

A becomes dense, and the computational cost of solving the linear system (2), especially

in higher dimensions, becomes prohibitive. Furthermore, as the shape parameter ε goes to

zero, the RBFs become flat, and the linear system becomes severely ill-conditioned [18,19].

As was noted in [8] for one-dimensional problems, and later in [23] for multivariate prob-

lems, this ill-conditioning is an artefact of the particular formulation of the problem, while

the approximation result itself depends smoothly on the data. Several methods have been

proposed to eliminate these conditioning problems. The Contour-Padé algorithm [17] came

first, and was then followed by the RBF-QR method for the sphere [16] and for Cartesian

space [14] and, more recently, the RBF-GA method [15]. All of these approaches compute

the same end result as the ill-conditioned formulation, but through a stable reformulation. In

this paper, we employ the RBF-QRmethod [14,25] for constructing differentiation matrices.

In order to address the computational cost issues of the global RBF method, we need to

introduce locality. An easy way to do that is to use compactly supported RBFs, such as the

Wendland functions [41], but then the spectral convergence properties are lost. Here we take

another approach, where the infinitely smooth RBFs are still used in the approximation but

over local subregions of the computational domain. The possibility of using RBFs in a par-

tition of unity scheme was mentioned in [2], further discussed in [12,42], and implemented

and analysed for elliptic PDEs in [24] (see also [34,36], where an RBF partition of unity

method (RBF–PUM) was applied to parabolic PDEs). In the recent benchmark paper [39],

Preconditioning for radial basis function partition of unity methods 3

many different types of methods, including RBF methods, were evaluated for option pricing

problems. The results demonstrated that out of the implemented RBF methods, the RBF–

PUM approach was the most efficient computationally.

The RBF–PUM discretisation leads to sparse unstructured matrices. For larger problem

sizes and in higher dimensions, it is therefore necessary in terms of computational efficiency

to use an iterative solver for the linear systems that arise. Here we use the Krylov subspace

method GMRES [33] in order to take advantage of its theoretical residual minimising prop-

erty (see §4): other methods such as Bi-CGSTAB [40] or IDR [38] may be more suitable for

practical implementation with large problems. The RBF-PUM matrices are non-symmetric

and moderately ill-conditioned so iterative convergence is typically very slow. It is therefore

important to have an effective preconditioner for these systems. In this paper, we design and

evaluate the performance of algebraic preconditioners based on (incomplete) LU factorisa-

tion that take advantage of the underlying structure of the coefficient matrices. To the best

of our knowledge, this is the first time that any preconditioner for this type of discretisation

has been developed.

In the current literature, most papers on preconditioning for RBF interpolation or ap-

proximation consider global approximations like (1). In such circumstances, using precon-

ditioners based on approximate cardinal basis functions computed on a reduced node set

has been shown to be successful (see, e.g., [4,6,13,20,27]). In our case, we are using a lo-

cal approximation, so the coefficient matrices are already sparse. Preconditioners utilising

the Toeplitz structure of a discretisation with a logically Cartesian node layout are intro-

duced in [3,7]. Although efficient, these may be hard to use for the unstructured sets of

nodes which are useful for non-trivial geometries. In [11], algebraic preconditioners are

constructed for compactly-supported RBFs, utilising the two-by-two block structure of the

matrix arising from the separation of boundary and interior nodes, in combination with an

additive Schwarz method. A similar type of algebraic preconditioner is investigated in [1],

for a special case of complex matrices with symmetric positive definite real and imaginary

parts. In the latter paper, sparsification is used for the RBF example, in the sense that small

off-diagonal elements are removed, and their mass is added to the corresponding diagonal

element.

The remainder of this paper is structured as follows. In §2, we present details of the

RBF discretisation method. This is followed in §3 by a description of the set of Poisson test

problems which we use throughout the paper, together with a discussion of some important

issues concerning node numbering and matrix structure. In §4, the iterative method and

new preconditioners are described, and in §5 we make some predictions concerning the

asymptotic convergence rates of the resulting methods. Finally, in §6, we present the results

of several numerical experiments and draw some conclusions in §7.

2 The Radial Basis Function Partition of Unity Method

Since in this paper we are mainly interested in the efficiency of different preconditioning

approaches, we restrict our attention to a stationary linear PDE with Dirichlet boundary

conditions. We note, however, that the techniques presented here can also be generalised to

other problem settings, including time-dependent problems. We define our model PDE on a

closed domain Ω ⊂ R
d , with boundary ∂ Ω as follows:

L u(x) = f (x), in Ω , (3a)

u(x) = g(x), at ∂ Ω , (3b)

4 Heryudono, Larsson, Ramage, von Sydow

where x= (x1, . . . ,xd). In the numerical experiments presented later, we take L = −∆ (the

Laplace operator).

In a partition of unity method, the global approximation ũ(x) to the solution u(x) is

constructed as a weighted sum of local solutions ũ j(x) on overlapping patches Ω j, j =
1, . . . ,P. That is,

ũ(x) =
P

∑
j=1

w j(x)ũ j(x). (4)

where w j, j = 1, . . . ,P are weight functions. The patches Ω j need to form a cover of the

domain in the sense that
P
⋃

j=1

Ω j ⊇ Ω .

There should also be an upper bound K for the number of patches that overlap at one given

point x ∈ Ω .

An illustration of typical sets of circular patches used in this paper can be seen in Fig-

ure 1 in §3. We define the overlap γ relative to the minimal patch radius R0 such that, for

given patch centres, we fulfil the conditions required for a cover. That is, in subfigures 1(a)

and 1(b), a patch radius of R0 would correspond to patch boundaries just touching in the

diagonal direction. With an overlap γ , we use a patch radius of R = (1+ γ)R0.

The partition of unity weight functions w j are non-negative, compactly supported on Ω j

and satisfy
P

∑
j=1

w j(x) = 1, ∀x ∈ Ω .

Furthermore, the weight functions need to be p times continuously differentiable, where p

is the order of the PDE operator L (for L = −∆ , p = 2). We follow the approach in [24,

34,36], and use Shepard’s method [12,37] applied to compactly supported C2 Wendland

functions [41] to construct the weight functions

w j(x) =
ϕ j(x)

∑P
j=1 ϕ j(x)

, j = 1, . . . ,P,

where ϕ j(x) is the particular Wendland function supported on Ω j.

The PDE (3) is discretised with a collocation method. We therefore define a global set

of distinct nodes X = {xk}
N
k=1 in Ω , requiring the PDE (3a) to be satisfied at interior nodes,

and the boundary condition (3b) to be satisfied at boundary nodes. That is, we require

L ũ(xk) =
P

∑
j=1

L (w j(xk)ũ j(xk)) = f (xk), xk ∈ Ω \∂ Ω , (5a)

ũ(xk) =
P

∑
j=1

w j(xk)ũ j(xk) = g(xk), xk ∈ ∂ Ω . (5b)

For the particular case of the Poisson problem, where L = −∆ , the local operator can be

expanded to give

L (w j(xk)ũ j(xk)) = −∆w j(xk)ũ j(xk)−2∇w j(xk) ·∇ũ j(xk)−w j(xk)∆ ũ j(xk). (6)

A general exposition for other linear operators can be found in [34].

Preconditioning for radial basis function partition of unity methods 5

When using partition of unity approximations such as (5), it is convenient to work at

the patch level. We therefore now define local subsets of nodes as X j = {x ji }
n j
i=1 = {xk ∈

X |xk ∈ Ω j}, where n j is the number of nodes that fall in Ω j. In addition, we define the

index mapping k = π(i, j) that returns the global index k for a given local node x
j
i . In the

particular case of RBF-PUM, the local solutions ũ j(x) are RBF approximations

ũ j(x) =
n j

∑
i=1

λ
j
i φ

j
i (x), (7)

where λ
j
i are coefficients to be determined and φ

j
i (x) = φ(ε‖x− x

j
i ‖). However, in the par-

tition of unity setting, it is inconvenient to use the coefficients λ
j
i as the degrees of freedom,

as there is more than one coefficient per collocation node in the regions of overlap between

patches. Instead, we solve for the nodal values ũ j(x
j
i)≡ ũ(xk), where k = π(i, j). That is, we

require the local solution from two adjacent patches to take on the same value at the node

points in the overlap region. The same requirement expressed in terms of the coefficients

would result in a non-local condition involving all coefficents in both patches.

We now define the vector of local nodal values u j = (ũ j(x
j
1), . . . , ũ j(x

j
n j))

T and the local

coefficient vector λ j = (λ j
1 , . . . ,λ

j
n j)

T . From (7), we then have the relations

A jλ j = u j ⇒ λ j = A−1
j u j,

where A j = {φ
j
m(x

j
i)}

n j
i,m=1, and

L u j = DL
j λ j = DL

j A−1
j u j,

where DL
j = {L φ

j
m(x ji)}

n j
i,m=1. Note that, for distinct node points with positive definite

RBFs such as the Gaussians used for the numerical experiments in this paper, the local RBF

interpolation matrices A j are guaranteed to be non-singular [35]. We also define a diagonal

matrix

WL
j = diag(Lw j(x

j
1), . . . ,Lw j(x

j
n j

))

associated with each patch. Now, using (6), we can express the discrete local Laplacian

operators as

L̃ j = (W∆
j A j +2W∇

j ·D∇
j +W jD

∆
j)A

−1
j ,

where the gradient operators are vector valued, and the scalar product is applied in the appro-

priate way. To get the discrete local PDE operator, we also include the boundary conditions,

which gives

L j(i,m) =

{

L̃ j(i,m), x ji ∈ Ω \∂ Ω ,

δim, x
j
i ∈ ∂ Ω ,

where δim is the Kronecker delta. Finally, we obtain the global discrete operator by, as in a

finite element method, assembling the local matrices L j into the global matrix L such that

L j(i,m)
+

−→ L(π(i, j), π(m, j)), j = 1, . . . ,P, i,m = 1, . . . ,n j.

The global right hand side f = (f1, . . . , fN)T is defined through

fk =

{

f (xk), xk ∈ Ω \∂ Ω ,
g(xk), xk ∈ ∂ Ω .

6 Heryudono, Larsson, Ramage, von Sydow

With the global vector of nodal values defined by u = (x1, . . . ,xN)T , the final (global) linear
system to be solved is

Lu = f . (8)

For small values of the shape parameter ε , the matrices L j, and consequently L, become

highly ill-conditioned when computed as described above [18,19]. This is problematic be-

cause, for smooth solution functions, a small positive shape parameter value typically gives

the best accuracy of the solution [17,22,23]. Furthermore, refining the patches in RBF-

PUM for a fixed ε results in a decreasing ’effective’ shape parameter value, that is, the

shape parameter becomes smaller in relation to the patch size. However, the problem of

ill-conditioning for small shape parameters can be avoided by employing stable evaluation

methods such as the Contour-Padé approach [17], the RBF-QR method [14,16,25], or the

RBF-GA method [15]. Here we employ the RBF-QR method which, simply put, corre-

sponds to a change of basis from {φ
j
m} to {ψ

j
m} in the local problems. This significantly

reduces the condition number of A j, and allows for stable evaluation of L j for small shape

parameter values.

3 Model problems and ordering issues

To fix ideas, we will focus for the remainder of the paper on two specific two-dimensional

model problems. As stated above, we will solve the PDE (3) with L = −∆ (the Laplace

operator). For simplicity, we use a manufactured solution u(x) from which we can compute

the right-hand-side functions f and g, namely,

u(x) = sin(x21 +2x22)− sin(2x21 +(x2−0.5)2). (9)

We solve this problem over two different two-dimensional physical domains Ω : for Model

Problem I, the domain is the square Ω = [−1, 1]2, and for Model Problem II, the boundary

of Ω is defined by

∂ Ω = {(r,θ)|r(θ) = 0.8+0.1(sin(6θ)+ sin(3θ))}. (10)

This region is illustrated in Figure 1(c).

In Figure 1 we show typical examples of patches and node distributions for Model Prob-

lem I (with 16 patches on the square domain) and Model Problem II (with 50 patches and

domain boundary defined by (10)). In each case, the patch boundaries are shown in red,

with patch centres marked as black dots. Points on the domain boundary (where the Dirich-

let boundary conditions are applied) are represented by green circles. The amount of overlap

between patches is γ = 0.15 for Model Problem I, and γ = 0.3 for Model Problem II. The

square domain is shown with both Cartesian and Halton [21] nodes (shown as blue stars).

The reason for choosing these two types of nodes is that they represent extremes in terms

of node distributions: the Cartesian nodes are completely structured, while the Halton nodes

are quasi random, and completely unstructured. For general geometries it is not possible to

always have completely structured nodes. A typical scenario for a RBF-PUM discretisation

would be to have unstructured nodes, but of a higher quality in terms of uniformity than

Halton nodes. This is the case that is investigated for Model Problem II, see Figure 1(c).

The patches similarly have a Cartesian layout for Model Problem I and an unstructured

layout for Model Problem II. The number of patches is chosen such that the number of node

points per patch is large enough (& 15) to provide a reasonable local approximation, while

still small enough (. 100) for the conditioning of the local problem to be manageable.

Preconditioning for radial basis function partition of unity methods 7

x1

-1 -0.5 0 0.5 1

x
2

-1

-0.5

0

0.5

1

(a) Model Problem I, 289 Cartesian nodes, 16 patches.

x1

-1 -0.5 0 0.5 1

x
2

-1

-0.5

0

0.5

1

(b) Model Problem I, 294 Halton nodes, 16 patches.

x1

-1 -0.5 0 0.5 1

x
2

-1

-0.5

0

0.5

1

(c) Model Problem II, 298 unstructured nodes, 50

patches.

Fig. 1: Illustrations of typical patches and node distributions. Patch boundaries are marked with red circles,

interior nodes with blue stars and boundary nodes with green circles.

One question which needs addressing is how the patches, and then the nodes within

each patch, should be ordered. This is important as the sparsity pattern of L in (8) will have

implications for the design of efficient fast solvers. In particular, as we will consider sparse

factorisation techniques, we are interested in keeping the matrix entries as tightly banded as

possible. To this end, we choose a snake ordering for the patches, where each patch (except

the last) is followed by one of its neighbours. This ordering is illustrated for both model

problems in Figure 2, where the patch ordering follows the blue line.

For Model Problem I, this is trivial to construct, beginning with a vertical ordering, and

then alternating the direction in which the columns of patches are traversed (this could of

course be done equivalently in a horizontal fashion). For Model Problem II, it is less ob-

8 Heryudono, Larsson, Ramage, von Sydow

x1

-1 -0.5 0 0.5 1

x
2

-1

-0.5

0

0.5

1

(a) Patch order for Model Problem I.

x1

-1 -0.5 0 0.5 1

x
2

-1

-0.5

0

0.5

1

(b) Patch order for Model Problem II.

Fig. 2: Illustrations of the snake patch ordering strategy. The blue lines illustrate the order in which the patches

are numbered.

vious how to proceed. We use the following simple heuristic approach. Starting with the

patch whose centre has minimum y co-ordinate, we select a neighbour that is to the left or

else above (in terms of the centre co-ordinates) for as long as possible. When this fails, we

switch direction and look for a neighbour that is to the left or else below, continuing in this

alternating way until all patches have been traversed. Although this approach may some-

times fail (for example, when the domain has thin sections with only one layer of patches

such that changing direction is not possible), the general principle of ordering patches in

terms of nearest neighbours in a linear-like way should still be followed where possible.

Having fixed an order for the patches, we now turn our attention to the ordering of nodes

within each patch, with a similar aim of designing this to minimise the distance between

neighbouring nodes. The strategy we use has two main components. First, each node xk is

allocated to a home patch, according to its largest weight. That is, it is associated with the

patch Ω j for which w j(xk) ≥ wi(xk), i = 1, . . . ,P, see (4). In the case of a tie, the first patch

with this property is designated the home patch. Secondly, the nodes are then ordered within

each patch as follows: first, nodes in the overlap of the current and preceding patch; then

nodes only in the current patch; finally, nodes in the overlap of the current and the following

patch. In this way, nodes that are located in the overlap regions between patches become

close neighbours in the ordering, leading to a cleaner structure in the final global matrix.

Examples of the sparsity of L resulting from this patch and node ordering are shown in

Figure 3, where the three subfigures correspond to the three model problem configurations

presented in Figure 1.

4 Iterative method and preconditioning

As the RBF-PUM coefficient matrix L is very sparse, solving system (8) with a direct method

(based on the factorisation of L into easily invertible matrices) is not appropriate: the perfor-

mance of direct methods scales poorly with problem size in terms of operation counts and

Preconditioning for radial basis function partition of unity methods 9

nz = 11009

(a) Sparsity of L corresponding to

patches and nodes in Figure 1(a).

nz = 11136

(b) Sparsity of L corresponding to

patches and nodes in Figure 1(b).

nz = 3283

(c) Sparsity of L corresponding to

patches and nodes in Figure 1(c).

Fig. 3: Illustrations of typical sparsity patterns of L corresponding to the sample patch and node combinations

in Figure 1.

memory requirements, especially for high-dimensional PDE problems. Instead, we adopt an

iterative approach to take full advantage of the sparsity induced by the local approximation.

In this paper, we will focus on the Generalized Minimum Residual (GMRES) method [33].

As mentioned in the introduction, GMRES is usually not the most efficient method in prac-

tice, as it involves storing and re-orthogonalising against an increasing number of vectors

at each iteration. For implementation purposes, the restarted version GMRES(m) should be

used, or an alternative more cost effective Krylov method such as Bi-CGSTAB [40] or IDR

[38]. However, we use GMRES here for its clear theoretical framework as outlined below.

It is well known that the convergence of GMRES (and other iterative methods) can be

improved by introducing the concept of preconditioning. Theoretically, this is equivalent to

replacing L by a preconditioned matrix whose eigenvalue spectrum facilitates faster itera-

tive convergence (see below). Considerable research has been carried out in recent years to

find inexpensive ways to generate suitable preconditioners for a wide variety of problems

with different types of coefficient matrix (see, for example, [5] or any standard textbook

on iterative methods). Here we will employ right preconditioning and solve linear systems

equivalent to (8) of the form

LM−1y = f , Mu = y.

Note that in practice it is not necessary to form the preconditioned matrix LM−1 explicitly

(which would again result in a loss of sparsity): we only need to solve ‘inner’ linear systems

with M as coefficient matrix. The aim is therefore to find a preconditioner M such that

LM−1 has an improved eigenvalue structure, while a system with coefficient matrix M is

cheap to solve. This latter point is primarily what motivates the use of sparse factorisations

as preconditioners.

The GMRES method has the attractive theoretical property of minimising the 2-norm

of the residual at each iteration. That is, at iteration i, the residual vector ri = f −LM−1yi

satisfies

‖ri‖2 = min
pi∈Pi,pi(0)=1

‖pi(LM
−1)r0‖2,

10 Heryudono, Larsson, Ramage, von Sydow

where Pi is the set of all polynomials of degree i. Furthermore, if the preconditioned coef-

ficient matrix LM−1 is diagonalisable, it can be shown that

‖ri‖2
‖r0‖2

≤ cond2 (WLM−1) min
pi∈Pi,pi(0)=1

max
1≤ℓ≤N

|pi(αℓ)|

where αℓ, ℓ = 1, . . . ,N are the eigenvalues of LM−1 with corresponding eigenvector matrix

WLM−1 . If LM−1 is normal, then cond2 (WLM−1) = 1 and, in exact arithmetic, GMRES will

converge in s iterations, where s is the number of distinct eigenvalues of LM−1. In prac-

tice, although rounding error pollutes this theoretical result, the rate of convergence is still

essentially bounded by the quantity

ρi = min
pi∈Pi,pi(0)=1

max
1≤ℓ≤N

|pi(αℓ)| (11)

at each iteration, so fast convergence can be obtained if the eigenvalues of LM−1 are nicely

clustered. Specifically, if the preconditioned eigenvalues lie in k dense clusters, we expect to

obtain a good approximation to the solution vector in k GMRES iterations. If the precondi-

tioned coefficient matrix is not normal (as is the case here), the factor cond2 (WLM−1) reflects
its degree of non-normality and convergence often exhibits an initial period of stagnation be-

fore bounds based on eigenvalues alone become descriptive [10]. This phenomenon can be

observed in the convergence plots presented later (Figure7).

In the numerical experiments in §6, we will compare the performance of five different

preconditioners with that of unpreconditioned GMRES. Two of these are based on a straight-

forward incomplete LU factorisation [29] of L. In the first (L-ILUn), no fill-in is allowed,

that is, the sparsity pattern of the factors is fixed to the same as the sparsity pattern of the

original matrix L (this method is often designated in the literature by ILU(0)). In the second

variant (L-ILUd), a drop tolerance is specified (0.001 in our experiments), and any poten-

tial entries in the factors which are less than this value are ignored, again ensuring that the

factors remain sparse.

In addition to these two standard methods, we will also use three preconditioners based

on factorisations of an alternative matrix, B, containing only the central band of L. Figure 4

shows the matrix B for the three configurations we have considered in Figures 1 and 3. In

nz = 7070

(a) Sparsity of B corresponding to

patches and nodes in Figure 1(a).

nz = 7778

(b) Sparsity of B corresponding to

patches and nodes in Figure 1(b).

nz = 2101

(c) Sparsity of B corresponding to

patches and nodes in Figure 1(c).

Fig. 4: Illustrations of typical sparsity patterns of B corresponding to the sample patch and node combinations

in Figure 1.

Preconditioning for radial basis function partition of unity methods 11

each case, the bandwidth β of B (such that bi j = 0 when |i− j| > β) has been set equal

to max j n j −1 where n j is the total number of nodes in patch j. This choice of bandwidth

ensures that we retain information about the closest connections between nodes and patches,

which is located in this central band thanks to the nearest-neighbour philosophy we have

used in numbering of patches and nodes (see §3). In §6, we test three preconditioners based

on B. The first of these is a full LU factorisation of B (B-LU). Although this will not be

competitive in computational terms, the resulting iteration counts will give an indication of

the amount of information lost by replacing the full coefficient matrix L with the banded

approximation B. As more practical preconditioners, we also use the same two forms of

ILU factorisation used for L, namely, with no fill-in (B-ILUn) and with a drop tolerance of

0.001 (B-ILUd). A summary of all five preconditioners implemented in §6, together with

the acronyms used to refer to them in the following text, is given in Table 1.

Table 1: Summary of preconditioners implemented

B-LU LU factorisation of B.

B-ILUn Incomplete LU factorisation of B using no fill-in.

B-ILUd Incomplete LU factorisation of B using drop tolerance 0.001.

L-ILUn Incomplete LU factorisation of L using no fill-in.

L-ILUd Incomplete LU factorisation of L using drop tolerance 0.001.

Note that, in terms of ILU fixed sparsity patterns, we have included here results only

for the no-fill version (commonly called ILU(0)) and not the more general version, ILU(p)
(see, for example, [32, §10.3.3]) which allows a higher level of fill-in. For the banded fac-

torisation, we observed in our numerical experiments that most of the relevant information

is already captured by B-ILUn, making versions with more fill-in essentially redundant. For

the full factorisation of L, adding additional fill-in was more beneficial in terms of reducing

iteration counts. However, the amount of extra storage required grew very quickly, making

such methods unattractive when moving to high dimensional problems. We have therefore

omitted results obtained using these methods from this paper.

5 Convergence estimates for GMRES

As described in §4, the asymptotic convergence phase of GMRES can be quantified by

considering the factors ρi in (11) based on the eigenvalues αℓ of the coefficient matrix. In

practice, however, the eigenvalues αℓ are not usually readily available, so it is common to

use instead a related expression, based on a compact and continuous set S which contains

the relevant eigenspectrum (but excludes the origin), of the form

ρi(S) = min
pi∈Pi,pi(0)=1

max
σ∈S

|pi(σ)|.

To remove the dependence on the iteration number i, it is often more convenient to consider

the so-called asymptotic convergence factor of the set S (see e.g. [26, §5.7.6]) defined by

ρ(S) = lim
i→∞

(ρi(S))
1/i . (12)

12 Heryudono, Larsson, Ramage, von Sydow

Although ρ(S) can be difficult to quantify analytically, its value can be estimated using a

computational technique based on conformal mappings. Specifically, if Φ is a conformal

map from the exterior of S to the exterior of the unit disc that satisfies Φ(∞) = ∞, then ρ(S)
in (12) can be approximated by the value of |Φ(0)|−1 (see [9] for more details). In what

follows, we apply this technique with S chosen to be the complex hull of the eigenvalue

spectrum being studied.

We begin with Model Problem I with Cartesian grid points, but here using more points

(N = 1225, with 64 (8×8) patches) than shown in Figure 1(a). Gaussian RBFs, φ(ε r) =
exp(−ε2r2), with shape parameter ε = 1.2 are used. Here L (and its associated precondi-

tioned versions) is positive definite, so the convex hull of the eigenvalues does not contain the

origin, and the procedure for estimating the asymptotic convergence factor outlined above

can be carried out in all cases. The pictures in Figure 5 show the eigenvalues (blue circles) of

the coefficient matrix after the different preconditioners have been applied, with the convex

hull outlined in red.

real(αℓ)
×10

4

0 1 2 3

im
a
g
(α

ℓ
)

-400

-200

0

200

400

(a) No preconditioning.

real(αℓ)
0 0.5 1 1.5 2

im
a
g
(α

ℓ
)

-0.4

-0.2

0

0.2

0.4

(b) B-LU.

real(αℓ)
0 0.5 1 1.5 2

im
a
g
(α

ℓ
)

-0.4

-0.2

0

0.2

0.4

(c) B-ILUn.

real(αℓ)
0 0.5 1 1.5 2

im
a
g
(α

ℓ
)

-0.4

-0.2

0

0.2

0.4

(d) B-ILUd.

real(αℓ)
0 0.5 1 1.5 2

im
a
g
(α

ℓ
)

-0.4

-0.2

0

0.2

0.4

(e) L-ILUn.

real(αℓ)
0 0.5 1 1.5 2

im
a
g
(α

ℓ
)

-0.4

-0.2

0

0.2

0.4

(f) L-ILUd.

Fig. 5: Eigenvalues of the coefficient matrix with various preconditioners for Model Problem I with 1225

Cartesian points and 64 patches together with the associated convex hull used in the calculation of ρ in (12).

The values of ρ associated with the spectra represented in Figure 5 are listed in Table 2.

When no preconditioning is applied, the value of ρ is close to one suggesting that the con-

vergence of unpreconditioned GMRES will be slow: it can be seen that the eigenvalues of L

itself (Figure 5(a)) are not well clustered. The three preconditioners based on B all lead to

preconditioned spectra which look very similar (Figures 5(b), (c) and (d)), with essentially

Preconditioning for radial basis function partition of unity methods 13

Table 2: Approximate asymptotic convergence factor for Model Problem I with 1225 Cartesian points and 64

patches using different preconditioners.

None B-LU B-ILUn B-ILUd L-ILUn L-ILUd

0.990 0.839 0.839 0.840 0.506 0.132

the same convergence factor. An improvement in GMRES convergence rate is anticipated

with all three. The fact that the two preconditioners based on L lead to very clustered eigen-

values (Figures 5(e) and (f)) is reflected in the much smaller values of ρ predicted for these

methods, suggesting that they will require few iterations for convergence.

Analogous eigenvalue plots for Model Problem I with 1258 Halton points and 64 patches

are shown in Figure 6. Here, the convex hull of the eigenvalues always contains the origin

real(αℓ)
×10

4

-2 -1 0 1 2

im
a
g
(α

ℓ
)

×10
4

-1

-0.5

0

0.5

1

(a) No preconditioning.

real(αℓ)
-20 -10 0 10 20

im
a
g
(α

ℓ
)

-5

-2.5

0

2.5

5

(b) B-LU.

real(αℓ)
-20 -10 0 10 20

im
a
g
(α

ℓ
)

-5

-2.5

0

2.5

5

(c) B-ILUn.

real(αℓ)
-20 -10 0 10 20

im
a
g
(α

ℓ
)

-5

-2.5

0

2.5

5

(d) B-ILUd.

real(αℓ)
×10

4

-15 -10 -5 0 5

im
a
g
(α

ℓ
)

-1000

-500

0

500

1000

(e) L-ILUn.

real(αℓ)
-20 -10 0 10 20

im
a
g
(α

ℓ
)

-5

-2.5

0

2.5

5

(f) L-ILUd.

Fig. 6: Eigenvalues of the coefficient matrix with various preconditioners for Model Problem I with 1258

Halton points and 64 patches together with the associated convex hull. Note that the axis limits are the same

for all preconditioned spectra except for the L-ILUn preconditioner.

so the above method for estimating the asymptotic convergence rate is not applicable.

Figure 7 shows the actual residual reduction for Model Problem I using 1225 Carte-

sian points (Figure 7(a)) and 1258 Halton points (Figure 7(b)). All calculations used a zero

14 Heryudono, Larsson, Ramage, von Sydow

iterations (k)
0 50 100 150 200 250

lo
g 1

0
(‖
r k
‖
2
/‖

r 0
‖ 2
)

10
-8

10
-6

10
-4

10
-2

10
0

none

B-LU

B-ILUn

B-ILUd

L-ILUn

L-ILUd

(a) 1225 Cartesian points.

iterations (k)
0 100 200 300 400 500

lo
g 1

0
(‖
r k
‖
2
/‖

r 0
‖ 2
)

10
-8

10
-6

10
-4

10
-2

10
0

none

B-LU

B-ILUn

B-ILUd

L-ILUn

L-ILUd

(b) 1258 Halton points.

Fig. 7: Convergence for Model Problem I using 64 patches.

starting guess, and each GMRES iteration was terminated when

‖ri‖2 ≤ 10−8 ‖r0‖2. (13)

These results can be used to compute the residual reduction factor ρ̃ , defined by

ρ̃ =

(

‖ri‖2
‖r0‖2

)1/i

,

where i is the number of iterations required for convergence. These values are shown in

Table 3. The actual residual reduction factor for the Cartesian points is slightly better than

expected from theory (Table 2) but exhibits the same relative behaviour over the range of

preconditioners.

Table 3: Residual reduction for Model Problem I with 64 patches and 1225 Cartesian points and 1258 Halton

points respectively, using different preconditioners.

None B-LU B-ILUn B-ILUd L-ILUn L-ILUd

1225 Cartesian points 0.898 0.713 0.713 0.711 0.397 0.098

1258 Halton points 0.949 0.891 0.898 0.895 0.940 0.778

6 Numerical results

In this section we present the results of some numerical experiments which investigate the

comparative performance of preconditioned GMRES for the preconditioners listed in Ta-

ble 1. All calculations were carried out with MATLAB [28], and the timings were produced

Preconditioning for radial basis function partition of unity methods 15

using tic and toc. The initial guess was zero, and all tests used the GMRES stopping cri-

terion (13). The underlying PDE problems which we solve are Model Problems I and II as

described in §3. However, as we are interested in studying the effect on solver performance

of varying the number of patches, as well as the type and number of points used, we do not

limit ourselves to the configurations shown in Figure 1. Instead we will introduce five sets

of test problems which will help us to isolate these individual effects. In all experiments,

Gaussian RBFs with shape parameter ε = 1.2 have been used. The RBF–QR method was

employed in order to ensure stable evaluation of the matrices. It should however be noted

that even if the RBF–QR method involves a change of basis, the resulting differentiation

matrices are the same that would result from a direct use of the Gaussian basis if that was

numerically feasible.

The first four of these test sets are for Model Problem I (on the square domain). For each

test problem, the number of points (N), number of patches (P), average number of of points

per patch (p), estimated condition number of L (κ , calculated using the MATLAB command

condest), and the maximum error in the discrete solution are displayed in Table 4. Test sets

Table 4: Test sets 1–4 for Model Problem I

Cartesian nodes

Test N P p κ max error Test N P p κ max error

Test set 1 Test set 2

1A 441 16 54.1 2.3e+4 2.4e−4 2A 400 25 35.6 4.8e+3 3.6e−3

1B 676 25 53.8 3.8e+4 3.7e−4 2B 576 25 46.2 1.9e+4 1.8e−4

1C 961 36 53.7 5.5e+4 2.9e−4 2C 676 25 53.8 3.8e+4 3.7e−4

1D 1024 49 42.7 2.6e+4 1.2e−4 2D 900 25 71.2 2.5e+5 4.7e−5

1E 1225 64 38.9 4.8e+4 2.3e−5 2E 1089 25 85.7 7.0e+5 1.3e−6

Halton nodes

Test N P p κ max error Test N P p κ max error

Test set 3 Test set 4

3A 460 16 49.6 3.8e+6 1.2e−4 4A 436 25 30.8 3.9+e6 1.4e−2

3B 681 25 48.6 2.0e+7 1.2e−4 4B 583 25 41.2 1.0+e7 1.1e−3

3C 968 36 49.3 6.0e+7 1.7e−4 4C 681 25 48.6 2.0+e7 1.2e−4

3D 1056 49 40.1 6.1e+7 1.0e−4 4D 884 25 62.0 2.1+e8 1.3e−5

3E 1258 64 36.8 1.1e+8 2.0e−4 4E 1090 25 77.9 1.1+e9 1.6e−6

1 and 2 both use Cartesian points. In test set 1, N and P are both increased in such a way that

the resulting error in the solution is kept at a similar level (≃ 1e−4). This results in a set of

coefficient matrices L which are similarly conditioned. Note that problem 1E corresponds to

the configuration which leads to the eigenvalues in Figure 5. Test set 2 is designed to achieve

different levels of accuracy by varying N while keeping P constant (P = 25). Here it is clear

that there is a correlation between the accuracy of the discretisation and the condition of the

resulting L. Test sets 3 and 4 are designed to be broadly similar, but use Halton points in

place of a Cartesian lattice. The degradation of the condition number of L associated with

the irregularly scattered points is apparent.

In Table 5 we display iteration counts and computational times for the different precon-

ditioners defined in Table 1 employed on test sets 1 and 2. Let us first focus on iteration

counts. As predicted by the asymptotic convergence rates in Table 2 (which were calculated

16 Heryudono, Larsson, Ramage, von Sydow

Table 5: Results for test sets 1 and 2 (Cartesian nodes, Model problem I). The lowest time for each problem

is shown in bold.

Test set 1

Test none B-LU B-ILUn B-ILUd L-ILUn L-ILUd

Iteration counts

1A 127 35 35 36 10 9

1B 165 43 43 44 12 11

1C 200 51 51 51 14 13

1D 170 52 52 52 25 8

1E 174 55 55 55 20 9

Computational time

1A 1.8e−1 1.1e−1 3.1e−2 5.5e−2 2.9e−2 3.4e−2

1B 2.7e−1 9.5e−2 5.9e−2 7.8e−2 4.1e−2 6.6e−2

1C 4.3e−1 2.0e−1 8.4e−2 1.2e−1 4.0e−2 1.1e−1

1D 3.3e−1 1.3e−1 7.8e−2 1.2e−1 3.9e−2 9.5e−2

1E 4.4e−1 1.9e−1 1.0e−1 1.4e−1 4.6e−2 1.7e−1

Test set 2

Test none B-LU B-ILUn B-ILUd L-ILUn L-ILUd

Iteration counts

2A 32 20 21 36 21 44

2B 127 38 38 38 12 7

2C 165 43 43 44 12 11

2D 170 48 49 49 21 11

2E 180 52 53 54 25 17

Computational time

2A 6.4e−2 3.5e−2 3.2e−2 5.3e−2 2.9e−2 5.7e−2

2B 1.5e−1 6.1e−2 3.3e−2 7.1e−2 1.5e−2 3.9e−2

2C 3.5e−1 1.3e−1 6.0e−2 8.0e−2 2.0e−2 7.6e−2

2D 3.1e−1 1.7e−1 1.1e−1 2.5e−1 1.1e−1 1.7e−1

2E 4.1e−1 2.6e−1 9.6e−2 2.0e−1 7.2e−2 2.6e−1

using problem 1E), the method which converges in the smallest number of iterations is L-

ILUd, followed by L-ILUn, while the three methods based on B have similar performance.

As B-LU uses a full LU factorisation, iteration counts for this preconditioner give a lower

bound on what can be expected from B-ILUn and B-ILUd. It can be seen that, as we have

carefully numbered patches and points to ensure that the central band that is used to form B

is relatively dense, very little is lost in replacing LU by an incomplete version. As well as

considering iteration counts, however, it is of course important to consider the computational

time taken by each method. Those are also listed in Table 5, and include the time taken for

factorisation (where applicable) and the full GMRES solve. Using this measure, the methods

of choice are the factorisations based on ILUn with, for these Cartesian examples, L-ILUn

being slightly faster that the banded version, B-ILUn.

The equivalent results for test sets 3 and 4 (with Halton nodes) are shown in Table 6. As

expected, the poorer conditioning of these matrices is reflected in increased iteration counts

for all of the methods. In particular, the performance of L-ILUn degrades completely (cf.

the eigenvalues for problem 3E shown in Figure 6(e)). This catastrophic behaviour appears

to be restricted to the case with no fill-in only: allowing additional levels of fill-in brings the

iteration counts more in line with the Cartesian results. However, as discussed above, this

Preconditioning for radial basis function partition of unity methods 17

Table 6: Results for test sets 3 and 4 (Halton nodes, Model Problem I). The lowest time for each problem is

shown in bold.

Test set 3

Test none B-LU B-ILUn B-ILUd L-ILUn L-ILUd

Iteration counts

3A 156 52 58 54 97 19

3B 231 100 112 106 167 49

3C 297 114 135 123 159 65

3D 310 108 118 115 202 60

3E 355 161 174 166 310 75

Computational time

3A 2.5e−1 1.0e−1 5.4e−2 1.9e−1 2.2e−1 1.7e−1

3B 5.5e−1 3.0e−1 1.6e−1 2.6e−1 3.1e−1 4.3e−1

3C 8.6e−1 3.9e−1 3.1e−1 4.1e−1 3.4e−1 8.5e−1

3D 9.5e−1 3.4e−1 2.1e−1 3.5e−1 6.3e−1 7.9e−1

3E 1.4e−0 6.3e−1 4.2e−1 6.2e−1 1.1e−0 1.1e−0

Test set 4

Test none B-LU B-ILUn B-ILUd L-ILUn L-ILUd

Iteration counts

4A 189 72 72 72 79 16

4B 209 80 91 84 147 34

4C 231 100 112 106 167 49

4D 262 107 125 124 176 66

4E 295 120 135 172 368 152

Computational time

4A 3.1e−1 1.1e−1 1.0e−1 1.8e−1 1.6e−1 1.6e−1

4B 4.6e−1 2.7e−1 1.9e−1 2.5e−1 2.4e−1 2.3e−1

4C 4.9e−1 3.0e−1 1.8e−1 3.0e−1 4.2e−1 3.9e−1

4D 6.5e−1 5.2e−1 2.8e−1 4.2e−1 4.1e−1 8.8e−1

4E 9.0e−1 6.9e−1 3.0e−1 8.8e−1 1.6e−0 2.8e−0

comes at the price of significantly increasing the amount of memory needed. The compara-

tive merits of other methods in Table 6 are essentially the same as for the Cartesian example,

although the reduction in iteration counts (relative to the unpreconditioned case) is less in all

cases here. This is not surprising as the Halton points do not have the rigid banded substruc-

ture of the Cartesian points, which is more amenable to efficient factorisation. In addition,

the bandwidth measure β in B has been tailored to the Cartesian case (where it can be eas-

ily calculated): using the same measure in the Halton case does not necessarily guarantee

inclusion of all closest connections due to the lack of structure. However, the factorisations

based on B still work well as preconditioners and, in terms of computational times, B-ILUn

is clearly the most efficient method overall.

To conclude this section, we introduce a final set of test problems, test set 5, for Model

Problem II using unstructured nodes, and P= 50 patches. Details of the configurations used

are given in Table 7. Note that the values of N have been chosen to roughly correspond

to those used in test sets 1–4. The corresponding iteration counts and computational times

are shown in Table 8. Despite the irregularity of the computational domain, the results are

very similar to those obtained using Halton points on the square domain, with B-ILUn again

being the method of choice.

18 Heryudono, Larsson, Ramage, von Sydow

Table 7: Test set 5 for Model Problem II

Test N P p κ max error

5A 398 50 13.2 1.6e+6 8.8e−1

5B 695 50 23.4 9.7e+5 2.8e−4

5C 994 50 33.4 1.9e+7 2.2e−4

5D 1094 50 36.9 8.6e+6 8.4e−6

5E 1292 50 43.7 1.6e+7 1.7e−6

Table 8: Results for test set 5 (Model Problem II). The lowest time for each problem is shown in bold.

Test none B-LU B-ILUn B-ILUd L-ILUn L-ILUd

Iteration counts

5A 207 67 68 67 48 14

5B 235 76 78 76 85 13

5C 279 99 119 99 195 23

5D 304 102 120 102 255 26

5E 322 133 149 132 415 53

Computational time

5A 2.1e−1 7.3e−2 5.8e−2 7.3e−2 3.9e−2 3.0e−2

5B 4.9e−1 1.3e−1 8.8e−2 1.3e−1 9.9e−2 8.4e−2

5C 7.5e−1 2.6e−1 2.1e−1 2.6e−1 4.4e−1 2.8e−1

5D 9.1e−1 2.9e−1 2.1e−1 2.9e−1 7.4e−1 3.7e−1

5E 1.1e−0 5.6e−1 3.3e−1 5.3e−1 2.0e−0 7.9e−1

7 Conclusions

In this paper, we have introduced and evaluated algebraic preconditioners for RBF-PUM

discretisations. These preconditioners are free of any assumptions on the node layout or

geometry of the computational domain. The only property that is used is the knowledge that

there is a patch structure and that nodes can be ordered accordingly. This is important so

that the preconditioner is generally applicable.

The performance of the preconditioners, as well as the conditioning of the original ma-

trix, is negatively affected by the use of the highly unstructured nodes. However, in our

experiments we do not observe any adverse effect of changing the computational domain.

The preconditioner that performed best overall, and that we recommend for use, is the no

fill-in incomplete factorisation of the central band, denoted by B-ILUn.

The B-ILUn preconditioner is also the most sparse of the tested preconditioners. This

property becomes increasingly important when moving to larger matrix sizes and/or higher

dimensional problems, in which case memory requirements become a limiting factor. How

the preconditioner performs in higher dimensions will be the subject of further studies.

References

1. Axelsson, O., Neytcheva, M., Ahmad, B.: A comparison of iterative methods to solve complex valued

linear algebraic systems. Numer. Algorithms 66(4), 811–841 (2014). DOI 10.1007/s11075-013-9764-1

2. Babuška, I., Melenk, J.M.: The partition of unity method. Internat. J. Numer. Methods Engrg. 40(4),

727–758 (1997). DOI 10.1002/(SICI)1097-0207(19970228)40:4<727::AID-NME86>3.3.CO;2-E

Preconditioning for radial basis function partition of unity methods 19

3. Baxter, B.J.C.: Preconditioned conjugate gradients, radial basis functions, and Toeplitz matrices. Com-

put. Math. Appl. 43(3-5), 305–318 (2002). DOI 10.1016/S0898-1221(01)00288-7

4. Beatson, R.K., Cherrie, J.B., Mouat, C.T.: Fast fitting of radial basis functions: methods based

on preconditioned GMRES iteration. Adv. Comput. Math. 11(2-3), 253–270 (1999). DOI

10.1023/A:1018932227617

5. Benzi, M.: Preconditioning techniques for large linear systems: A survey. J. Comp. Phys. 182, 418–477

(2002). DOI 10.1006/jcph.2002.7176

6. Brown, D., Ling, L., Kansa, E., Levesley, J.: On approximate cardinal preconditioning methods for

solving PDEs with radial basis functions. Eng. Anal. Bound. Elem. 29(4), 343–353 (2005). DOI

http://dx.doi.org/10.1016/j.enganabound.2004.05.006

7. Cavoretto, R., De Rossi, A., Donatelli, M., Serra-Capizzano, S.: Spectral analysis and preconditioning

techniques for radial basis function collocation matrices. Numer. Linear Algebra Appl. 19(1), 31–52

(2012). DOI 10.1002/nla.774

8. Driscoll, T.A., Fornberg, B.: Interpolation in the limit of increasingly flat radial basis functions. Comput.

Math. Appl. 43(3–5), 413–422 (2002). DOI 10.1016/S0898-1221(01)00295-4

9. Driscoll, T.A., Toh, K.C., Trefethen, L.N.: From potential theory to matrix iterations in six steps. SIAM

Review 40, 547–578 (1998). DOI 10.1137/S0036144596305582

10. Embree, M.: How descriptive are gmres convergence bounds? Tech. Rep. 99/08, Oxford University

Computing Laboratory Numerical Analysis (1999)

11. Farrell, P., Pestana, J.: Block preconditioners for linear systems arising from multilevel RBF collocation.

MIMS EPrint 2014.18, Manchester Institute for Mathematical Sciences, School of Mathematics, The

University of Manchester (2014)

12. Fasshauer, G.E.: Meshfree approximation methods with MATLAB, Interdisciplinary Mathematical Sci-

ences, vol. 6. World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ (2007). DOI 10.1142/6437

13. Faul, A.C., Goodsell, G., Powell, M.J.D.: A Krylov subspace algorithm for multiquadric interpolation in

many dimensions. IMA J. Numer. Anal. 25(1), 1–24 (2005). DOI 10.1093/imanum/drh021

14. Fornberg, B., Larsson, E., Flyer, N.: Stable computations with Gaussian radial basis functions. SIAM J.

Sci. Comput. 33(2), 869–892 (2011). DOI 10.1137/09076756X

15. Fornberg, B., Lehto, E., Powell, C.: Stable calculation of Gaussian-based RBF-FD stencils. Comput.

Math. Appl. 65(4), 627–637 (2013). DOI 10.1016/j.camwa.2012.11.006

16. Fornberg, B., Piret, C.: A stable algorithm for flat radial basis functions on a sphere. SIAM J. Sci.

Comput. 30(1), 60–80 (2007). DOI 10.1137/060671991

17. Fornberg, B., Wright, G.: Stable computation of multiquadric interpolants for all values of the shape

parameter. Comput. Math. Appl. 48(5-6), 853–867 (2004). DOI 10.1016/j.camwa.2003.08.010

18. Fornberg, B., Wright, G., Larsson, E.: Some observations regarding interpolants in the limit of flat radial

basis functions. Comput. Math. Appl. 47(1), 37–55 (2004). DOI 10.1016/S0898-1221(04)90004-1

19. Fornberg, B., Zuev, J.: The Runge phenomenon and spatially variable shape parameters in RBF interpo-

lation. Comput. Math. Appl. 54(3), 379–398 (2007). DOI 10.1016/j.camwa.2007.01.028

20. Fuselier, E., Hangelbroek, T., Narcowich, F.J., Ward, J.D., Wright, G.B.: Localized bases for kernel

spaces on the unit sphere. SIAM J. Numer. Anal. 51(5), 2538–2562 (2013). DOI 10.1137/120876940

21. Halton, J.H.: On the efficiency of certain quasi-random sequences of points in evaluating multi-

dimensional integrals. Numer. Math. 2, 84–90 (1960). DOI 10.1007/BF01386213

22. Larsson, E., Fornberg, B.: A numerical study of some radial basis function based solution methods for

elliptic PDEs. Comput. Math. Appl. 46(5–6), 891–902 (2003). DOI 10.1016/S0898-1221(03)90151-9

23. Larsson, E., Fornberg, B.: Theoretical and computational aspects of multivariate interpolation with

increasingly flat radial basis functions. Comput. Math. Appl. 49(1), 103–130 (2005). DOI

10.1016/j.camwa.2005.01.010

24. Larsson, E., Heryudono, A.: A partition of unity radial basis function collocation method for partial

differential equations (2015). Manuscript in preparation

25. Larsson, E., Lehto, E., Heryudono, A., Fornberg, B.: Stable computation of differentiation matrices and

scattered node stencils based on Gaussian radial basis functions. SIAM J. Sci. Comput. 35(4), A2096–

A2119 (2013). DOI 10.1137/120899108

26. Liesen, J., Strakos̆, Z.: Krylov subspace methods: Principles and analysis, Numerical Mathematics and

Scientific Computation, vol. 25. Oxford University press, Oxford, UK (2013)

27. Ling, L., Kansa, E.J.: A least-squares preconditioner for radial basis functions collocation methods. Adv.

Comput. Math. 23(1–2), 31–54 (2005). DOI 10.1007/s10444-004-1809-5

28. MATLAB: version 8.3.0.532 (R2014a). The MathWorks Inc., Natick, Massachusetts (2014)

29. Meijerink, J.A., van der Vorst, H.A.: An iterative solution method for linear systems of which the coef-

ficient matrix is a symmetric M-matrix. Math. Comp. 31, 148–162 (1977). DOI 10.1090/S0025-5718-

1977-0438681-4

20 Heryudono, Larsson, Ramage, von Sydow

30. Rieger, C., Zwicknagl, B.: Sampling inequalities for infinitely smooth functions, with applications to

interpolation and machine learning. Adv. Comput. Math. 32(1), 103–129 (2010). DOI 10.1007/s10444-

008-9089-0

31. Rieger, C., Zwicknagl, B.: Improved exponential convergence rates by oversampling near the boundary.

Constr. Approx. 39(2), 323–341 (2014). DOI 10.1007/s00365-013-9211-5

32. Saad, Y.: Iterative Methods for Sparse Linear Systems. Society for Industrial and Applied Mathematics

(2003). DOI 10.1137/1.9780898718003

33. Saad, Y., Schultz, M.H.: GMRES: A generalized minimal residual algorithm for solving nonsymmetric

linear systems. SIAM J. Sci. Statist. Comput. 7, 856–869 (1986). DOI 10.1137/0907058

34. Safdari-Vaighani, A., Heryudono, A., Larsson, E.: A radial basis function partition of unity collocation

method for convection–diffusion equations arising in financial applications. J. Sci. Comp. pp. 1–27

(2014). DOI 10.1007/s10915-014-9935-9

35. Schoenberg, I.J.: Metric spaces and completely monotone functions. Ann. of Math. (2) 39(4), 811–841

(1938). DOI 10.2307/1968466

36. Shcherbakov, V., Larsson, E.: Radial basis function partition of unity methods for pricing vanilla basket

options. Tech. Rep. 2015-001, Department of Information Technology, Uppsala University (2015)

37. Shepard, D.: A two-dimensional interpolation function for irregularly-spaced data. In: Proceedings of

the 1968 23rd ACM national conference, ACM ’68, pp. 517–524. ACM, New York, NY, USA (1968).

DOI 10.1145/800186.810616

38. Sonneveld, P., van Gijzen, M.B.: IDR(s): A family of simple and fast algorithms for solving large non-

symmetric linear systems. SIAM J. Sci. Comput. 31, 1035–1062 (2008). DOI 10.1137/070685804

39. von Sydow, L., Höök, L.J., Larsson, E., Lindström, E., Milovanović, S., Persson, J., Shcherbakov, V.,

Shpolyanskiy, Y., Sirén, S., Toivanen, J., Waldén, J., Wiktorsson, M., Giles, M.B., Levesley, J., Li, J.,

Oosterlee, C.W., Ruijter, M.J., Toropov, A., Zhao, Y.: BENCHOP—The BENCHmarking project in Op-

tion Pricing (2015). Submitted

40. van der Vorst, H.A.: Bi-CGSTAB: A fast and smoothly converging variant of Bi-CG for the solution of

nonsymmetric linear systems. SIAM J. Sci. Stat. Comput. 13, 631–644 (1992). DOI 10.1137/0913035

41. Wendland, H.: Piecewise polynomial, positive definite and compactly supported radial functions of min-

imal degree. Adv. Comput. Math. 4(4), 389–396 (1995). DOI 10.1007/BF02123482

42. Wendland, H.: Fast evaluation of radial basis functions: methods based on partition of unity. In: Ap-

proximation theory, X (St. Louis, MO, 2001), Innov. Appl. Math., pp. 473–483. Vanderbilt Univ. Press,

Nashville, TN (2002)

